Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (162)

Search Parameters:
Keywords = gradient-based edge detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 9239 KB  
Article
Effects of Motion in Ultrashort Echo Time Quantitative Susceptibility Mapping for Musculoskeletal Imaging
by Sam Sedaghat, Jinil Park, Eddie Fu, Fang Liu, Youngkyoo Jung and Hyungseok Jang
J. Imaging 2025, 11(10), 347; https://doi.org/10.3390/jimaging11100347 - 6 Oct 2025
Viewed by 377
Abstract
Quantitative susceptibility mapping (QSM) is a powerful magnetic resonance imaging (MRI) technique for assessing tissue composition in the human body. For imaging short-T2 tissues in the musculoskeletal (MSK) system, ultrashort echo time (UTE) imaging plays a key role. However, UTE-based QSM (UTE-QSM) often [...] Read more.
Quantitative susceptibility mapping (QSM) is a powerful magnetic resonance imaging (MRI) technique for assessing tissue composition in the human body. For imaging short-T2 tissues in the musculoskeletal (MSK) system, ultrashort echo time (UTE) imaging plays a key role. However, UTE-based QSM (UTE-QSM) often involves repeated acquisitions, making it vulnerable to inter-scan motion. In this study, we investigate the effects of motion on UTE-QSM and introduce strategies to reduce motion-induced artifacts. Eight healthy male volunteers underwent UTE-QSM imaging of the knee joint, while an additional seven participated in imaging of the ankle joint. UTE-QSM was conducted using multiple echo acquisitions, including both UTE and gradient-recalled echoes, and processed using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) and morphology-enabled dipole inversion (MEDI) algorithms. To assess the impact of motion, datasets were reconstructed both with and without motion correction. Furthermore, we evaluated a two-step UTE-QSM approach that incorporates tissue boundary information. This method applies edge detection, excludes pixels near detected edges, and performs a two-step QSM reconstruction to reduce motion-induced streaking artifacts. In participants exhibiting substantial inter-scan motion, prominent streaking artifacts were evident. Applying motion registration markedly reduced these artifacts in both knee and ankle UTE-QSM. Additionally, the two-step UTE-QSM approach, which integrates tissue boundary information, further enhanced image quality by mitigating residual streaking artifacts. These results indicate that motion-induced errors near tissue boundaries play a key role in generating streaking artifacts in UTE-QSM. Inter-scan motion poses a fundamental challenge in UTE-QSM due to the need for multiple acquisitions. However, applying motion registration along with a two-step QSM approach that excludes tissue boundaries can effectively suppress motion-induced streaking artifacts, thereby improving the accuracy of musculoskeletal tissue characterization. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

36 pages, 5130 KB  
Article
SecureEdge-MedChain: A Post-Quantum Blockchain and Federated Learning Framework for Real-Time Predictive Diagnostics in IoMT
by Sivasubramanian Ravisankar and Rajagopal Maheswar
Sensors 2025, 25(19), 5988; https://doi.org/10.3390/s25195988 - 27 Sep 2025
Viewed by 696
Abstract
The burgeoning Internet of Medical Things (IoMT) offers unprecedented opportunities for real-time patient monitoring and predictive diagnostics, yet the current systems struggle with scalability, data confidentiality against quantum threats, and real-time privacy-preserving intelligence. This paper introduces Med-Q Ledger, a novel, multi-layered framework [...] Read more.
The burgeoning Internet of Medical Things (IoMT) offers unprecedented opportunities for real-time patient monitoring and predictive diagnostics, yet the current systems struggle with scalability, data confidentiality against quantum threats, and real-time privacy-preserving intelligence. This paper introduces Med-Q Ledger, a novel, multi-layered framework designed to overcome these critical limitations in the Medical IoT domain. Med-Q Ledger integrates a permissioned Hyperledger Fabric for transactional integrity with a scalable Holochain Distributed Hash Table for high-volume telemetry, achieving horizontal scalability and sub-second commit times. To fortify long-term data security, the framework incorporates post-quantum cryptography (PQC), specifically CRYSTALS-Di lithium signatures and Kyber Key Encapsulation Mechanisms. Real-time, privacy-preserving intelligence is delivered through an edge-based federated learning (FL) model, utilizing lightweight autoencoders for anomaly detection on encrypted gradients. We validate Med-Q Ledger’s efficacy through a critical application: the prediction of intestinal complications like necrotizing enterocolitis (NEC) in preterm infants, a condition frequently necessitating emergency colostomy. By processing physiological data from maternal wearable sensors and infant intestinal images, our integrated Random Forest model demonstrates superior performance in predicting colostomy necessity. Experimental evaluations reveal a throughput of approximately 3400 transactions per second (TPS) with ~180 ms end-to-end latency, a >95% anomaly detection rate with <2% false positives, and an 11% computational overhead for PQC on resource-constrained devices. Furthermore, our results show a 0.90 F1-score for colostomy prediction, a 25% reduction in emergency surgeries, and 31% lower energy consumption compared to MQTT baselines. Med-Q Ledger sets a new benchmark for secure, high-performance, and privacy-preserving IoMT analytics, offering a robust blueprint for next-generation healthcare deployments. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

