Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (488)

Search Parameters:
Keywords = geological history

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2167 KB  
Review
Extending the Rock Cycle to a Cosmic Scale
by Andrea Vitrano, Nicola Mari, Daniele Musumeci, Luigi Ingaliso and Francesco Vetere
Geosciences 2025, 15(8), 327; https://doi.org/10.3390/geosciences15080327 - 21 Aug 2025
Viewed by 765
Abstract
The rock cycle, a cornerstone of geosciences, describes rock formation and transformation on Earth. However, this Earth-centric view overlooks the broader history of rock evolution across the cosmos, with two fundamental limitations: (i) Earth-centric paradigms that ignore extraterrestrial lithogenesis, excluding cosmically significant rocks [...] Read more.
The rock cycle, a cornerstone of geosciences, describes rock formation and transformation on Earth. However, this Earth-centric view overlooks the broader history of rock evolution across the cosmos, with two fundamental limitations: (i) Earth-centric paradigms that ignore extraterrestrial lithogenesis, excluding cosmically significant rocks and processes, and (ii) disciplinary fragmentation between geological and astrophysical sciences, from the micro- to the macroscale. This review proposes an extension of the rock cycle concept to a cosmic scale, exploring the origin of rocks and their evolution from interstellar space, through the aggregation of solid materials in protoplanetary disks, and their subsequent evolution on planetary bodies. Through systematic analysis of igneous, metamorphic, and sedimentary processes occurring beyond Earth, we identify four major domains in which distinct dynamics govern the rock cycle, each reworking rocks with domain-specific characteristics: (1) stellar and nebular dynamics, (2) protoplanetary disk dynamics, (3) asteroidal dynamics, and (4) planetary dynamics. Here we propose the cosmic rock cycle as a new epistemic tool that could transform interdisciplinary research and geoscience education. This perspective reveals Earth’s rock cycle as a rare and invaluable subset of rock genesis in the cosmos. Full article
(This article belongs to the Special Issue Insights in Planetary Geology)
Show Figures

Figure 1

14 pages, 5124 KB  
Article
Calculation of the Natural Fracture Distribution in a Buried Hill Reservoir Using the Continuum Damage Mechanics Method
by Yunchao Jia, Xinpu Shen, Peng Gao, Wenjun Huang and Jinwei Ren
Energies 2025, 18(16), 4369; https://doi.org/10.3390/en18164369 - 16 Aug 2025
Viewed by 317
Abstract
Due to their low permeability, the location of natural fractures is key to the successful development of buried hill reservoirs. Due to the high degree of rock fragmentation and strong absorption of seismic waves at the top of buried hill formations, it is [...] Read more.
Due to their low permeability, the location of natural fractures is key to the successful development of buried hill reservoirs. Due to the high degree of rock fragmentation and strong absorption of seismic waves at the top of buried hill formations, it is hard to identify the distribution of natural fractures inside a buried hill using conventional seismic methods. To overcome this difficulty, this study proposes a natural fracture identification technology for buried hill reservoirs that combines a continuum damage mechanics model with finite element numerical simulation. A 3D numerical solution workflow is established to determine the natural fracture distribution in target buried hill reservoirs. By constructing a geological model of a block, reconstructing the orogenic history, developing a 3D finite element model, and performing numerical simulations, the multi-stage orogenic processes experienced by buried hill reservoirs and the resultant natural fracture formation are replicated. This approach yields 3D numerical results of natural fracture distribution. Using the G-Block in the Zhongyuan Oilfield as a case study, the natural fracture distribution in a buried hill reservoir composed of mixed lithologies, including marble and Carboniferous formations, within the faulted G6-well group is analyzed. The results include plane views of the contour of damage variable SDEG, which represents the fracture distribution within the subsurface layer at 600 m intervals below the buried hill surface, as well as a vertical sectional view of the contour of SDEG’s distribution along specified well trajectories. By comparison with the results of the fracture distribution obtained with logging data, a consistency of 87.5% is achieved. This indicates the reliability of the numerical results for natural fractures obtained using the technology presented here. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

