Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = germacrenolides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 895 KB  
Article
Sesquiterpene Lactones from Cotula cinerea with Antibiotic Activity against Clinical Isolates of Enterococcus faecalis
by Alessio Cimmino, Emanuela Roscetto, Marco Masi, Angela Tuzi, Imene Radjai, Chakali Gahdab, Rossella Paolillo, Amedeo Guarino, Maria Rosaria Catania and Antonio Evidente
Antibiotics 2021, 10(7), 819; https://doi.org/10.3390/antibiotics10070819 - 6 Jul 2021
Cited by 12 | Viewed by 2896
Abstract
Cotula cinerea, belonging to the tribe Anthemideae, is a plant widespread in the Southern hemisphere. It is frequently used in folk medicine in North African countries for several of its medical properties, shown by its extracts and essential oils. The dichloromethane extract [...] Read more.
Cotula cinerea, belonging to the tribe Anthemideae, is a plant widespread in the Southern hemisphere. It is frequently used in folk medicine in North African countries for several of its medical properties, shown by its extracts and essential oils. The dichloromethane extract obtained from its aerial parts demonstrated antibiotic activity against Enterococcus faecalis and was fractionated by bioguided purification procedures affording five main sesquiterpene lactones. They were identified by spectroscopic methods (NMR and ESIMS data) as guaiantrienolides, i.e., 6-acetoxy-1β-,6-acetoxy-1α-, and 6-acetoxy-10-β-hydroxyguaiantrienolide (13), and germacrenolides, i.e., haagenolide and 1,10-epoxyhaagenolide (4 and 5). The absolute configuration was assigned by applying the advanced Mosher’s method to haagenolide and by X-ray diffraction analysis to 1,10-epoxyhaagenolide. The specific antibiotic and antibiofilm activities were tested toward the clinical isolates of Enterococcus faecalis. The results showed that compounds 35 have antibacterial activity against all the strains of E. faecalis, while compound 2 exhibited activity only toward some strains. Compound 1 did not show this activity but had only antibiofilm properties. Thus, these metabolites have potential as new antibiotics and antibiofilm against drug resistant opportunistic pathogens. Full article
Show Figures

Figure 1

Back to TopTop