34 pages, 721 KB  
Article
Signal Processing Optimization in Resource-Limited IoT for Fault Prediction in Rotating Machinery
by Robertas Ūselis, Artūras Serackis and Raimondas Pomarnacki
Electronics 2025, 14(18), 3670; https://doi.org/10.3390/electronics14183670 - 17 Sep 2025
Viewed by 556
Abstract
Traditional fault detection methods, often designed for centralized or cloud-based systems, are ill-suited for the edge. The deployment of predictive maintenance solutions on ultra-low-cost embedded platforms remains a significant challenge due to strict limitations in memory, processing capacity, and energy availability. To address [...] Read more.
Traditional fault detection methods, often designed for centralized or cloud-based systems, are ill-suited for the edge. The deployment of predictive maintenance solutions on ultra-low-cost embedded platforms remains a significant challenge due to strict limitations in memory, processing capacity, and energy availability. To address these challenges, vibration and motor current signals were analyzed using an ultra-low-cost RP2040 microcontroller. For fault detection, this study uses statistical time-domain features and principal component analysis (PCA), followed by classification with eXtreme Gradient Boosting (XGBoost) models distilled for resource-constrained deployment. Experimental evaluation demonstrated that vibration-based features achieved a diagnostic accuracy of 94.1%, while current-based representations obtained 95.5% accuracy when using principal components, compared to 83.2% with handcrafted statistical features. Model distillation reduced memory footprint by up to 2.5× (from 0.42 MB to 0.15 MB) without compromising diagnostic fidelity, enabling deployment within the 264 KB RAM and 2 MB Flash constraints of the RP2040 microcontroller. This study proposes a modular framework that systematically evaluates statistical features, dimensionality reduction, sensor synchronization, and model distillation, thereby identifying the most cost-efficient combination of techniques that balances diagnostic accuracy with strict memory and processing constraints. The findings establish that accurate fault detection can be realized directly on severely resource-limited hardware, thereby extending the practical applicability of condition monitoring to cost-sensitive industrial environments. Full article
(This article belongs to the Special Issue IoT-Enabled Smart Devices and Systems in Smart Environments)
Show Figures

Figure 1

32 pages, 28257 KB  
Article
Reconstruction of Security Patterns Using Cross-Spectral Constraints in Smartphones
by Tianyu Wang, Hong Zheng, Zhenhua Xiao and Tao Tao
Appl. Sci. 2025, 15(18), 10085; https://doi.org/10.3390/app151810085 - 15 Sep 2025
Viewed by 365
Abstract
The widespread presence of security patterns in modern anti-forgery systems has given rise to an urgent need for reliable smartphone authentication. However, persistent recognition inaccuracies occur because of the inherent degradation of patterns during smartphone capture. These acquisition-related artifacts are manifested as both [...] Read more.
The widespread presence of security patterns in modern anti-forgery systems has given rise to an urgent need for reliable smartphone authentication. However, persistent recognition inaccuracies occur because of the inherent degradation of patterns during smartphone capture. These acquisition-related artifacts are manifested as both spectral distortions in high-frequency components and structural corruption in the spatial domain, which essentially limit current verification systems. This paper addresses these two challenges through four key innovative aspects: (1) It introduces a chromatic-adaptive coupled oscillation mechanism to reduce noise. (2) It develops a DFT-domain processing pipeline. This pipeline includes micro-feature degradation modeling to detect high-frequency pattern elements and directional energy concentration for characterizing motion blur. (3) It utilizes complementary spatial-domain constraints. These involve brightness variation for local consistency and edge gradients for local sharpness, which are jointly optimized by combining maximum a posteriori estimation and maximum likelihood estimation. (4) It proposes an adaptive graph-based partitioning strategy. This strategy enables spatially variant kernel estimation, while maintaining computational efficiency. Experimental results showed that our method achieved excellent performance in terms of deblurring effectiveness, runtime, and recognition accuracy. This achievement enables near real-time processing on smartphones, without sacrificing restoration quality, even under difficult blurring conditions. Full article
Show Figures