35 pages, 9639 KB  
Review
Use of Remote Sensing Data to Study the Aral Sea Basin in Central Asia—Geoscience and Geological Hazards
by Jean-Paul Deroin
Remote Sens. 2025, 17(16), 2814; https://doi.org/10.3390/rs17162814 - 14 Aug 2025
Viewed by 718
Abstract
The Aral Sea Basin (ASB), situated in Central Asia, serves as a prime example of a man-made environmental disaster. The practice of irrigation can be traced back to ancient times. However, the substantial water withdrawals that have occurred since the second half of [...] Read more.
The Aral Sea Basin (ASB), situated in Central Asia, serves as a prime example of a man-made environmental disaster. The practice of irrigation can be traced back to ancient times. However, the substantial water withdrawals that have occurred since the second half of the 20th century appear to have led to the irreversible drying up of the Aral Sea and the disruption of the flow of the Amu Darya and Syr Darya rivers. This study conducts a comprehensive review of satellite data from the past sixty years, drawing upon a selection of peer-reviewed papers available on Scopus. The selection of papers is conducted in accordance with a methodology that is predicated on the combination of keywords. The study focuses on geoscientific aspects, including the atmosphere, water resources, geology, and geological hazards. The primary sensors employed in this study were Terra-MODIS, NOAA-AVHRR, and the Landsat series. It is evident that certain data types, including radar data, US or Soviet archives, and very-high-resolution data such as OrbView-3, have seen minimal utilisation. Despite the restricted application of remote sensing data in publications addressing the ASB, remote sensing data offer a substantial repository for monitoring the desiccation of the Aral Sea, once the fourth largest continental body of water, and for the estimation of its water surface and volume. Nevertheless, the utilisation of remote sensing in publications concerning the Aral region remains limited, with less than 10% of publications employing this method. Sentinel-2 data has been utilised to illustrate the construction of the Qosh Tepa Canal in Afghanistan, a project which has been the subject of significant controversy, with a particular focus on the issue of water leakage. This predicament is indicative of the broader challenges confronting the region with regard to water management in the context of climate change. A comparison of the Aral Sea’s case history is drawn with analogous examples worldwide, including Lake Urmia, the Great Salt Lake, and, arguably more problematically, the Caspian Sea. Full article
Show Figures

Figure 1

31 pages, 29045 KB  
Article
Earliest Cambrian Carbonate Platform Evolution, Environmental Change, and Organic Matter Accumulation in the Northwestern Yangtze Block, South China
by Jincheng Liu, Qingchun Jiang, Yan Zhang, Jingjiang Liu, Yifei Ai, Pengzhen Duan and Guangyou Zhu
Minerals 2025, 15(8), 812; https://doi.org/10.3390/min15080812 - 31 Jul 2025
Viewed by 341
Abstract
The earliest Cambrian (ca., 538.8–524.8 Ma) was an important period in geological history witnessing significant environmental change, during which organic-rich facies were developed in the Yangtze Platform, South China. However, the contemporaneous paleogeographic and stratigraphic framework within which the environmental change and organic [...] Read more.
The earliest Cambrian (ca., 538.8–524.8 Ma) was an important period in geological history witnessing significant environmental change, during which organic-rich facies were developed in the Yangtze Platform, South China. However, the contemporaneous paleogeographic and stratigraphic framework within which the environmental change and organic matter accumulation took place remains poorly understood. We investigate this based on facies, sequence stratigraphic, and geochemical analyses of the lowermost Cambrian Maidiping and Zhujiaqing formations in the northwestern Yangtze Block. The results show that the terminal Ediacaran rimmed platform changed into a foredeep carbonate ramp and backbulge basin after the onset of the earliest Cambrian transgression. Across the Ediacaran–Cambrian boundary, the shallow-marine redox condition rapidly transitioned from relative euxinia to an oxygen-rich state. During the late transgression to highstand normal regression, the foredeep carbonate ramp expanded to the cratonic interior, and nutrients brought by intensified continental weathering and upwelling promoted significant phytoplankton proliferation, an increase in oxygen level and primary productivity, and then organic matter enrichment. During the forced regression, the carbonate ramp gradually changed into a rimmed platform. The weakening continental weathering and expanding anoxic area during the forced to lowstand normal regression led to the significant organic carbon burial in the foredeep basin. Full article
(This article belongs to the Special Issue Organic Petrology and Geochemistry: Exploring the Organic-Rich Facies)
Show Figures

