Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,671)

Search Parameters:
Keywords = grape

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1089 KB  
Article
Chemical and Sensory Attributes of Different Ethanol Reduction Methods in Muscadine Wine Production
by Alexandra A. Escalera, Patricia C. Patricio Morillo, Drew Budner, Katherine A. Thompson-Witrick and Andrew J. MacIntosh
Beverages 2025, 11(5), 146; https://doi.org/10.3390/beverages11050146 - 9 Oct 2025
Abstract
There has been a recent shift in the global wine market towards reduced-alcohol wines. Muscadine grapes (Vitis rotundifolia) have become a popular choice in many emerging markets; however, their suitability in reduced-alcohol wine production has not been extensively tested. In this [...] Read more.
There has been a recent shift in the global wine market towards reduced-alcohol wines. Muscadine grapes (Vitis rotundifolia) have become a popular choice in many emerging markets; however, their suitability in reduced-alcohol wine production has not been extensively tested. In this study, methods to reduce ethanol in muscadine wine were compared to determine differences in chemical and sensory attributes and consumer preference. The methods evaluated included full fermentation time with Saccharomyces cerevisiae (control), reduced fermentation time with Saccharomyces cerevisiae (stopped fermentation), fermentation with Saccharomycodes ludwigii yeast (instead of Saccharomyces cerevisiae), and vacuum distillation. The control and distilled wines were fermented for 121 h, Saccharomycodes ludwigii for 45 h, and the stopped fermentation wine for 3 h. Yeast and sugar levels were monitored throughout the fermentation processes using brix measurements and yeast counts. After the fermentation, the color, pH, volatiles, and titratable acidity (TA) were measured. The results showed that Saccharomycodes ludwigii fermented more slowly than Saccharomyces cerevisiae, and that both the stopped fermentation and Saccharomycodes ludwigii wines had lower titratable acidity with a more intense color. The total concentration of volatile compounds for the Saccharomycodes ludwigii wine and the stopped wine were lower than for the distilled and control wines. A consumer panel (n = 92) judged the wine samples on chemical qualities and overall preference. The distilled wine was perceived as more alcoholic compared to the other reduced-alcohol wines. The results showed that the stopped fermentation and Saccharomycodes ludwigii wines were preferred by consumers over the control and vacuum-distilled wines. Full article
21 pages, 4164 KB  
Article
High-Performance Indigenous Lactiplantibacillus plantarum Strains for Enhanced Malolactic Fermentation and Wine Quality
by Yongzhang Zhu, Ni Chen, Zhenghua Xu, Jingyue Liu, Shuwen Liu and Kan Shi
Microorganisms 2025, 13(10), 2328; https://doi.org/10.3390/microorganisms13102328 - 9 Oct 2025
Abstract
Malolactic fermentation (MLF), a key enological process for wine deacidification and aroma and flavor development, is predominantly mediated by lactic acid bacteria. This study characterized 342 indigenous Lactiplantibacillus plantarum (L. plantarum) isolates, a potential starter species underexploited for MLF, from China’s [...] Read more.
Malolactic fermentation (MLF), a key enological process for wine deacidification and aroma and flavor development, is predominantly mediated by lactic acid bacteria. This study characterized 342 indigenous Lactiplantibacillus plantarum (L. plantarum) isolates, a potential starter species underexploited for MLF, from China’s Jiaodong Peninsula wine regions through polyphasic analysis. Thirty strains with high tolerance to wine stress conditions and efficient malate metabolism were selected. Among these, two high-performance strains, P101 and J43, exhibited superior MLF kinetics. Their applications had almost no effect on the wine’s basic physicochemical parameters, color parameters, and individual phenolic contents. Solid-phase microextraction–gas chromatography–mass spectrometry (SPME-GC-MS) analysis revealed that these strains significantly enhance key aroma compound contents in wines, including ethyl acetate, ethyl lactate, ethyl 2-methylbutyrate, and nerol, contributing more floral and fruity aroma characteristics. These indigenous L. plantarum strains, novel microbial starter cultures, demonstrate dual functionality in enhancing wine quality through controlled fermentation while supporting microbial biodiversity through the development of region-specific strain resources. Full article
(This article belongs to the Special Issue Fruit Wine Fermentation and Microbial Communities)
14 pages, 731 KB  
Article
Effects of Different Rootstocks on Graft Compatibility, Growth, Yield, and Fruit Quality of Table Grape ‘Fengguang’
by Nan Jia, Minmin Li, Changjiang Liu, Bin Han, Yan Sun, Shuli Han, Xinyu Wang and Yonggang Yin
Plants 2025, 14(19), 3098; https://doi.org/10.3390/plants14193098 - 8 Oct 2025
Abstract
Selecting an appropriate rootstock for a specific scion cultivar is an efficient way to improve both yield and berry quality in viticulture. This study aimed to provide practical guidance for rootstock selection in the cultivation of the table grape cultivar ‘Fengguang’. The mature [...] Read more.
Selecting an appropriate rootstock for a specific scion cultivar is an efficient way to improve both yield and berry quality in viticulture. This study aimed to provide practical guidance for rootstock selection in the cultivation of the table grape cultivar ‘Fengguang’. The mature scions of this cultivar were grafted onto hardwood cuttings of eight different resistant rootstocks, which included 101-14M, 110R, 188-08, 3309C, 5BB, 5C, SO4, and Beta, with the own-rooted vines as control. Graft compatibility, growth vigor, yield performance, and fruit quality were compared and analyzed among the different grafting combinations. The results suggested that vines on 101-14M, 5BB, and Beta obtained higher germination rates of scions, better healing rates of the mating interface, and greater generation rates of root callus. Among these, vines on 5BB exhibited the largest scion trunk cross-sectional diameter. Furthermore, SO4 demonstrated the most significant improvement in yield, with an average increase of 13.54% compared to the control. Regarding berry quality, 101-14M significantly enhanced berry mass, pressure resistance, and flesh firmness relative to the controls, with average improvements of 7.67%, 11.34%, and 29.86%, respectively. Based on a comprehensive evaluation of yield and fruit quality indicators, 101-14M gained the highest value. In conclusion, 101-14M is preferentially recommended for grafting cultivation of ‘Fengguang’ vines. These findings could provide practical guidance for the cultivation of table grape cultivars. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

