Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,524)

Search Parameters:
Keywords = geopolymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2818 KB  
Article
Tunable Fly Ash-Based Geopolymer Fibers for Multivariate Heavy-Metal Adsorption: Optimization and Mechanistic Insights
by Gongming Luo, Yuanbing Zhou, Shuangquan Liao and Sujitra Onutai
Materials 2025, 18(20), 4698; https://doi.org/10.3390/ma18204698 (registering DOI) - 13 Oct 2025
Abstract
This study presents the fabrication and performance optimization of porous fly ash-based geopolymer (FAGP)–polyethersulfone (PES) composite fibers with tunable FAGP loading for the multivariate adsorption of heavy-metal ions from aqueous solutions. Fibers containing 20 wt%, 40 wt%, and 60 wt% FAGP were prepared [...] Read more.
This study presents the fabrication and performance optimization of porous fly ash-based geopolymer (FAGP)–polyethersulfone (PES) composite fibers with tunable FAGP loading for the multivariate adsorption of heavy-metal ions from aqueous solutions. Fibers containing 20 wt%, 40 wt%, and 60 wt% FAGP were prepared using phase inversion method and were characterized using X-ray computed tomography and mechanical testing. Adsorption experiments were conducted to assess the removal efficiencies of Pb2+, Cd2+, Cu2+, and Ni2+ at different pH values, temperatures, contact times, adsorbent dosage and initial metal-ion concentrations. The composite containing 60 wt% FAGP exhibited the high performance for all ions, and its performance was especially high for Pb2+. The isotherm and kinetic modeling revealed that the adsorption process followed Freundlich and Redlich–Peterson models, with mixed chemisorption–physisorption mechanisms depending on the metal-ion type. Compared with conventional adsorbents, the optimized composite fibers exhibited high adsorption capacity, enhanced handling suitability, and scalability in addition to their sustainability owing to the use of industrial by-products as precursors. These findings provide new insights into the structure–function relationships of FAGP composite fiber adsorbents and their potential for wastewater treatment applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

18 pages, 1145 KB  
Article
A Systematic Approach for Selection of Fit-for-Purpose Low-Carbon Concrete for Various Bridge Elements to Reduce the Net Embodied Carbon of a Bridge Project
by Harish Kumar Srivastava, Vanissorn Vimonsatit and Simon Martin Clark
Infrastructures 2025, 10(10), 274; https://doi.org/10.3390/infrastructures10100274 - 13 Oct 2025
Abstract
Australia consumes approximately 29 million m3 of concrete each year with an estimated embodied carbon (EC) of 12 Mt CO2e. High consumption of concrete makes it critical for successful decarbonization to support the achievement of ‘Net Zero 2050’ objectives of [...] Read more.
Australia consumes approximately 29 million m3 of concrete each year with an estimated embodied carbon (EC) of 12 Mt CO2e. High consumption of concrete makes it critical for successful decarbonization to support the achievement of ‘Net Zero 2050’ objectives of the Australian construction industry. Portland cement (PC) constitutes only 12–15% of the concrete mix but is responsible for approximately 90% of concrete’s EC. This necessitates reducing the PC in concrete with supplementary cementitious materials (SCMs) or using alternative binders such as geopolymer concrete. Concrete mixes including a combination of PC and SCMs as a binder have lower embodied carbon (EC) than those with only PC and are termed as low-carbon concrete (LCC). SCM addition to a concrete mix not only reduces EC but also enhances its mechanical and durability properties. Fly ash (FA) and granulated ground blast furnace slag (GGBFS) are the most used SCMs in Australia. It is noted that other SCMs such as limestone, metakaolin or calcinated clay, Delithiated Beta Spodumene (DBS) or lithium slag, etc., are being trialed. This technical paper presents a methodology that enables selecting LCCs with various degrees of SCMs for various elements of bridge structure without compromising their functional performance. The proposed methodology includes controls that need to be applied during the design/selection process of LCC, from material quality control to concrete mix design to EC evaluation for every element of a bridge, to minimize the overall carbon footprint of a bridge. Typical properties of LCC with FA and GGBFS as binary and ternary blends are also included for preliminary design of a fit-for-purpose LCC. An example for a bridge located in the B2 exposure classification zone (exposed to both carbonation on chloride ingress deterioration mechanisms) has also been included to test the methodology, which demonstrates that EC of the bridge may be reduced by up to 53% by use of the proposed methodology. Full article
(This article belongs to the Special Issue Sustainable Bridge Engineering)
Show Figures