Figure 1

17 pages, 1204 KB  
Article
The Great Wanderer: The Phylogeographic History of the Bicolor Pyramid Ant (Dorymyrmex bicolor Wheeler, 1906) in Central Veracruz, Mexico
by Maria Gómez-Lazaga and Alejandro Espinosa de los Monteros
Insects 2025, 16(8), 785; https://doi.org/10.3390/insects16080785 - 31 Jul 2025
Viewed by 443
Abstract
The goal of phylogeography is to explain how microevolutionary forces shape the gene pool of a lineage into the geography. In this study we have evaluated the amount of genetic variation in 13 populations of Dorymyrmex bicolor distributed in a mountainous region in [...] Read more.
The goal of phylogeography is to explain how microevolutionary forces shape the gene pool of a lineage into the geography. In this study we have evaluated the amount of genetic variation in 13 populations of Dorymyrmex bicolor distributed in a mountainous region in Central Veracruz, Mexico. To do so, we sequenced fragments from the mitochondrial COI, COII, and nuclear LWRh genes. Segregated sites were found only at the mitochondrial markers, recovering a total of 21 different haplotypes. The nucleotide diversity ranged from 0 to 0.5% at the different sampling sites. Phylogenetic and spatial analyses of molecular variance revealed a weak but significant phylogeographic structure associated with lowland and mountainous zones. Molecular clock analysis suggests that radiation in the mountain area started 7500 years ago, whereas lineage radiation in the lowland started more recently, around 2700 years ago. The phylogeographic structure is incipient, with nests from lowlands more closely related to mountain nests than to other lowland nests, and vice versa. This seems to be consistent with a model of incomplete lineage sorting. The obtained patterns appear to be the result of restricted gene flow mediated by a complex topographic landscape that has been shaped by a dynamic geologic history. Full article
(This article belongs to the Special Issue Ant Population Genetics, Phylogeography and Phylogeny)
Show Figures

Figure 1

16 pages, 4736 KB  
Review
Volcanic Islands as Reservoirs of Geoheritage: Current and Potential Initiatives of Geoconservation
by Esther Martín-González, Juana Vegas, Inés Galindo, Carmen Romero and Nieves Sánchez
J. Mar. Sci. Eng. 2025, 13(8), 1420; https://doi.org/10.3390/jmse13081420 - 25 Jul 2025
Viewed by 538
Abstract
Volcanic islands host exceptional geological features that illustrate complex endogenic processes and interactions with climatic and marine forces, while also being particularly vulnerable to the impacts of climate change. Despite their scientific, educational, touristic, and aesthetic values, such islands remain underrepresented within the [...] Read more.
Volcanic islands host exceptional geological features that illustrate complex endogenic processes and interactions with climatic and marine forces, while also being particularly vulnerable to the impacts of climate change. Despite their scientific, educational, touristic, and aesthetic values, such islands remain underrepresented within the UNESCO Global Geoparks (UGGp). This study reviews current volcanic island geoparks and evaluates territories with potential for future designation, based on documented geoheritage, geosite inventories, and geoconservation frameworks. Geoparks are categorized according to their dominant narratives—ranging from recent Quaternary volcanism to broader tectonic, sedimentary, and metamorphic histories. Through an analysis of their distribution, management strategies, and integration into territorial planning, this work highlights the challenges that insular territories face, including vulnerability to global environmental change, limited legal protection, and structural inequalities in access to international resources recognition. It concludes that volcanic island geoparks represent strategic platforms for implementing sustainable development models, especially in ecologically and socially fragile contexts. Enhancing their global representation will require targeted efforts in ecologically and socially fragile contexts. Enhancing their global representation will require targeted efforts in capacity building, funding access, and regional cooperation—particularly across the Global South. Full article
(This article belongs to the Special Issue Feature Review Papers in Geological Oceanography)
Show Figures