14 pages, 786 KB  
Article
Typing of Yersinia pestis in Challenging Forensic Samples Through Targeted Next-Generation Sequencing of Multilocus Variable Number Tandem Repeat Regions
by Hyeongseok Yun, Seung-Ho Lee, Se Hun Gu, Seung Hyun Lim and Dong Hyun Song
Microorganisms 2025, 13(10), 2320; https://doi.org/10.3390/microorganisms13102320 - 7 Oct 2025
Abstract
Microbial forensics involves analyzing biological evidence to evaluate weaponized microorganisms or their toxins. This study aimed to detect and type Yersinia pestis from four simulated forensic samples—human plasma diluted in phosphate-buffered saline (#24-2), tomato juice (#24-5), grape juice (#24-8), and a surgical mask [...] Read more.
Microbial forensics involves analyzing biological evidence to evaluate weaponized microorganisms or their toxins. This study aimed to detect and type Yersinia pestis from four simulated forensic samples—human plasma diluted in phosphate-buffered saline (#24-2), tomato juice (#24-5), grape juice (#24-8), and a surgical mask (#24-10). Notably, samples #24-10 may have contained live bacteria other than Y. pestis. A real-time polymerase chain reaction confirmed the presence of Y. pestis in all samples; however, whole-genome sequencing (WGS) coverage of the Y. pestis chromosome ranged from 0.46% to 97.1%, largely due to host DNA interference and low abundance. To address these limitations and enable strain-level identification, we designed a hybridization-based target enrichment approach focused on multilocus variable number tandem repeat analysis (MLVA). Next-generation sequencing (NGS) using whole-genome amplification revealed that the accuracy of the 25 MLVA profiles of Y. pestis for samples #24-2, #24-5, #24-8, and #24-10 was 4%, 100%, 52%, and 0%, respectively. However, all samples showed 100% accuracy with target-enriched NGS, confirming they all belong to the same strain. These findings demonstrate that a targeted enrichment strategy for MLVA loci can overcome common obstacles in microbial forensics, particularly when working with trace or degraded samples where conventional WGS proves challenging. Full article
Show Figures