Figure 1

43 pages, 2944 KB  
Article
A Novel Approach to SPAM Detection in Social Networks-Light-ANFIS: Integrating Gradient-Based One-Sided Sampling and Random Forest-Based Feature Clustering Techniques with Adaptive Neuro-Fuzzy Inference Systems
by Oğuzhan Çıtlak, İsmail Atacak and İbrahim Alper Doğru
Appl. Sci. 2025, 15(18), 10049; https://doi.org/10.3390/app151810049 - 14 Sep 2025
Viewed by 738
Abstract
With today’s technological advancements and the widespread use of the Internet, social networking platforms that allow users to interact with each other are increasing rapidly. The popular social network X (formerly Twitter) has become a target for malicious actors, and spam is one [...] Read more.
With today’s technological advancements and the widespread use of the Internet, social networking platforms that allow users to interact with each other are increasing rapidly. The popular social network X (formerly Twitter) has become a target for malicious actors, and spam is one of its biggest challenges. The filters employed by such platforms to protect users struggle to keep up with evolving spam techniques, the diverse behaviors of platform users, the dynamic tactics of spam accounts, and the need for updates in spam detection algorithms. The literature shows that many effective solutions rely on computationally expensive methods that are limited by dataset constraints. This study addresses the spam challenges of social networks by proposing a novel detection framework, Light-ANFIS, which combines ANFIS with gradient-based one-side sampling (GOSS) and random forest-based clustering (RFBFC) techniques. The proposed approach employs the RFBFC technique to achieve efficient feature reduction, yielding an ANFIS model with reduced input requirements. This optimized ANFIS structure enables a simpler system configuration by minimizing parameter usage. In this context, dimensionality reduction enables a faster ANFIS training. The GOSS technique further accelerates ANFIS training by reducing the sample size without sacrificing accuracy. The proposed Light-ANFIS architecture was evaluated using three datasets: two public benchmarks and one custom dataset. To demonstrate the impact of GOSS, its performance was benchmarked against that of RFBFC-ANFIS, which relies solely on RFBFC. Experiments comparing the training durations of the Light-ANFIS and RFBFC-ANFIS architectures revealed that the GOSS technique improved the training time efficiency by 38.77% (Dataset 1), 40.86% (Dataset 2), and 38.79% (Dataset 3). The Light-ANFIS architecture has also achieved successful results in terms of accuracy, precision, recall, F1-score, and AUC performance metrics. The proposed architecture has obtained scores of 0.98748, 0.98821, 0.99091, 0.98956, and 0.98664 in Dataset 1; 0.98225, 0.97412, 0.99043, 0.98221, and 0.98233 in Dataset 2; and 0.98552, 0.98915, 0.98720, 0.98818, and 0.98503 in Dataset 3 for these performance metrics, respectively. The Light-ANFIS architecture has been observed to demonstrate performance above existing methods when compared with methods in studies using similar datasets and methodologies based on the literature. Even in Dataset 1 and Dataset 3, it achieved a slightly better performance in terms of confusion matrix metrics compared to current deep learning (DL)-based hybrid and fusion methods, which are known as high-performance complex models in this field. Additionally, the proposed model not only exhibits high performance but also features a simpler configuration than structurally equivalent models, providing it with a competitive edge. This makes it a valuable for safeguarding social media users from harmful content. Full article
Show Figures