Figure 1

18 pages, 10929 KB  
Article
Influence of Activator Modulus and Water-to-Binder Ratio on Mechanical Properties and Damage Mechanisms of Lithium-Slag-Based Geopolymers
by Shujuan Zhang, Chiyuan Che, Haijun Jiang, Ruiguo Zhang, Yang Liu, Shengqiang Yang and Ning Zhang
Materials 2025, 18(20), 4695; https://doi.org/10.3390/ma18204695 (registering DOI) - 13 Oct 2025
Abstract
The synergistic preparation of geopolymer from lithium slag, fly ash, and slag for underground construction can facilitate the extensive recycling of lithium slag. The effects of different activator moduli and water–binder ratios on the mechanical properties and damage mechanisms of the lithium-slag-based geopolymer [...] Read more.
The synergistic preparation of geopolymer from lithium slag, fly ash, and slag for underground construction can facilitate the extensive recycling of lithium slag. The effects of different activator moduli and water–binder ratios on the mechanical properties and damage mechanisms of the lithium-slag-based geopolymer were investigated by uniaxial compression tests and acoustic emission (AE) monitoring. The results show that, based on a comprehensive evaluation of peak stress, crack closure stress, plastic deformation stress, and elastic modulus, the optimal activator modulus is determined to be 1.0, and the optimal water-to-binder ratio is 0.42. At low modulus values (0.8 and 1.0) and low water–binder ratio (0.42), the AE events exhibit a steady pattern, indicating slow crack initiation and propagation within the geopolymer; with the increasing activator modulus and water-to-binder ratios, the frequency of AE events increases significantly, indicating more-frequent crack propagation and stress mutation within the geopolymer. Similarly, when the modulus is 0.8 or 1.0 and the water–binder ratio is 0.42, the sample presents a macroscopic tensile failure mode; as the modulus and water–binder ratio increase, the sample presents a tensile–shear composite failure mode. The energy evolution laws of geopolymer specimens with different activator moduli and water-to-binder ratios were analyzed, and a damage constitutive model was established. The results indicate that, with optimized mix proportions, the material can be used as a supporting material for underground spaces. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 1690 KB  
Article
Bayesian-Optimized Ensemble Models for Geopolymer Concrete Compressive Strength Prediction with Interpretability Analysis
by Mehmet Timur Cihan and Pınar Cihan
Buildings 2025, 15(20), 3667; https://doi.org/10.3390/buildings15203667 - 11 Oct 2025
Viewed by 78
Abstract
Accurate prediction of geopolymer concrete compressive strength is vital for sustainable construction. Traditional experiments are time-consuming and costly; therefore, computer-aided systems enable rapid and accurate estimation. This study evaluates three ensemble learning algorithms (Extreme Gradient Boosting (XGB), Random Forest (RF), and Light Gradient [...] Read more.
Accurate prediction of geopolymer concrete compressive strength is vital for sustainable construction. Traditional experiments are time-consuming and costly; therefore, computer-aided systems enable rapid and accurate estimation. This study evaluates three ensemble learning algorithms (Extreme Gradient Boosting (XGB), Random Forest (RF), and Light Gradient Boosting Machine (LightGBM)), as well as two baseline models (Support Vector Regression (SVR) and Artificial Neural Network (ANN)), for this task. To improve performance, hyperparameter tuning was conducted using Bayesian Optimization (BO). Model accuracy was measured using R2, RMSE, MAE, and MAPE. The results demonstrate that the XGB model outperforms others under both default and optimized settings. In particular, the XGB-BO model achieved high accuracy, with RMSE of 0.3100 ± 0.0616 and R2 of 0.9997 ± 0.0001. Furthermore, Shapley Additive Explanations (SHAP) analysis was used to interpret the decision-making of the XGB model. SHAP results revealed the most influential features for compressive strength of geopolymer concrete were, in order, coarse aggregate, curing time, and NaOH molar concentration. The graphical user interface (GUI) developed for compressive strength prediction demonstrates the practical potential of this research. It contributes to integrating the approach into construction practices. This study highlights the effectiveness of explainable machine learning in understanding complex material behaviors and emphasizes the importance of model optimization for making sustainable and accurate engineering predictions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 16680 KB  
Article
Interpretation of Dominant Features Governing Compressive Strength in One-Part Geopolymer
by Yiren Wang, Yihai Jia, Chuanxing Wang, Weifa He, Qile Ding, Fengyang Wang, Mingyu Wang and Kuizhen Fang
Buildings 2025, 15(20), 3661; https://doi.org/10.3390/buildings15203661 - 11 Oct 2025
Viewed by 136
Abstract
One-part geopolymers (OPG) offer a low-carbon alternative to Portland cement, yet mix design remains largely empirical. This study couples machine learning with SHAP (Shapley Additive Explanations) to quantify how mix and curing factors govern performance in Ca-containing OPG. We trained six regressors—Random Forest, [...] Read more.
One-part geopolymers (OPG) offer a low-carbon alternative to Portland cement, yet mix design remains largely empirical. This study couples machine learning with SHAP (Shapley Additive Explanations) to quantify how mix and curing factors govern performance in Ca-containing OPG. We trained six regressors—Random Forest, ExtraTrees, SVR, Ridge, KNN, and XGBoost—on a compiled dataset and selected XGBoost as the primary model based on prediction accuracy. Models were built separately for four targets: compressive strength at 3, 7, 14, and 28 days. SHAP analysis reveals four dominant variables across targets—Slag, Na2O, Ms, and the water-to-binder ratio (w/b)—while the sand-to-binder ratio (s/b), temperature, and humidity are secondary within the tested ranges. Strength evolution follows a reaction–densification logic: at 3 days, Slag dominates as Ca accelerates C–(N)–A–S–H formation; at 7–14 days, Na2O leads as alkalinity/soluble silicate controls dissolution–gelation; by 28 days, Slag and Na2O jointly set the strength ceiling, with w/b continuously regulating porosity. Interactions are strongest for Slag × Na2O (Ca–alkalinity synergy). These results provide actionable guidance: prioritize Slag and Na2O while controlling w/b for strength. The XGBoost+SHAP workflow offers transparent, data-driven decision support for OPG mix optimization and can be extended with broader datasets and formal validation to enhance generalization. Full article
Show Figures