Figure 1

19 pages, 936 KB  
Article
Physicochemical, Functional and Nutritional Characteristics of Various Types of Fruit Pomace
by Agata Blicharz-Kania, Anna Pecyna, Beata Zdybel and Dariusz Andrejko
Processes 2025, 13(10), 3182; https://doi.org/10.3390/pr13103182 - 7 Oct 2025
Viewed by 2
Abstract
The aim of this study was to evaluate and compare dried apple (A), chokeberry (C), grape (G), raspberry (R), and red currant (RC) pomace as potential additives to food, beverages, and cosmetics. Their physicochemical properties and nutritional composition were examined. The fruit pomace [...] Read more.
The aim of this study was to evaluate and compare dried apple (A), chokeberry (C), grape (G), raspberry (R), and red currant (RC) pomace as potential additives to food, beverages, and cosmetics. Their physicochemical properties and nutritional composition were examined. The fruit pomace was characterised by significant differences in acidity ranging 1.41 (G) to 7.96 g·100 g−1d.w. (R), water holding capacity (2.36–4.25 g·g−1, C-A), and oil holding capacity (1.86–2.41 g·g−1, C-G). The colour parameters of the pomace differed significantly. The highest lightness L* was recorded for the apple pomace (66.29). Samples RC and R were characterised by the highest redness (32.99; 26.76), while A, G, and R showed high b* values, amounting to 28.54, 22.84, and 20.40 (yellowness), respectively. The highest protein (13.01%), fat (6.82%), and fibre (67.38%) contents were recorded in the redcurrant pomace. The mineral analysis revealed high potassium, phosphorus, and calcium contents in all pomace samples, with the grape and redcurrant pomace containing the highest mineral content. These results highlight the potential of fruit pomace as a sustainable, nutritionally enriching ingredient, primarily for food products, and the potential to reduce food waste. Full article
(This article belongs to the Special Issue Feature Papers in the "Food Process Engineering" Section)
Show Figures

Figure 1

20 pages, 3391 KB  
Article
The Effects of Pre-Fermentative Treatments on the Aroma of Krstač and Žižak Wines
by Valerija Madžgalj, Iris Đorđević, Ivana Sofrenić and Aleksandar Petrović
Fermentation 2025, 11(10), 577; https://doi.org/10.3390/fermentation11100577 - 7 Oct 2025
Viewed by 24
Abstract
Pre-fermentative treatments are essential in winemaking, as they significantly influence the quality and stability of white wines in particular. The synthesis of many compounds obtained from yeast, such as higher alcohols and esters, is influenced by the type and concentration of aromatic precursors [...] Read more.
Pre-fermentative treatments are essential in winemaking, as they significantly influence the quality and stability of white wines in particular. The synthesis of many compounds obtained from yeast, such as higher alcohols and esters, is influenced by the type and concentration of aromatic precursors present in the must, especially amino acids. Clarification has a positive effect on wine quality, mainly by improving organoleptic properties, with flavour being the most affected. In this study, the influences of different static settling times, different pressures during must extraction and the addition of different bentonite concentrations to the must on the aroma of wines from the autochthonous grape varieties Krstač and Žižak were investigated. The identification of aromatic compounds in the wine was performed using GC/FID-MS analysis. Wine subjected to the longest static settling time (30 h) showed the highest concentration of esters. Krstač wine, which underwent a 30 h of settling, was characterised by an increased concentration of esters, such as isoamyl acetate, ethyl decanoate and ethyl hexanoate, while Žižak wine was characterised by the presence of 2-phenylethyl acetate and isoamyl acetate. The total fatty acid content in Krstač wine obtained by pressing was higher (14.90 mg/L) than in wine produced from free-run juice (8.04 mg/L). Full article
(This article belongs to the Special Issue Wine and Beer Fermentation, 2nd Edition)
Show Figures