Figure 1

24 pages, 14264 KB  
Article
Convex-Decomposition-Based Evaluation of SAR Scene Deception Jamming Oriented to Detection
by Hai Zhu, Sinong Quan, Shiqi Xing and Haoyu Zhang
Remote Sens. 2025, 17(18), 3178; https://doi.org/10.3390/rs17183178 - 13 Sep 2025
Viewed by 408
Abstract
The evaluation of synthetic aperture radar (SAR) jamming effectiveness is a primary means to measure the reliability of jamming effects, and it can provide important guidance for the selection of jamming strategies and application of jamming styles. To address problems in traditional evaluation [...] Read more.
The evaluation of synthetic aperture radar (SAR) jamming effectiveness is a primary means to measure the reliability of jamming effects, and it can provide important guidance for the selection of jamming strategies and application of jamming styles. To address problems in traditional evaluation methods for SAR scene deception jamming, namely the simple adoption of native feature parameters, incomprehensive integration for evaluation indicator design, and the inconsideration of resulting jamming detection effects, this paper proposes a SAR scene deceptive jamming evaluation method oriented to jamming detection. First, four profound feature parameters including the brightness change gradient, texture direction contrast degree, edge matching degree, and noise suppression difference index are extracted in terms of visual and non-visual manners, which accurately highlight the differences between jamming and the background. Subsequently, through nonlinear iterative optimization and loss function design, a comprehensive evaluation indicator, i.e., with a convex decomposition is proposed, which can effectively quantify the contribution of each feature parameter and distinguish the differences in jamming concealment under different scenes. Finally, based on the measured and simulated MiniSAR datasets of urban, mountainous, and other complex scenes, a mapping correlation between the SDD and jamming detection rate is established. The evaluation results show that when the SDD is less than 0.4, the jamming is undetectable; when the SDD is greater than 0.4, for every 0.1 increase in the SDD, the jamming detection rate decreases by approximately 0.1. This provides support for the quantification of jamming effects in terms of detection rate in real applications. Full article
Show Figures

Figure 1

54 pages, 5238 KB  
Article
Leveraging Sentinel-2 Data and Machine Learning for Drought Detection in India: The Process of Ground Truth Construction and a Case Study
by Shubham Subhankar Sharma, Jit Mukherjee and Fabio Dell’Acqua
Remote Sens. 2025, 17(18), 3159; https://doi.org/10.3390/rs17183159 - 11 Sep 2025
Viewed by 782
Abstract
Droughts significantly impact agriculture, water resources, and ecosystems. Their timely detection is essential for implementing effective mitigation strategies. This study explores the use of multispectral Sentinel-2 remote sensing indices and machine learning techniques to detect drought conditions in three distinct regions of India, [...] Read more.
Droughts significantly impact agriculture, water resources, and ecosystems. Their timely detection is essential for implementing effective mitigation strategies. This study explores the use of multispectral Sentinel-2 remote sensing indices and machine learning techniques to detect drought conditions in three distinct regions of India, such as Jodhpur, Amravati, and Thanjavur, during the Rabi season (October–April). Twelve remote sensing indices were studied to assess different aspects of vegetation health, soil moisture, and water stress, and their possible joint use and influence as indicators of regional drought events. Reference data used to define drought conditions in each region were primarily sourced from official government drought declarations and regional and national news publications, which provide seasonal maps of drought conditions across the country. Based on this information, a district vs. year (3 × 10) ground truth is created, indicating the presence or absence of drought (Drought/No Drought) for each region across the ten-year period. Using this ground truth table, we extended the remote sensing dataset by adding a binary drought label for each observation: 1 for “Drought” and 0 for “No Drought”. The dataset is organized by year (2016–2025) in a two-dimensional format, with indices as columns and observations as rows. Each observation represents a single measurement of the remote sensing indices. This enriched dataset serves as the foundation for training and evaluating machine learning models aimed at classifying drought conditions based on spectral information. The resultant remote sensing dataset was used to predict drought events through various machine learning models, including Random Forest, XGBoost, Bagging Classifier, and Gradient Boosting. Among the models, XGBoost achieved the highest accuracy (84.80%), followed closely by the Bagging Classifier (83.98%) and Random Forest (82.98%). In terms of precision, Bagging Classifier and Random Forest performed comparably (82.31% and 81.45%, respectively), while XGBoost achieved a precision of 81.28%. We applied a seasonal majority voting strategy, assigning a final drought label for each region and Rabi season based on the majority of predicted monthly labels. Using this method, XGBoost and Bagging Classifier achieved 96.67% accuracy, precision, and recall, while Random Forest and Gradient Boosting reached 90% and 83.33%, respectively, across all metrics. Shapley Additive Explanation (SHAP) analysis revealed that Normalized Multi-band Drought Index (NMDI) and Day of Season (DOS) consistently emerged as the most influential features in determining model predictions. This finding is supported by the Borda Count and Weighted Sum analysis, which ranked NMDI, and DOS as the top feature across all models. Additionally, Red-edge Chlorophyll Index (RECI), Normalized Difference Water Index (NDWI), Normalized Difference Moisture Index (NDMI), and Ratio Drought Index (RDI) were identified as important features contributing to model performance. These features help reveal the underlying spatiotemporal dynamics of drought indicators, offering interpretable insights into model decisions. To evaluate the impact of feature selection, we further conducted a feature ablation study. We trained each model using different combinations of top features: Top 1, Top 2, Top 3, Top 4, and Top 5. The performance of each model was assessed based on accuracy, precision, and recall. XGBoost demonstrated the best overall performance, especially when using the Top 5 features. Full article
Show Figures