Figure 1

30 pages, 5617 KB  
Article
Scale Considerations and the Quantification of the Degree of Fracturing for Geological Strength Index (GSI) Assessments
by Paul Schlotfeldt, Jose (Joe) Carvalho and Brad Panton
Appl. Sci. 2025, 15(15), 8219; https://doi.org/10.3390/app15158219 - 24 Jul 2025
Viewed by 375
Abstract
This paper provides research that shows that the scale and quantification of the degree of fracturing in a rock mass should and can be considered when estimating geological strength index (GSI) ratings for rock mass strength and deformability estimates. In support of this [...] Read more.
This paper provides research that shows that the scale and quantification of the degree of fracturing in a rock mass should and can be considered when estimating geological strength index (GSI) ratings for rock mass strength and deformability estimates. In support of this notion, a brief review is provided to demonstrate why it is imperative that scale is considered when using GSI in engineering design. The impact of scale and scale effects on the engineering response of a rock mass typically requires a definition of fracture intensity relative to the volume or size of rock mass under consideration and the relative scale of the project being built. In this research three volume scales are considered: the volume of a structural domain, a representative elemental REV, and unit volume. A theoretical framework is established that links these three volume scales together, how they are estimated, and how they relate to parameters used to estimate engineering behaviour. Analysis of data from several examples and case histories for real rock masses is presented that compares and validates the use of a new and innovative but practical method (a sphere of unit volume) to estimate fracture intensity parameters VFC or P30 (fractures/m3) and P32 (fracture area—m2/m3) that is included on the vertical axis of the volumetric V-GSI chart. The research demonstrates that the unit volume approach to calculating VFC and P32 used in the V-GSI system compares well with other methods of estimating these two parameters (e.g., discrete fracture network (DFN) modelling). The research also demonstrates the reliability of the VFC-correlated rating scale included on the vertical axis of the V-GSI chart for use in estimating first-order strength and deformability estimates for rock masses. This quantification does not negate or detract from geological logic implicit in the original graphical GSI chart. Full article
(This article belongs to the Special Issue Rock-Like Material Characterization and Engineering Properties)
Show Figures

Figure 1

16 pages, 11535 KB  
Article
Sedimentary Stylolites Roughness Inversion Enables the Quantification of the Eroded Thickness of Deccan Trap Above the Bagh Group, Narmada Basin, India
by Dhiren Kumar Ruidas, Nicolas E. Beaudoin, Srabani Thakur, Aniruddha Musib and Gourab Dey
Minerals 2025, 15(8), 766; https://doi.org/10.3390/min15080766 - 22 Jul 2025
Viewed by 1009
Abstract
Stylolites, common dissolution surfaces in carbonate rocks, form due to localized stress-induced pressure-solution during burial compaction or tectonic contraction. Their morphology and growth are influenced by dissolution kinetics, rock heterogeneity, clay content, burial depth, stress evolution, diagenesis, and pore fluid availability. This study [...] Read more.
Stylolites, common dissolution surfaces in carbonate rocks, form due to localized stress-induced pressure-solution during burial compaction or tectonic contraction. Their morphology and growth are influenced by dissolution kinetics, rock heterogeneity, clay content, burial depth, stress evolution, diagenesis, and pore fluid availability. This study applies the stylolite roughness inversion technique (SRIT), a proven paleopizometer that quantifies the principal vertical stress (σv = σ1) prevailing in strata in the last moments of bedding-parallel stylolites (BPS) formation, to the Late Cretaceous Bagh Group carbonates in the Narmada Basin, India, to estimate their burial paleo-depth. Using the Fourier Power Spectrum (FPS), we obtained 18 σ1 values from a collection of 30 samples, enabling us to estimate paleo-burial depths for the Bagh Group ranging from 660 to 1320 m. As the Bagh Group burial history is unknown, but as there is no subsequent sedimentary deposition above it, we relate this ca. 1.3 km burial depth to the now eroded thickness of the deposits related to Deccan volcanism at the end of the Cretaceous time, implying a quasi-instantaneous development of the BPS population in the strata. This research highlights the robustness of SRIT for reconstructing burial histories in carbonate sequences and that it can be a reliable way to reconstruct the thickness of eroded deposits in well-constrained geological history. Full article
Show Figures