Figure 1

17 pages, 8447 KB  
Article
Evaluation of Fungal Sensitivity to Biosynthesized Copper-Oxide Nanoparticles (CuONPs) in Grapevine Tissues and Fruits
by Domingo Martínez-Soto, Erisneida Campos-Jiménez, Alejandro Cabello-Pasini, Luis Enrique Garcia-Marin, Anaid Meza-Villezcas and Ernestina Castro-Longoria
J. Fungi 2025, 11(10), 719; https://doi.org/10.3390/jof11100719 - 6 Oct 2025
Viewed by 213
Abstract
Grape production is one of the most agronomically important activities worldwide. However, it is threatened by diseases caused by phytopathogenic microorganisms, which cause severe economic losses. The primary strategy to control phytopathogenic fungi is the application of fungicides; however, they affect the environment [...] Read more.
Grape production is one of the most agronomically important activities worldwide. However, it is threatened by diseases caused by phytopathogenic microorganisms, which cause severe economic losses. The primary strategy to control phytopathogenic fungi is the application of fungicides; however, they affect the environment and induce resistance in fungi. Nanomaterials, especially those green-synthesized, emerge as an eco-friendly and sustainable alternative to control fungal pathogens. The objective of this work is to evaluate the sensitivity of fungal phytopathogens to biosynthesized copper-oxide nanoparticles (CuONPs). Nanoparticles were evaluated as preventive and corrective treatments in grapevine green tissues and fruits under field conditions, using in vitro and in vivo experimental approaches. Interestingly, corrective treatment was highly effective and showed little accumulation of Cu on the fruits, even less than a commercial copper-based fungicide. Moreover, we report that Aspergillus niger causes lesions in photosynthetic tissues and severe disease symptoms in grapes. We also describe for the first time the presence of Alternaria alternata causing lesions, mainly on the stems and young leaves of grapevine plants in Mexico. These pathogens were inhibited by the biosynthesized CuONPs. All these findings show the effectiveness of using CuONPs to control phytopathogenic fungi, even under field conditions, shedding light on their potential use in agriculture with a less environmental impact than the commercial fungicides and agrochemicals currently used. Full article
(This article belongs to the Special Issue Fungal Development and Interactions Under Hostile Environments)
Show Figures

Graphical abstract

18 pages, 3287 KB  
Article
Photodynamic and Sonodynamic Antibacterial Activity of Grape Leaf Extracts
by Tigabu Haddis Ale, Iryna Hovor, Melad Atrash, Olga Semenova, Natalia Zemliana, Natalya M. Kogan, Marina Nisnevitch and Faina Nakonechny
Appl. Sci. 2025, 15(19), 10738; https://doi.org/10.3390/app151910738 - 5 Oct 2025
Viewed by 230
Abstract
Food spoilage and contamination are major global challenges, reducing food quality, safety, and availability, causing significant economic losses. This study evaluates the photodynamic and sonodynamic antibacterial activities of grape leaf extracts from Beer and Hanut Orcha varieties. The extracts were tested against Staphylococcus [...] Read more.
Food spoilage and contamination are major global challenges, reducing food quality, safety, and availability, causing significant economic losses. This study evaluates the photodynamic and sonodynamic antibacterial activities of grape leaf extracts from Beer and Hanut Orcha varieties. The extracts were tested against Staphylococcus aureus and Escherichia coli under illumination and ultrasonic activation. The results demonstrated that the photodynamic and sonodynamic treatments significantly enhanced the antibacterial efficacy of the extracts when higher concentrations of the extracts and prolonged exposure led to complete bacterial eradication. Separation of the extracts using RP-18 cartridges (Yicozoo Energy Technology Co., Ltd., Xi’an, China) enabled us to get an active fraction containing components responsible for antimicrobial effects. Singlet oxygen generation measurements confirmed the involvement of reactive oxygen species in bacterial inactivation under illumination. Using HPLC/MS, the active components responsible for the photodynamic properties of the extracts were identified as quercetin 3’-O-glucuronide and pheophorbide a. The findings suggest that these natural extracts, in combination with photodynamic and sonodynamic activation, represent promising alternatives to conventional antibiotics. Further studies should focus on the isolation of active individual compounds, the improvement of treatment parameters, and the investigation of molecular mechanisms to facilitate the development of practical applications in medicine and food preservation. Full article
Show Figures