Figure 1

56 pages, 7375 KB  
Article
A Two-Stage Hybrid Federated Learning Framework for Privacy-Preserving IoT Anomaly Detection and Classification
by Mohammad Shahin, Ali Hosseinzadeh and F. Frank Chen
IoT 2025, 6(3), 48; https://doi.org/10.3390/iot6030048 - 29 Aug 2025
Cited by 1 | Viewed by 1856
Abstract
The rapid surge of Artificial Internet-of-Things (AIoT) devices has outpaced the deployment of robust, privacy-preserving anomaly detection solutions suitable for resource-constrained edge environments. This paper presents a two-stage hybrid Federated Learning (FL) framework for IoT anomaly detection and classification, validated on the real-world [...] Read more.
The rapid surge of Artificial Internet-of-Things (AIoT) devices has outpaced the deployment of robust, privacy-preserving anomaly detection solutions suitable for resource-constrained edge environments. This paper presents a two-stage hybrid Federated Learning (FL) framework for IoT anomaly detection and classification, validated on the real-world N-BaIoT dataset. In the first stage, each device trains a generative Artificial Intelligence (AI) model on benign traffic only, and in the second stage a Histogram-based Gradient-Boosting (HGB) classifier labels flagged traffic. All models operate under a synchronous, collaborative FL architecture across nine commercial IoT devices, thus preserving data privacy and minimizing communication. Through both inter- and intra-benchmarking against state-of-the-art baselines, the Variational Autoencoder–HGB (VAE-HGB) pipeline emerges as the top performer, achieving an average end-to-end accuracy of 99.14% across all classes. These results demonstrate that reconstruction-driven generative AI models, when combined with federated averaging and efficient classification, deliver a highly scalable, accurate, and privacy-preserving solution for securing resource-constrained IoT environments. Full article
(This article belongs to the Special Issue AIoT-Enabled Sustainable Smart Manufacturing)
Show Figures