Figure 1

16 pages, 4308 KB  
Article
Influence of HPMC and VAE on the Properties of Geopolymer Mortar
by Wenjun Ji, Pengfei Chen, Ying Lu, Zeyang Zhang, Baolong Shan, Sha Li, Mengyan Chi and Haifeng Yu
Buildings 2025, 15(19), 3621; https://doi.org/10.3390/buildings15193621 - 9 Oct 2025
Viewed by 158
Abstract
The delamination of building facades creates a critical demand for inorganic adhesive mortars with high long-term adhesion. Geopolymer (GP) represents an eco-friendly alternative to Portland cement (PC). However, the effect of polymer additives, commonly used in cement-based adhesive mortars, on GP mortar remains [...] Read more.
The delamination of building facades creates a critical demand for inorganic adhesive mortars with high long-term adhesion. Geopolymer (GP) represents an eco-friendly alternative to Portland cement (PC). However, the effect of polymer additives, commonly used in cement-based adhesive mortars, on GP mortar remains insufficiently studied. This study examines the effects of hydroxypropyl methylcellulose (HPMC) and vinyl acetate-ethylene (VAE) polymer on the workability, mechanical properties, durability, and microstructure of GP mortar. Results show that an optimal HPMC content (0.4 wt%) improves the fluidity, compressive strength, and adhesive strength of GP mortar, approximately 6%, 16%, and 20%, respectively. These enhancements are attributed to the incorporation of uniformly distributed microbubbles in the mortar matrix. Beyond this optimal content, however, HPMC impairs flowability and adhesion due to its thickening effect. In contrast, VAE addition significantly enhanced adhesive strength by approximately 28%, albeit at the cost of a 17% reduction in compressive strength, resulting from the retardation of the alkali activation process. This gain in adhesion is associated with the formation of a continuous polymer film that establishes both physical interlocking and chemical bonding with the GP matrix. Furthermore, HPMC improved the durability of the GP mortar, while VAE did not contribute to this aspect. These insights offer valuable guidance for designing high-performance GP-based adhesive mortars suitable for building applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