Figure 1

16 pages, 526 KB  
Review
Companion Crops as Catalysts for Sustainable Cover Cropping in Vineyards—A Critical Review and Research Agenda
by Mehdi Sharifi and Zahra Zolfaghari
Plants 2025, 14(19), 3056; https://doi.org/10.3390/plants14193056 - 2 Oct 2025
Viewed by 304
Abstract
Vineyard cover crops deliver well-documented ecosystem services, yet consistent establishment, especially of perennial grasses and legumes, remains a primary barrier to adoption. This review reframes “companion (nurse) cropping” not as a new crop class but as a facilitative establishment strategy within the broader [...] Read more.
Vineyard cover crops deliver well-documented ecosystem services, yet consistent establishment, especially of perennial grasses and legumes, remains a primary barrier to adoption. This review reframes “companion (nurse) cropping” not as a new crop class but as a facilitative establishment strategy within the broader cover-/service-crop literature. We (i) position our contribution relative to recent syntheses, (ii) synthesize evidence on companion crops practices that reduce cover cropping early failure risk, and (iii) propose a testable research agenda. A focused scoping review of peer-reviewed and extension literature indexed in Web of Science and Google Scholar was conducted using search terms encompassing cover/service crops and nurse/companion/facilitation in viticulture systems. Across climates, fast-establishing cereals (Avena sativa, Hordeum vulgare, Secale cereale, × Triticosecale Wittmack) and short-cycle legumes (Vicia sativa, Pisum sativum, Trifolium incarnatum) can reliably “nurse” slower perennials and legumes by providing early groundcover, weeds control, and microclimate buffering when sown at reduced rates (≈25–50% of monoculture) and terminated on time to limit vine competition. Evidence gaps persist for in-row applications, water-use penalties under drought, and long-term effects on yield and grape composition. Companion cropping is argued to be a design principle in vineyard cover-crop programs rather than a separate category. A decision framework and research agenda are presented to quantify establishment reliability, resource trade-offs, and wine-relevant outcomes, and it is recommended that future decision tools make the companion-phase logic explicit to de-risk adoption and align with regional guidelines. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

23 pages, 1571 KB  
Article
Assessing Dietary Consumption of Toxicant-Laden Foods and Beverages by Age and Ethnicity in California: Implications for Proposition 65
by Shahir Masri, Sara Nasla, Denise Diaz Payán and Jun Wu
Nutrients 2025, 17(19), 3149; https://doi.org/10.3390/nu17193149 - 2 Oct 2025
Viewed by 624
Abstract
Background: Investigating human exposure to toxic contaminants through dietary consumption is critical to identify disease risk factors and health guidelines. Methods: In this study, we developed a cross-sectional online survey to collect information about dietary patterns and related food consumption habits among adults [...] Read more.
Background: Investigating human exposure to toxic contaminants through dietary consumption is critical to identify disease risk factors and health guidelines. Methods: In this study, we developed a cross-sectional online survey to collect information about dietary patterns and related food consumption habits among adults (age ≥ 18) and adolescents (ages 13–17) in Southern California, focusing on popular staple foods and/or those targeted most commonly under California’s Proposition 65 law for lead and acrylamide exposure. Results: Results identified root vegetables, rice, leafy greens, pasta/noodles, tea, juice, and seafood to be among the most heavily consumed foods by mass, while the daily intake of many foods such as stuffed grape leaves, tamarind/chili candy and herbs/spices varied by age and race/ethnicity, suggesting that many of Proposition 65’s pollution allowances may be exacerbating issues of health inequity and environmental injustice. Moreover, findings from this study indicate that the methods of exposure assessment often applied under Prop 65, especially relating to herbs/spices, are likely to underestimate single-day exposures, thus allowing unsafe products on the market without warning labels. Conclusions: Study outcomes are broadly relevant to environmental health and nutrition science, with particular relevance to public health practitioners and California’s Prop 65 regulators and other stakeholders. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