Figure 1

20 pages, 4045 KB  
Review
“Winners” and “Losers” of the Bivalve Evolution
by Jasenka Sremac and Marija Bošnjak
Diversity 2025, 17(7), 500; https://doi.org/10.3390/d17070500 - 21 Jul 2025
Viewed by 1092
Abstract
Bivalves are nowadays represented by several thousand species of variable sizes and shapes. Additionally, thousands more species occurred during their 500-million-year long evolution. Present on Earth since the Cambrian, the class Bivalvia experienced periods of gradual evolution, interspersed with periods of rapid changes. [...] Read more.
Bivalves are nowadays represented by several thousand species of variable sizes and shapes. Additionally, thousands more species occurred during their 500-million-year long evolution. Present on Earth since the Cambrian, the class Bivalvia experienced periods of gradual evolution, interspersed with periods of rapid changes. Some groups of bivalves, namely clams, oysters, scallops, and marine mussels, managed to survive a series of extinctions, and their descendants still thrive in modern oceans and seas. Other groups, such as the rudists, completely disappeared from marine environments, after undergoing successful evolutionary radiation. In this study, we consider the possible reasons for the longevity of some bivalve orders and discuss the possible causes of demise of several once-successful clades. As expected, a small body size, large number of specimens, infaunal mode of life, motility, and long-living planktonic larvae proved to be evolutionary advantages during stress periods. The ability to harbor chemosymbionts could be an additional benefit during biotic crises. Full article
(This article belongs to the Special Issue Diversity, Biogeography, Fossil Record and Evolution of Bivalvia)
Show Figures

Figure 1

20 pages, 7004 KB  
Article
Molecular Insights into the Diversification and Biogeographic History of Six Astragalus L. Sections in the Turkish Flora
by Mevlüde Alev Ateş, Seher Karaman, Zeki Aytaç and Zeki Kaya
Plants 2025, 14(14), 2226; https://doi.org/10.3390/plants14142226 - 18 Jul 2025
Viewed by 688
Abstract
With 493 taxa and 63 sections, Astragalus L. is the largest genus in Türkiye. Most of these are narrow endemics and usually found in marginal habitats or require edaphic specializations (about 42% of the species are endemic). Due to the genus’s extensive diversity [...] Read more.
With 493 taxa and 63 sections, Astragalus L. is the largest genus in Türkiye. Most of these are narrow endemics and usually found in marginal habitats or require edaphic specializations (about 42% of the species are endemic). Due to the genus’s extensive diversity of species and common economic use, numerous scientific studies have concentrated on specific species. Taxonomic categorization based on morphological characteristics is insufficient to distinguish certain taxonomic groups. However, there is no systematic molecular phylogenetic analysis of Turkish species that deals with speciation in this genus. To concentrate on molecular-level speciation, fresh leaves from 152 samples representing 30 species across six sections native to Türkiye were collected over several months of comprehensive field studies and analyzed with regard to the internal transcribed spacer (ITS) of nrDNA and the trn L5′-L3′ + L3′-F(GAA) + mat K of cpDNA regions. Additionally, molecular clock estimations and biogeographical histories were analyzed to clearly understand the species’ divergence. Based on all studied regions, the Poterion section was found to be the newest and most divergent section, while the Megalocystis Bunge and Halicacabus Bunge sections were the closest and older ones. Furthermore, A. vaginans from section Hymenocoleus Bunge were included not only in this section but also in several other lineages. It is noteworthy that A. dipodurus and A. oleaefolius species from the section Macrophyllium Bunge are usually put together in a distinct sub-branch from other species members of the section in phylogenetic trees generated using both researched cpDNA and nrDNA regions. Moreover, some of the species are divided by the Anatolian diagonal, and the speciation of a significant number of species began during the Pleistocene geological time period. Geographical isolations or other weak isolation mechanisms preceded speciation in Astragalus, which requires more research in the future. Full article
(This article belongs to the Special Issue Plant Diversity and Classification)
Show Figures