30 pages, 3132 KB  
Review
A Literature Review of Sustainable Building Research: Bibliometric Analysis from 2015–2025
by Yuehong Lu, Yang Zhang, Zhijia Huang, Bo Cheng, Changlong Wang, Yanhong Sun, Hongguang Zhang and Jiao Li
Buildings 2025, 15(19), 3609; https://doi.org/10.3390/buildings15193609 - 8 Oct 2025
Viewed by 384
Abstract
This study presents a novel integrative review of 329 review articles on sustainable buildings from 2015 to 2025, combining quantitative bibliometrics with qualitative insights to map the field’s evolution and pinpoint critical future pathways. Seven core research themes were identified in this study: [...] Read more.
This study presents a novel integrative review of 329 review articles on sustainable buildings from 2015 to 2025, combining quantitative bibliometrics with qualitative insights to map the field’s evolution and pinpoint critical future pathways. Seven core research themes were identified in this study: (1) material and advanced construction technologies, (2) energy efficiency and renewable energy systems, (3) digitalization and smart technologies, (4) policy, standards, and certification, (5) sustainable design and optimization, (6) stakeholder and socio-economic factors, (7) other (cross-cutting) topics. Key findings reveal a surge in publications post-2020, driven by global net-zero commitments, with China, Australia, and Hong Kong leading research output. Innovations in low-carbon materials (e.g., hemp concrete, geopolymers), artificial intelligent (AI)-driven energy optimization, and digital tools (e.g., building information modeling (BIM), internet of things (IoT)) dominate recent advancements. However, challenges persist, including policy fragmentation, scalability barriers for sustainable materials, and socio-economic disparities in green building adoption. The study proposes a unique future research framework emphasizing nanotechnology-enhanced materials, interpretable AI models, harmonized global standards, and inclusive stakeholder engagement. This review provides actionable recommendations to bridge gaps between technological innovation, policy frameworks, and practical implementation in sustainable construction. Full article
(This article belongs to the Special Issue Advances in Green Building and Environmental Comfort)
Show Figures