15 pages, 568 KB  
Article
Modeling the Effect of the Biological Control of Pseudococcus viburni Signoret (Hemiptera: Pseudococcidae) on Grapevine Leafroll Virus Spread
by Katia Vogt-Geisse, Margarita C. G. Correa, Juan Pablo Gutiérrez-Jara and Kent M. Daane
Plants 2025, 14(19), 3043; https://doi.org/10.3390/plants14193043 - 1 Oct 2025
Viewed by 319
Abstract
Grapevineleafroll disease (GLD) is one of the more severe and persistent diseases in grapevines worldwide and is caused by several species of grape leafroll-associated viruses (GLRaVs). GLRaVs enter vines mainly by infected plant material or insect vectors. Mealybugs (Hemiptera: Pseudococcidae) are important vectors [...] Read more.
Grapevineleafroll disease (GLD) is one of the more severe and persistent diseases in grapevines worldwide and is caused by several species of grape leafroll-associated viruses (GLRaVs). GLRaVs enter vines mainly by infected plant material or insect vectors. Mealybugs (Hemiptera: Pseudococcidae) are important vectors of GLRaVs and, among them, Pseudococcus viburni is the primary key vector in many regions. To reduce GLRaV spread, acquiring vines from virus-free certified nurseries, removing infected vines, and controlling insect vectors are crucial control tools. Sustainable mealybug control relies on eco-friendly products, cultural practices that limit mealybug population growth, and biological control by natural enemies. For P. viburni, biological control is primarily based on the action of predators and parasitoids, such as Cryptolaemus montrouzieri Mulsant and Acerophagus flavidulus Brethes, respectively, which will obviously have a different mode of action than chemical insecticides. However, the long-term effect of biological control on GLRaV spread within vineyards has rarely been studied. With the aim of better predicting the impact of biological control on insect vectors, such as mealybugs, we developed a mathematical model to predict the GLRaV spread. The results highlight the importance of establishing vineyards with virus-free material and having a pest management program that reduces the vector population to reduce the economic loss from GLRaVs. Full article
Show Figures

Figure 1

14 pages, 606 KB  
Article
Comparison of Gelatin and Plant Proteins in the Clarification of Grape Musts Using Flotation Techniques
by Áron Pál Szövényi, Annamária Sólyom-Leskó, Balázs Nagy, Zsuzsanna Varga, Noémi Aletta Németh and Diána Ágnes Nyitrainé Sárdy
Fermentation 2025, 11(10), 569; https://doi.org/10.3390/fermentation11100569 - 1 Oct 2025
Viewed by 358
Abstract
The study compared the effects of conventional and vegan processing aids in the clarification of must, focusing on the phenolic and sensory characteristics of must and wine. The hypothesis was that plant protein could provide results similar to those of conventional aids containing [...] Read more.
The study compared the effects of conventional and vegan processing aids in the clarification of must, focusing on the phenolic and sensory characteristics of must and wine. The hypothesis was that plant protein could provide results similar to those of conventional aids containing proteins of animal origin, especially in aromatic grapes, where hyperoxidation is avoided. Conducted in 2024 in Etyek-Buda, Hungary, the initial trials subjected the Irsai Olivér grape must to gravity sedimentation with various agents. Vegan processing aids, notably the combination of pea protein and chitin-glucan, showed a gentle impact on the assimilable nitrogen content and a similar reduction in turbidity to those with animal proteins. Nitrogen flotation trials compared gelatin and the vegan alternative (a combination of pea protein and chitin–glucan) in Irsai Olivér and Chardonnay must clarification. The removal of phenolic substances was monitored using the Folin–Ciocalteu method, the acid butanol assay, and the vanillin assay. In addition, nitrogen levels were evaluated before and after the flotation experiments. The plant-based processing aid effectively improved the sensory quality of Irsai Olivér. However, the gelatin-treated Chardonnay was fresher and less bitter than the vegan option, which was less balanced and more bitter with weaker aroma and flavor. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