Figure 1

22 pages, 5387 KB  
Article
A Study on a Directional Gradient-Based Defect Detection Method for Plate Heat Exchanger Sheets
by Zhibo Ding and Weiqi Yuan
Electronics 2025, 14(16), 3206; https://doi.org/10.3390/electronics14163206 - 12 Aug 2025
Viewed by 470
Abstract
Micro-crack defects on the surfaces of plate heat exchanger sheets often exhibit a linear grayscale pattern when clustered. In defect detection, traditional methods are more suitable than deep learning models in controlled production environments with limited computing resources to meet stringent national standards, [...] Read more.
Micro-crack defects on the surfaces of plate heat exchanger sheets often exhibit a linear grayscale pattern when clustered. In defect detection, traditional methods are more suitable than deep learning models in controlled production environments with limited computing resources to meet stringent national standards, which require low miss rates. However, deep learning models commonly suffer feature loss when detecting individual, small-scale defects, leading to higher leak detection rates. Moreover, in grayscale image line detection using traditional methods, the varying direction, width, and asymmetric grayscale profiles of defects can result in filled grayscale valleys due to width-adaptive smoothing coefficients, complicating accurate defect extraction. To address these issues, this study establishes a theoretical foundation for parameter selection in variable-width defect detection. We propose a directional gradient-based algorithm that mathematically constrains the Gaussian template width to cover variable-width defects with a fixed σ, reframing the detection defect from ridge edges to centrally symmetric double-ridge edges in gradient images. Experimental results show that, when tested in the defective boards library and under simulated factory CPU conditions, this algorithm achieves a miss detection rate of 14.55%, a false detection rate of 21.85%, and an 600 × 600 pixel image detection time of 0.1402 s. Compared to traditional line detection and deep learning object detection methods, this algorithm proves advantageous for detecting micro-crack defects on plate heat exchanger sheets in industrial production, particularly in data-scarce and resource-limited scenarios. Full article
Show Figures

Figure 1

24 pages, 4039 KB  
Review
A Mathematical Survey of Image Deep Edge Detection Algorithms: From Convolution to Attention
by Gang Hu
Mathematics 2025, 13(15), 2464; https://doi.org/10.3390/math13152464 - 31 Jul 2025
Viewed by 1452
Abstract
Edge detection, a cornerstone of computer vision, identifies intensity discontinuities in images, enabling applications from object recognition to autonomous navigation. This survey presents a mathematically grounded analysis of edge detection’s evolution, spanning traditional gradient-based methods, convolutional neural networks (CNNs), attention-driven architectures, transformer-backbone models, [...] Read more.
Edge detection, a cornerstone of computer vision, identifies intensity discontinuities in images, enabling applications from object recognition to autonomous navigation. This survey presents a mathematically grounded analysis of edge detection’s evolution, spanning traditional gradient-based methods, convolutional neural networks (CNNs), attention-driven architectures, transformer-backbone models, and generative paradigms. Beginning with Sobel and Canny’s kernel-based approaches, we trace the shift to data-driven CNNs like Holistically Nested Edge Detection (HED) and Bidirectional Cascade Network (BDCN), which leverage multi-scale supervision and achieve ODS (Optimal Dataset Scale) scores 0.788 and 0.806, respectively. Attention mechanisms, as in EdgeNAT (ODS 0.860) and RankED (ODS 0.824), enhance global context, while generative models like GED (ODS 0.870) achieve state-of-the-art precision via diffusion and GAN frameworks. Evaluated on BSDS500 and NYUDv2, these methods highlight a trajectory toward accuracy and robustness, yet challenges in efficiency, generalization, and multi-modal integration persist. By synthesizing mathematical formulations, performance metrics, and future directions, this survey equips researchers with a comprehensive understanding of edge detection’s past, present, and potential, bridging theoretical insights with practical advancements. Full article
(This article belongs to the Special Issue Artificial Intelligence and Algorithms with Their Applications)
Show Figures

Figure 1

19 pages, 3294 KB  
Article
Rotation- and Scale-Invariant Object Detection Using Compressed 2D Voting with Sparse Point-Pair Screening
by Chenbo Shi, Yue Yu, Gongwei Zhang, Shaojia Yan, Changsheng Zhu, Yanhong Cheng and Chun Zhang
Electronics 2025, 14(15), 3046; https://doi.org/10.3390/electronics14153046 - 30 Jul 2025
Viewed by 461
Abstract
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that [...] Read more.
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that compresses the 4-D search space into a concise 2-D voting scheme by combining two-level sparse point-pair screening with an accelerated lookup. In the offline stage, template edges are extracted using an adaptive Canny operator with Otsu-determined thresholds, and gradient-direction differences for all point pairs are quantized to retain only those in the dominant bin, yielding rotation- and scale-invariant descriptors that populate a compact 2-D reference table. During the online stage, an adaptive grid selects only the highest-gradient pixels per cell as a base points, while a precomputed gradient-direction bucket table enables constant-time retrieval of compatible subpoints. Each valid base–subpoint pair is mapped to indices in the lookup table, and “fuzzy” votes are cast over a 3 × 3 neighborhood in the 2-D accumulator, whose global peak determines the object center. Evaluation on 200 real industrial parts—augmented to 1000 samples with noise, blur, occlusion, and nonlinear illumination—demonstrates that our method maintains over 90% localization accuracy, matches the classical GHT, and achieves a ten-fold speedup, outperforming IGHT and LI-GHT variants by 2–3×, thereby delivering a robust, real-time solution for industrial rigid object localization. Full article
Show Figures