Figure 1

15 pages, 7140 KB  
Article
Tuning the Carbonation Resistance of Metakaolin–Fly Ash-Based Geopolymers: The Dual Role of Reactive MgO in Microstructure and Degradation Mechanisms
by Shuai Li and Dongyu Ji
J. Compos. Sci. 2025, 9(10), 549; https://doi.org/10.3390/jcs9100549 - 7 Oct 2025
Viewed by 368
Abstract
Geopolymers, as a novel class of low-carbon and eco-friendly cementitious material, exhibit outstanding durability and promote the resource utilization of industrial solid wastes. However, as a promising alternative to ordinary Portland cement, its susceptibility to carbonation-induced degradation may limit its widespread application. To [...] Read more.
Geopolymers, as a novel class of low-carbon and eco-friendly cementitious material, exhibit outstanding durability and promote the resource utilization of industrial solid wastes. However, as a promising alternative to ordinary Portland cement, its susceptibility to carbonation-induced degradation may limit its widespread application. To address this challenge, this study systematically examined the effects of magnesium oxide (MgO) content and the metakaolin-to-fly ash ratio on the carbonation performance, mechanical properties, pH value, and microstructures of metakaolin–fly ash-based (MF-based) geopolymer pastes. The findings revealed that an increase in the fly ash ratio correlated with a decline in the compressive strength of MF-based geopolymer pastes. Conversely, the incorporation of MgO significantly enhanced the compressive strength, with higher fly ash ratios leading to more substantial improvements in strength. Furthermore, the addition of MgO and fly ash effectively mitigated the penetration of carbonation and the associated decrease in the pH value of the MF-based geopolymer pastes. Specifically, compared to the control group without MgO (M8F2-0%), MF-based geopolymer pastes with 4% and 8% MgO additions exhibited reductions in carbonation depth of 69.4% and 80.4%, respectively, after 28 days of carbonation, while pH values were observed to be 1.22 and 1.15 units higher, respectively. Additionally, microscopic structural analysis revealed that the inclusion of MgO resulted in a reduction in pore size, porosity, and mean pore diameter within the geopolymer pastes. This improvement was mainly attributed to the promotion of hydration processes by MgO, leading to the formation of fine Mg(OH)2 crystals within the high-alkalinity pore solution, which enhances microstructural densification. In conclusion, the incorporation of MgO significantly improves the carbonation resistance and mechanical performance of MF-based geopolymers. It is recommended that future studies explore the long-term performance under combined environmental actions and evaluate the economic and environmental benefits of MgO-modified geopolymers for large-scale applications. Full article
(This article belongs to the Special Issue Composite Materials for Civil Engineering Applications)
Show Figures

Figure 1

23 pages, 10416 KB  
Article
Effect of Expansive Agent on Properties and Microstructure of Coal Gangue-Slag-Fly Ash Based Geopolymer
by Qi Wang, Mei Zhou, Xinyi Wang, Yang Han, Lei Peng and Gang Ma
Materials 2025, 18(19), 4607; https://doi.org/10.3390/ma18194607 - 4 Oct 2025
Viewed by 337
Abstract
Expansive agents (CaO, MgO, C4A3Š) were incorporated into coal gangue-slag-fly ash based geopolymer (CSFG). The influence of expansive agents on the properties and microstructure of CSFG was investigated by macroscopic tests including setting time, compressive strength, and shrinkage values, [...] Read more.
Expansive agents (CaO, MgO, C4A3Š) were incorporated into coal gangue-slag-fly ash based geopolymer (CSFG). The influence of expansive agents on the properties and microstructure of CSFG was investigated by macroscopic tests including setting time, compressive strength, and shrinkage values, along with microstructural tests including XRD, FTIR, SEM-EDS, and BET. Results showed that CaO and MgO added separately and their combination exhibited similar trends, with CaO added separately yielding the most favorable outcome. In comparison to the control group, the sample with 7% CaO reduced initial and final setting times by 43.6% and 52.8%, increased 28 d compressive strength by 12.6%, and decreased 28 d drying shrinkage and autogenous shrinkage values by 43.5% and 29.9%, respectively. Moderate MgO and CaO enhanced dissolution of precursors (e.g., coal gangue, fly ash), promoting formation of C-A-S-H gel, CaCO3, and periclase. Incorporating 3% C4A3Š shortened initial and final setting times by 41.3% and 17.8%, improved 28 d compressive strength by 32.2%, but increased 28 d drying and autogenous shrinkage values by 58.3% and 12.8%. Exceeding 3% content significantly reduced 3 d strength. Excessive C4A3Š promoted rapid ettringite (AFt) formation, leading to microcracking. Correction prediction models for drying shrinkage strain and autogenous shrinkage strain of CSFG were developed, demonstrating good agreement between predictive and actual values. Full article
Show Figures