Figure 1

24 pages, 9520 KB  
Article
An Integrated Assessment Approach for Underground Gas Storage in Multi-Layered Water-Bearing Gas Reservoirs
by Junyu You, Ziang He, Xiaoliang Huang, Ziyi Feng, Qiqi Wanyan, Songze Li and Hongcheng Xu
Sustainability 2025, 17(14), 6401; https://doi.org/10.3390/su17146401 - 12 Jul 2025
Viewed by 499
Abstract
In the global energy sector, water-bearing reservoir-typed gas storage accounts for about 30% of underground gas storage (UGS) reservoirs and is vital for natural gas storage, balancing gas consumption, and ensuring energy supply stability. However, when constructing the UGS in the M gas [...] Read more.
In the global energy sector, water-bearing reservoir-typed gas storage accounts for about 30% of underground gas storage (UGS) reservoirs and is vital for natural gas storage, balancing gas consumption, and ensuring energy supply stability. However, when constructing the UGS in the M gas reservoir, selecting suitable areas poses a challenge due to the complicated gas–water distribution in the multi-layered water-bearing gas reservoir with a long production history. To address this issue and enhance energy storage efficiency, this study presents an integrated geomechanical-hydraulic assessment framework for choosing optimal UGS construction horizons in multi-layered water-bearing gas reservoirs. The horizons and sub-layers of the gas reservoir have been quantitatively assessed to filter out the favorable areas, considering both aspects of geological characteristics and production dynamics. Geologically, caprock-sealing capacity was assessed via rock properties, Shale Gouge Ratio (SGR), and transect breakthrough pressure. Dynamically, water invasion characteristics and the water–gas distribution pattern were analyzed. Based on both geological and dynamic assessment results, the favorable layers for UGS construction were selected. Then, a compositional numerical model was established to digitally simulate and validate the feasibility of constructing and operating the M UGS in the target layers. The results indicated the following: (1) The selected area has an SGR greater than 50%, and the caprock has a continuous lateral distribution with a thickness range from 53 to 78 m and a permeability of less than 0.05 mD. Within the operational pressure ranging from 8 MPa to 12.8 MPa, the mechanical properties of the caprock shale had no obvious changes after 1000 fatigue cycles, which demonstrated the good sealing capacity of the caprock. (2) The main water-producing formations were identified, and the sub-layers with inactive edge water and low levels of water intrusion were selected. After the comprehensive analysis, the I-2 and I-6 sub-layer in the M 8 block and M 14 block were selected as the target layers. The numerical simulation results indicated an effective working gas volume of 263 million cubic meters, demonstrating the significant potential of these layers for UGS construction and their positive impact on energy storage capacity and supply stability. Full article
Show Figures