Figure 1

21 pages, 2514 KB  
Article
Investigations into Picture Defogging Techniques Based on Dark Channel Prior and Retinex Theory
by Lihong Yang, Zhi Zeng, Hang Ge, Yao Li, Shurui Ge and Kai Hu
Appl. Sci. 2025, 15(15), 8319; https://doi.org/10.3390/app15158319 - 26 Jul 2025
Viewed by 432
Abstract
To address the concerns of contrast deterioration, detail loss, and color distortion in images produced under haze conditions in scenarios such as intelligent driving and remote sensing detection, an algorithm for image defogging that combines Retinex theory and the dark channel prior is [...] Read more.
To address the concerns of contrast deterioration, detail loss, and color distortion in images produced under haze conditions in scenarios such as intelligent driving and remote sensing detection, an algorithm for image defogging that combines Retinex theory and the dark channel prior is proposed in this paper. The method involves building a two-stage optimization framework: in the first stage, global contrast enhancement is achieved by Retinex preprocessing, which effectively improves the detail information regarding the dark area and the accuracy of the transmittance map and atmospheric light intensity estimation; in the second stage, an a priori compensation model for the dark channel is constructed, and a depth-map-guided transmittance correction mechanism is introduced to obtain a refined transmittance map. At the same time, the atmospheric light intensity is accurately calculated by the Otsu algorithm and edge constraints, which effectively suppresses the halo artifacts and color deviation of the sky region in the dark channel a priori defogging algorithm. The experiments based on self-collected data and public datasets show that the algorithm in this paper presents better detail preservation ability (the visible edge ratio is minimally improved by 0.1305) and color reproduction (the saturated pixel ratio is reduced to about 0) in the subjective evaluation, and the average gradient ratio of the objective indexes reaches a maximum value of 3.8009, which is improved by 36–56% compared with the classical DCP and Tarel algorithms. The method provides a robust image defogging solution for computer vision systems under complex meteorological conditions. Full article
Show Figures

Figure 1

20 pages, 18416 KB  
Article
Swin-FSNet: A Frequency-Aware and Spatially Enhanced Network for Unpaved Road Extraction from UAV Remote Sensing Imagery
by Jiwu Guan, Qingzhan Zhao, Wenzhong Tian, Xinxin Yao, Jingyang Li and Wei Li
Remote Sens. 2025, 17(14), 2520; https://doi.org/10.3390/rs17142520 - 20 Jul 2025
Cited by 1 | Viewed by 805
Abstract
The efficient recognition of unpaved roads from remote sensing (RS) images holds significant value for tasks such as emergency response and route planning in outdoor environments. However, unpaved roads often face challenges such as blurred boundaries, low contrast, complex shapes, and a lack [...] Read more.
The efficient recognition of unpaved roads from remote sensing (RS) images holds significant value for tasks such as emergency response and route planning in outdoor environments. However, unpaved roads often face challenges such as blurred boundaries, low contrast, complex shapes, and a lack of publicly available datasets. To address these issues, this paper proposes a novel architecture, Swin-FSNet, which combines frequency analysis and spatial enhancement techniques to optimize feature extraction. The architecture consists of two core modules: the Wavelet-Based Feature Decomposer (WBFD) module and the Hybrid Dynamic Snake Block (HyDS-B) module. The WBFD module enhances boundary detection by capturing directional gradient changes at the road edges and extracting high-frequency features, effectively addressing boundary blurring and low contrast. The HyDS-B module, by adaptively adjusting the receptive field, performs spatial modeling for complex-shaped roads, significantly improving adaptability to narrow road curvatures. In this study, the southern mountainous area of Shihezi, Xinjiang, was selected as the study area, and the unpaved road dataset was constructed using high-resolution UAV images. Experimental results on the SHZ unpaved road dataset and the widely used DeepGlobe dataset show that Swin-FSNet performs well in segmentation accuracy and road structure preservation, with an IoUroad of 81.76% and 71.97%, respectively. The experiments validate the excellent performance and robustness of Swin-FSNet in extracting unpaved roads from high-resolution RS images. Full article
Show Figures