Figure 1

15 pages, 1105 KB  
Article
Development of a Geopolymer for 3D Printing Using Submerged Arc Welding (SAW) Slag
by Fernando Fernández, Marina Sánchez, Pablo Gómez García, Míriam Hernández, Miguel Hurtado, Yanjuan Chen, Hubert Rahier and Carlos Rodríguez
Constr. Mater. 2025, 5(4), 73; https://doi.org/10.3390/constrmater5040073 - 1 Oct 2025
Viewed by 155
Abstract
Reducing the carbon footprint of the construction sector is a growing priority. This study explores the potential of using submerged arc welding (SAW) slag as a precursor in the development of low-carbon geopolymeric materials for 3D printing. The influence of potassium hydroxide (KOH) [...] Read more.
Reducing the carbon footprint of the construction sector is a growing priority. This study explores the potential of using submerged arc welding (SAW) slag as a precursor in the development of low-carbon geopolymeric materials for 3D printing. The influence of potassium hydroxide (KOH) molarity, partial replacement of ground granulated blast furnace slag (GGBFS) with SAW slag, and water-to-binder (w/b) ratio was evaluated in terms of fresh and hardened properties. Increasing KOH molarity delayed setting times, with the longest delays at 10 M and 12 M. The highest compressive strength (48.5 MPa at 28 days) was achieved at 8 M; higher molarities led to strength losses due to excessive precursor dissolution and increased porosity. GGBFS replacement increased setting times due to its higher Al2O3 and MgO content, which slowed geopolymerization. The optimized formulation, containing 20% SAW slag and activated with 8 M KOH at a w/b ratio of 0.29, exhibited good workability, extrudability, and shape retention. This mixture also performed best in 3D printing trials, strong layer adhesion and no segregation, although minor edge irregularities were observed. These results suggest that SAW slag is a promising sustainable material showing for 3D-printed geopolymers, with further optimization of printing parameters needed to enhance surface quality. Full article
25 pages, 4181 KB  
Article
Mechanical Properties Quantification of Steel Fiber-Reinforced Geopolymer Concrete with Slag and Fly Ash
by Reem Adam, Haya Zuaiter, Doha ElMaoued, Adil Tamimi and Mohammad AlHamaydeh
Buildings 2025, 15(19), 3533; https://doi.org/10.3390/buildings15193533 - 1 Oct 2025
Viewed by 412
Abstract
This study examines the influence of steel fiber reinforcement on the mechanical properties of geopolymer concrete incorporating different slag to fly ash binder ratios (75:25, 50:50, and 25:75). Three fiber contents (0%, 1%, and 2%) by volume were used to assess their impact [...] Read more.
This study examines the influence of steel fiber reinforcement on the mechanical properties of geopolymer concrete incorporating different slag to fly ash binder ratios (75:25, 50:50, and 25:75). Three fiber contents (0%, 1%, and 2%) by volume were used to assess their impact on compressive strength, flexural strength, initial stiffness, and toughness. Compressive tests were conducted at 1, 7, and 28 days, while flexural behavior was evaluated through a four-point bending test at 28 days. The results showed that geopolymer concrete with 75% slag and 25% fly ash experienced the highest compressive strength and modulus of elasticity, regardless of the steel fiber content. The addition of 1% and 2% steel fiber content enhanced the compressive strength by 17.49% and 28.8%, respectively, compared to the control sample. The binder composition of geopolymer concrete plays a crucial role in determining its compressive strength. Reducing the slag content from 75% to 50% and then to 25% resulted in a 15.1% and 33% decrease in compressive strength, respectively. The load–displacement curves of the 2% fiber-reinforced beams display strain-hardening behavior. On the other hand, after the initial crack, a constant increase in load causes the specimen to experience progressive strain until it reaches its maximum load capacity. When the peak load is attained, the curve gradually drops due to a loss in load-carrying capacity known as post-peak softening. This behavior is attributed to steel’s ductility and is evident in specimens 75S25FA2 and 50S50FA2. Concrete with 75% slag and 25% fly ash demonstrated the highest peak load but the lowest ultimate displacement, indicating high strength but brittle behavior. In contrast, concrete with 75% fly ash and 25% slag showed the lowest peak load but the highest displacement. Across all binder ratios, the addition of steel fibers enhanced the flexural strength, initial stiffness, and toughness. This is attributed to the bridging action of steel fibers in concrete. Additionally, steel fiber-reinforced beams exhibited a ductile failure mode, characterized by multiple fine cracks throughout the midspan, whereas the control beams displayed a single vertical crack in the midspan, indicating a brittle failure mode. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 4035 KB  
Article
Optimization of Metakaolin-Based Geopolymer Composite for Repair Application
by Layal Hawa, Abdulkader El-Mir, Jamal Khatib, Dana Nasr, Joseph Assaad, Adel Elkordi and Mohamad Ezzedine El Dandachy
J. Compos. Sci. 2025, 9(10), 527; https://doi.org/10.3390/jcs9100527 - 1 Oct 2025
Viewed by 369
Abstract
This paper assesses the feasibility of metakaolin (MK)-based geopolymer (GP) composite as an environmentally friendly substitute for cement-based composite in repair applications. The Taguchi orthogonal array method was used to find the optimum GP mix in terms of mechanical properties and adhesion to [...] Read more.
This paper assesses the feasibility of metakaolin (MK)-based geopolymer (GP) composite as an environmentally friendly substitute for cement-based composite in repair applications. The Taguchi orthogonal array method was used to find the optimum GP mix in terms of mechanical properties and adhesion to concrete substrates. Four key parameters, each with three levels, are investigated including the alkaline activator-to-MK ratio (A/M: 1, 1.2, 1.4), the sodium silicate-to-sodium hydroxide ratio (S/H: 2.0, 2.5, 3.0), sodium hydroxide (SH) molarity (12, 14, 16), and curing temperature (30, 45, 60 °C). The evaluated properties include flowability, compressive strength, splitting tensile strength, flexural strength, ultrasonic pulse velocity, and bond strength under various interface configurations. Experimental results demonstrated that the performance of MK-based GP composite was primarily governed by the A/M ratio and sodium hydroxide molarity. The Taguchi optimization method revealed that the mix design featuring A/M of 1.4, SS/SH of 2, 16 M sodium hydroxide, and curing at 60 °C yielded notable improvements in compressive and bond strengths compared to conventional cement-based composites. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