12 pages, 830 KB  
Article
Effect of Acute Grape Seed Extract Supplementation on Heart Rate Recovery in Young Individuals
by Dae Sik Song, William Boyer, Trevor Gillum, Sean Sullivan, Iltark Yoon, Junbei Bai, Seung-Jae Kim and Jong-Kyung Kim
J. Cardiovasc. Dev. Dis. 2025, 12(10), 387; https://doi.org/10.3390/jcdd12100387 - 1 Oct 2025
Viewed by 227
Abstract
Evidence has suggested that post-exercise heart rate recovery (PHRR) is a useful tool in evaluating cardiac autonomic function. Altered cardiac autonomic function is characterized by heightened sympathetic activation and the abnormal reactivation of the parasympathetic nervous system and is associated with delayed HRR. [...] Read more.
Evidence has suggested that post-exercise heart rate recovery (PHRR) is a useful tool in evaluating cardiac autonomic function. Altered cardiac autonomic function is characterized by heightened sympathetic activation and the abnormal reactivation of the parasympathetic nervous system and is associated with delayed HRR. Although grape seed extract (GSE) supplementation has been shown to increase nitric oxide production and modify sympathetic output, there is limited evidence on its potential beneficial effects on PHRR. We investigated the effect of GSE supplementation on PHRR during sympathetic overactivation induced by muscle metaboreflex activation (MMA) in young individuals. Participants were randomly assigned, via a double-blind, cross-over design, to either receive GSE (300 mg, two capsules) or PL (300 mg, two capsules), with a washout period of at least 72 h. between trials. A submaximal exercise test was performed using a cycle ergometer combined with an isometric handgrip exercise using a handgrip dynamometer and blood flow occlusion by placing a cuff over the brachial artery of the dominant arm. PHRR was measured at 5 s. intervals throughout the experiment. The PHRR was evaluated between GSE and PL at every min. for 300 s. PHRR kinetics significantly improved following GSE supplementation (74.3 ± 7.5 s) compared with the PL condition (86.2 ± 10.4 s). Our results suggest that GSE is effective in improving HRR kinetics during heightened sympathetic activity induced by MMA in young individuals (p = 0.034; ES = 0.4). Thus, regular treatment with GSE may provide a nonpharmacological intervention to reduce sympathetic hyperactivity in conditions where excessive sympathetic activity is consistently present. Full article
(This article belongs to the Special Issue Exercise Testing and Interventions in Cardiovascular Disease)
Show Figures