Figure 1

27 pages, 90509 KB  
Article
A Phishing Software Detection Approach Based on R-Tree and the Analysis of the Edge of Stability Phenomenon
by Licheng Ao, Yifeng Lin and Yuer Yang
Electronics 2025, 14(14), 2862; https://doi.org/10.3390/electronics14142862 - 17 Jul 2025
Viewed by 611
Abstract
With the rapid development of science and technology, attackers have invented more and more ways to hide malicious information. Hidden malicious information often contains a large number of malicious codes and malicious scripts, which can be hidden in legitimate software and reconstructed to [...] Read more.
With the rapid development of science and technology, attackers have invented more and more ways to hide malicious information. Hidden malicious information often contains a large number of malicious codes and malicious scripts, which can be hidden in legitimate software and reconstructed to be executed as the software is executed. In recent years, phishing software has become popular at home and abroad, causing fraud to occur frequently. Among various carriers with high redundancy, images are often used by attackers to hide malicious information because they are often used as information transmission carriers and highly redundant storage. This paper aims to explore how attackers hide malicious information in images and use a convolutional neural network (CNN) framework with acceleration based on the analysis of the Edge of Stability (EOS) phenomenon to detect mobile phishing software. To design a machine learning approach to solve the problem, we summarize the characteristics of nine presented mainstream malicious information hiding methods and present a CNN framework that maintains a high initial learning rate while preventing the gradient from exploding in EOS. R-tree is used to speed up the search for nearby pixels that contain malicious information. The CNN model generated by training under this framework can reach an accuracy of 98.53% and has been well implemented in mobile terminals. Full article
(This article belongs to the Special Issue Machine Learning Approaches for Natural Language Processing)
Show Figures

Figure 1

21 pages, 1632 KB  
Article
Adversarial Hierarchical-Aware Edge Attention Learning Method for Network Intrusion Detection
by Hao Yan, Jianming Li, Lei Du, Binxing Fang, Yan Jia and Zhaoquan Gu
Appl. Sci. 2025, 15(14), 7915; https://doi.org/10.3390/app15147915 - 16 Jul 2025
Viewed by 753
Abstract
The rapid development of information technology has made cyberspace security an increasingly critical issue. Network intrusion detection methods are practical approaches to protecting network systems from cyber attacks. However, cyberspace security threats have topological dependencies and fine-grained attack semantics. Existing graph-based approaches either [...] Read more.
The rapid development of information technology has made cyberspace security an increasingly critical issue. Network intrusion detection methods are practical approaches to protecting network systems from cyber attacks. However, cyberspace security threats have topological dependencies and fine-grained attack semantics. Existing graph-based approaches either underestimate edge-level features or fail to balance detection accuracy with adversarial robustness. To handle these problems, we propose a novel graph neural network–based method for network intrusion detection called the adversarial hierarchical-aware edge attention learning method (AH-EAT). It leverages the natural graph structure of computer networks to achieve robust, multi-grained intrusion detection. Specifically, AH-EAT includes three main modules: an edge-based graph attention embedding module, a hierarchical multi-grained detection module, and an adversarial training module. In the first module, we apply graph attention networks to aggregate node and edge features according to their importance. This effectively captures the network’s key topological information. In the second module, we first perform coarse-grained detection to distinguish malicious flows from benign ones, and then perform fine-grained classification to identify specific attack types. In the third module, we use projected gradient descent to generate adversarial perturbations on network flow features during training, enhancing the model’s robustness to evasion attacks. Experimental results on four benchmark intrusion detection datasets show that AH-EAT achieves 90.73% average coarse-grained accuracy and 1.45% ASR on CIC-IDS2018 under adversarial attacks, outperforming state-of-the-art methods in both detection accuracy and robustness. Full article
(This article belongs to the Special Issue Cyberspace Security Technology in Computer Science)
Show Figures

Figure 1

Back to TopTop