24 pages, 2865 KB  
Review
Technological Innovations in Sustainable Civil Engineering: Advanced Materials, Resilient Design, and Digital Tools
by Carlos A. Ligarda-Samanez, Mary L. Huamán-Carrión, Domingo J. Cabel-Moscoso, Doris Marlene Muñoz Sáenz, Jaime Antonio Martinez Hernandez, Antonina J. Garcia-Espinoza, Dante Fermín Calderón Huamaní, Carlos Carrasco-Badajoz, Darwin Pino Cordero, Reynaldo Sucari-León and Yolanda Aroquipa-Durán
Sustainability 2025, 17(19), 8741; https://doi.org/10.3390/su17198741 - 29 Sep 2025
Viewed by 536
Abstract
Civil engineering today faces the challenge of responding to climate change, rapid urbanization, and the need to reduce environmental impacts. These factors drive the search for more sustainable approaches and the adoption of digital technologies. This article addresses three principal dimensions: advanced low-impact [...] Read more.
Civil engineering today faces the challenge of responding to climate change, rapid urbanization, and the need to reduce environmental impacts. These factors drive the search for more sustainable approaches and the adoption of digital technologies. This article addresses three principal dimensions: advanced low-impact materials, resilient structural designs, and digital tools applied throughout the infrastructure life cycle. To this end, a systematic search was conducted considering studies published between 2020 and 2025, including both experimental and review works. The results show that materials such as geopolymers, biopolymers, natural fibers, and nanocomposites can significantly reduce the carbon footprint; however, they still face regulatory, cost, and adoption barriers. Likewise, modular, adaptable, and performance-based design proposals enhance infrastructure resilience against extreme climate events. Finally, digital tools such as Building Information Modeling, digital twins, artificial intelligence, the Internet of Things, and 3D printing provide improvements in planning, construction, and maintenance, though with limitations related to interoperability, investment, and training. In conclusion, the integration of materials, design, and digitalization presents a promising pathway toward safer, more resilient, and sustainable infrastructure, aligning with the Sustainable Development Goals and the concept of smart cities. Full article
Show Figures