Figure 1

26 pages, 2535 KB  
Article
Uncertainty Analysis and Risk Assessment for Variable Settlement Properties of Building Foundation Soils
by Xudong Zhou and Tao Wang
Buildings 2025, 15(13), 2369; https://doi.org/10.3390/buildings15132369 - 6 Jul 2025
Viewed by 426
Abstract
Settlement analyses of foundation soils are very important for the investigation, design, and construction of buildings. However, due to complex natural sedimentary processes, soil-forming environments, and geological tectonic stress histories, settlement properties show obvious spatial variability and autocorrelation. Moreover, measurement data on the [...] Read more.
Settlement analyses of foundation soils are very important for the investigation, design, and construction of buildings. However, due to complex natural sedimentary processes, soil-forming environments, and geological tectonic stress histories, settlement properties show obvious spatial variability and autocorrelation. Moreover, measurement data on the physical and mechanical parameters of building foundation soils are limited. This limits the accuracy of formation stability analyses and safety evaluations. In this study, a series of field tests of building foundation soils were carried out, and the statistical physical and mechanical properties of the clay strata were obtained. A random field method and copula functions of uncertain geotechnical properties with limited survey data are proposed. A dual-yield surface constitutive model of the soil properties and a stability analysis method for uncertain deformation were developed. The detailed analytical procedures for soil deformation and stratum settlement are presented. The reliability functions and failure probabilities of variable settlement processes are calculated and analyzed. The impact of the spatial variation and cross-correlation of geotechnical properties on the probabilistic stability of variable land subsidence is discussed. This work presents an innovative analysis approach for evaluating the variable settlement properties of building foundation soils. The results show that the four different mechanical parameters can be regressed to linear equations. The horizontal fluctuation scale is significantly larger than the vertical scale. Copula theory provides a powerful framework for modeling limited geotechnical parameters. The bootstrap approach avoids parametric assumptions, leveraging empirical data to enhance the reliability analysis of variable settlement. The variability parameter exerts a greater influence on land subsidence processes than the correlation structure. The failure probabilities of variable stratum settlement for different cross-correlations of building foundation soils are different. These results provide an important reference for the safety of building engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 28055 KB  
Article
Sequence Stratigraphic and Geochemical Records of Paleo-Sea Level Changes in Upper Carboniferous Mixed Clastic–Carbonate Successions in the Eastern Qaidam Basin
by Yifan Li, Xiaojie Wei, Kui Liu and Kening Qi
J. Mar. Sci. Eng. 2025, 13(7), 1299; https://doi.org/10.3390/jmse13071299 - 2 Jul 2025
Viewed by 356
Abstract
The Upper Carboniferous strata in the eastern Qaidam Basin, comprising several hundred meters of thick, mixed clastic–carbonate successions that have been little reported or explained, provide an excellent geological record of paleoenvironmental and paleo-sea level changes during the Late Carboniferous icehouse period. This [...] Read more.
The Upper Carboniferous strata in the eastern Qaidam Basin, comprising several hundred meters of thick, mixed clastic–carbonate successions that have been little reported or explained, provide an excellent geological record of paleoenvironmental and paleo-sea level changes during the Late Carboniferous icehouse period. This tropical carbonate–clastic system offers critical constraints for correlating equatorial sea level responses with high-latitude glacial cycles during the Late Paleozoic Ice Age. Based on detailed outcrop observations and interpretations, five facies assemblages, including fluvial channel, tide-dominated estuary, wave-dominated shoreface, tide-influenced delta, and carbonate-dominated marine, have been identified and organized into cyclical stacking patterns. Correspondingly, four third-order sequences were recognized, each composed of lowstand, transgressive, and highstand system tracts (LST, TST, and HST). LST is generally dominated by fluvial channels as a result of river juvenation when the sea level falls. The TST is characterized by tide-dominated estuaries, followed by retrogradational, carbonated-dominated marine deposits formed during a period of sea level rise. The HST is dominated by aggradational marine deposits, wave-dominated shoreface environments, or tide-influenced deltas, caused by subsequent sea level falls and increased debris supply. The sequence stratigraphic evolution and geochemical records, based on carbon and oxygen isotopes and trace elements, suggest that during the Late Carboniferous period, the eastern Qaidam Basin experienced at least four significant sea level fluctuation events, and an overall long-term sea level rise. These were primarily driven by the Gondwana glacio-eustasy and regionally ascribed to the Paleo-Tethys Ocean expansion induced by the late Hercynian movement. Assessing the history of glacio-eustasy-driven sea level changes in the eastern Qaidam Basin is useful for predicting the distribution and evolution of mixed cyclic succession in and around the Tibetan Plateau. Full article
Show Figures