Figure 1

17 pages, 2999 KB  
Article
Evaluation of Yield-Related Morphological, Physiological, Agronomic, and Nutrient Uptake Traits of Grain Sorghum Varieties in the Kerala Region (India)
by Swathy Anija Hari Kumar, Usha Chacko Thomas, Yazen Al-Salman, Francisco Javier Cano, Roy Stephen, P. Shalini Pillai and Oula Ghannoum
Agronomy 2025, 15(10), 2320; https://doi.org/10.3390/agronomy15102320 - 30 Sep 2025
Viewed by 254
Abstract
Climate change poses a significant threat to crop production, particularly in tropical and semi-arid regions. Sorghum (Sorghum bicolor (L.) Moench), a resilient C4 cereal, has high photosynthetic efficiency and abiotic stress tolerance, making it a key crop for food, fodder, and [...] Read more.
Climate change poses a significant threat to crop production, particularly in tropical and semi-arid regions. Sorghum (Sorghum bicolor (L.) Moench), a resilient C4 cereal, has high photosynthetic efficiency and abiotic stress tolerance, making it a key crop for food, fodder, and feed security. This study evaluated agronomic and physiological traits influencing the yield performance of 20 sorghum varieties under field conditions in Kerala, India. The data were analyzed using a randomized block design (RBD) in GRAPES software, and a principal component analysis was performed in R. Variety CSV 17 exhibited the highest grain yield (GY) (3760 kg ha−1) and harvest index (HI) (43), with early flowering, early maturity, a high chlorophyll content (CHL), and minimal nitrogen (N), phosphorus (P), and potassium uptake. Conversely, CSV 20 produced the highest stover yield (22.5 t ha−1), associated with greater leaf thickness (LT), lower canopy temperature, taller plant height (PH), increased leaf number (LN), and extended maturity. Leaf temperature (Tleaf) was negatively correlated with the quantum yield of photosystem II (ΦPSII) and panicle length (PL), which were strong predictors of grain weight. The principal component analysis revealed that PC1 and PC2 explained 21% and 19% of the variation in the grain and stover yield, respectively. Hierarchical partitioning identified the potassium content (K%), CHL, Tleaf, leaf area index (LAI), ΦPSII, and LT as key contributors to the GY, while the SY was primarily influenced by the LN, nitrogen content (N%), maturity duration, PH, and ΦPSII. These findings highlight the potential of exploiting physiological traits for enhancing sorghum productivity under summer conditions in Kerala and similar environments. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

22 pages, 3564 KB  
Article
Development of a Green Extraction Process from Residues of Assyrtiko Wine Production for Cosmetic Applications
by Styliani Kalafateli, Agni-Areti Freri, Georgios Stavropoulos, Andromachi Tzani and Anastasia Detsi
Separations 2025, 12(10), 265; https://doi.org/10.3390/separations12100265 - 30 Sep 2025
Viewed by 111
Abstract
Vitis vinifera L. cultivar, “Assyrtiko”, is a famous grape variety native to Santorini island. Its wine production residues are rich in bioactive polyphenols, making them valuable for extraction and use in cosmetics. The aim of this work was the development and optimization of [...] Read more.
Vitis vinifera L. cultivar, “Assyrtiko”, is a famous grape variety native to Santorini island. Its wine production residues are rich in bioactive polyphenols, making them valuable for extraction and use in cosmetics. The aim of this work was the development and optimization of an extraction process from “Assyrtiko” Wine Production Residue (AWPR), using a Natural Deep Eutectic Solvent (NaDES) as the extraction medium. Four NaDESs were synthesized and screened for the extraction, and the extracts were evaluated for Total Phenolic Content (TPC) and Total Flavonoid Content (TFC). The NaDES comprising betaine and 1,3-propanediol was chosen for further analysis because of its effectiveness as an extraction solvent. The extraction process was optimized using a Box–Behnken experimental design. The NaDES %w/w content in the NaDES/water system was found to play the most statistically significant role in the quality of the extracts, assessed via TPC and TFC values. The quality of the extract obtained from the optimal conditions was practically stable with respect to TPC and TFC after long storage, suggesting that NaDESs have a potential “protective” effect for the extracted phytochemicals and give energy-efficient character to the process. This extract was also directly incorporated into a moisturizing cosmetic formulation, which remained homogeneous and stable after testing, demonstrating the extract’s potential for cosmetic applications. Full article
(This article belongs to the Special Issue Novel Solvents and Methods for Extraction of Chemicals)
Show Figures

Figure 1

Back to TopTop