Graphical abstract

33 pages, 4314 KB  
Review
Shrinkage Characteristics of Geopolymer Concrete: A Comprehensive Review
by Rukayat Olayinka, Reza Jafari and Mathieu Fiset
Materials 2025, 18(19), 4528; https://doi.org/10.3390/ma18194528 - 29 Sep 2025
Viewed by 745
Abstract
Geopolymer concrete (GC) has become apparent as a promising and sustainable alternative to ordinary portland cement (OPC) concrete, presenting notable advantages in both environmental impact and mechanical performance. Despite these benefits, shrinkage remains a critical issue, influencing cracking susceptibility, long-term durability, and structural [...] Read more.
Geopolymer concrete (GC) has become apparent as a promising and sustainable alternative to ordinary portland cement (OPC) concrete, presenting notable advantages in both environmental impact and mechanical performance. Despite these benefits, shrinkage remains a critical issue, influencing cracking susceptibility, long-term durability, and structural reliability. While previous investigations have focused on isolated parameters, such as activator concentration or curing techniques, this review provides a comprehensive analysis of the shrinkage behaviour of geopolymer concrete by exploring a broader range of influential factors. Key contributors—including precursor composition, alkali activator concentration, sodium silicate-to-sodium hydroxide ratio, liquid-to-solid ratio, pore structure, and curing conditions—are evaluated and mitigation strategies are discussed. Comparative evaluation of experimental studies reveals key patterns and mechanisms: heat curing around 60 °C consistently limits shrinkage, low-calcium binders outperform high-calcium systems, and chemical additives can reduce shrinkage by as much as 80%. The analysis also highlights emerging, bio-based additives that show promise for simultaneously controlling shrinkage and preserving mechanical performance. By integrating these diverse insights into a single framework, this paper provides a comprehensive reference for designing low-shrinkage GC mixtures. Full article
Show Figures

Graphical abstract

37 pages, 2119 KB  
Review
Recycled Components in 3D Concrete Printing Mixes: A Review
by Marcin Maroszek, Magdalena Rudziewicz and Marek Hebda
Materials 2025, 18(19), 4517; https://doi.org/10.3390/ma18194517 - 28 Sep 2025
Viewed by 889
Abstract
Rapid population growth and accelerating urbanization are intensifying the demand for construction materials, particularly concrete, which is predominantly produced with Portland cement and natural aggregates. This reliance imposes substantial environmental burdens through resource depletion and greenhouse gas emissions. Within the framework of sustainable [...] Read more.
Rapid population growth and accelerating urbanization are intensifying the demand for construction materials, particularly concrete, which is predominantly produced with Portland cement and natural aggregates. This reliance imposes substantial environmental burdens through resource depletion and greenhouse gas emissions. Within the framework of sustainable construction, recycled aggregates and industrial by-products such as fly ash, slags, crushed glass, and other secondary raw materials have emerged as viable substitutes in concrete production. At the same time, three-dimensional concrete printing (3DCP) offers opportunities to optimize material use and minimize waste, yet it requires tailored mix designs with controlled rheological and mechanical performance. This review synthesizes current knowledge on the use of recycled construction and demolition waste, industrial by-products, and geopolymers in concrete mixtures for 3D printing applications. Particular attention is given to pozzolanic activity, particle size effects, mechanical strength, rheology, thermal conductivity, and fire resistance of recycled-based composites. The environmental assessment is considered through life-cycle analysis (LCA), emphasizing carbon footprint reduction strategies enabled by recycled constituents and low-clinker formulations. The analysis demonstrates that recycled-based 3D printable concretes can maintain or enhance structural performance while mix-level (cradle-to-gate, A1–A3) LCAs of printable mixes report CO2 reductions typically in the range of ~20–50% depending on clinker substitution and recycled constituents—with up to ~48% for fine recycled aggregates when accompanied by cement reduction and up to ~62% for mixes with recycled concrete powder, subject to preserved printability. This work highlights both opportunities and challenges, outlining pathways for advancing durable, energy-efficient, and environmentally responsible 3D-printed construction materials. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials (Second Edition))
Show Figures

Figure 1

Back to TopTop