Figure 1

24 pages, 842 KB  
Article
Predicting the Magnitude of Earthquakes Using Grammatical Evolution
by Constantina Kopitsa, Ioannis G. Tsoulos and Vasileios Charilogis
Algorithms 2025, 18(7), 405; https://doi.org/10.3390/a18070405 - 1 Jul 2025
Viewed by 493
Abstract
Throughout history, human societies have sought to explain natural phenomena through the lens of mythology. Earthquakes, as sudden and often devastating events, have inspired a range of symbolic and mythological interpretations across different civilizations. It was not until the 18th and 19th centuries [...] Read more.
Throughout history, human societies have sought to explain natural phenomena through the lens of mythology. Earthquakes, as sudden and often devastating events, have inspired a range of symbolic and mythological interpretations across different civilizations. It was not until the 18th and 19th centuries that a more positivist and scientific approach began to emerge regarding the explanation of earthquakes, recognizing their origin as stemming from processes occurring beneath the Earth’s surface. A pivotal moment in the emergence of modern seismology was the Lisbon earthquake of 1755, which marked a significant shift towards scientific inquiry. This means that the question of how earthquakes occur has been resolved; thanks to advancements in scientific, geological, and geophysical research, it is now well understood that seismic events result from the collision and movement of lithospheric or tectonic plates. The contemporary challenge that emerges, however, lies in whether such seismic phenomena can be accurately predicted. In this paper, a systematic attempt is made to use techniques based on Grammatical Evolution to determine the magnitude of earthquakes. These techniques use freely available data in which the history of large earthquakes is introduced before the application of the proposed techniques. From the execution of the experiments, it has become clear that the use of these techniques can allow for more effective estimation of the magnitude of earthquakes compared to other machine learning techniques from the relevant literature. Full article
(This article belongs to the Special Issue Algorithms in Data Classification (3rd Edition))
Show Figures

Figure 1

19 pages, 3874 KB  
Article
The Formation Age and Geological Setting of the Huoqiu Group in the Southern Margin of North China Craton: Implication for BIF-Type Iron Prospecting Potentiality
by Lizhi Xue, Rongzhen Tang, Xinkai Chen, Jiashuo Cao and Yanjing Chen
Minerals 2025, 15(7), 695; https://doi.org/10.3390/min15070695 - 29 Jun 2025
Viewed by 364
Abstract
The Huoqiu Group is located in the southern margin of the North China Craton and is considered an Archean geologic body. Its supracrustal rocks are divided into the Huayuan, Wuji, and Zhouji formations in ascending order. The Wuji and Zhouji formations contain large [...] Read more.
The Huoqiu Group is located in the southern margin of the North China Craton and is considered an Archean geologic body. Its supracrustal rocks are divided into the Huayuan, Wuji, and Zhouji formations in ascending order. The Wuji and Zhouji formations contain large BIF-type iron deposits. The BIFs show geological and geochemical features of Paleoproterozoic Lake Superior-type rather than Archean Algoma-type. The study of the formation ages and evolutionary history of the Huoqiu Terrane will provide significant guidance for the mineralization and exploration of the Huoqiu iron deposits. In this paper, we collected all available isotopic ages and Hf isotopic compositions obtained from the Huoqiu Terrane and reassessed their accuracy and geological meanings. We conclude that the Wuji and Zhouji formations were not older than 2343 Ma. Therefore, the BIFs hosted in the Wuji and Zhouji formations must be of Paleoproterozoic age. The magmatic zircons from the TTG gneisses and granite yield U-Pb ages of Neoarchean Era, indicating that the Wuji and Zhouji formations of the Huoqiu Group were deposited on an Archean granitic basement that mainly comprises the trondhjemite-tonalite-granodiorite (TTG) gneisses and granites of the “Huayuan Formation”. The Early Precambrian crystalline basement in the Huoqiu area can be divided into the Huayuan Gneiss Complex and the Huoqiu Group, comprising the Wuji and Zhouji formations. The tectonic scenario of granitic complexes overlain by supracrustal rocks in the Huoqiu Terrane has been recognized in the Songshan, Zhongtiao, Xiaoshan, and Lushan Early Precambrian terranes in the southern margin of the North China Craton. As indicated by the zircon U-Pb ages and εHf(t) data, the crustal growth of the Huoqiu Terrane occurred mainly at ~2.9 Ga and ~2.7 Ga. Based on the sedimentary age, environment, and rhythm, the BIFs in the Huoqiu region are considered to be of Lake Superior type and of great potential for Fe ore exploration. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop