Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,634)

Search Parameters:
Keywords = graph attention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2832 KB  
Article
DPGAD: Structure-Aware Dual-Path Attention Graph Node Anomaly Detection
by Xinhua Dong, Hui Zhang, Hongmu Han and Zhigang Xu
Symmetry 2025, 17(9), 1452; https://doi.org/10.3390/sym17091452 - 4 Sep 2025
Abstract
Graph anomaly detection (GAD) is crucial for safeguarding the integrity and security of complex systems, such as social networks and financial transactions. Despite the advances made by Graph Neural Networks (GNNs) in the field of GAD, existing methods still exhibit limitations in capturing [...] Read more.
Graph anomaly detection (GAD) is crucial for safeguarding the integrity and security of complex systems, such as social networks and financial transactions. Despite the advances made by Graph Neural Networks (GNNs) in the field of GAD, existing methods still exhibit limitations in capturing subtle structural anomaly patterns: they typically over-rely on reconstruction error, struggle to fully exploit structural similarity among nodes, and fail to effectively integrate attribute and structural information. To tackle these challenges, this paper proposes a structure-aware dual-path attention graph node anomaly detection method (DPGAD). DPGAD employs wavelet diffusion to extract network neighborhood features for each node while incorporating a dual attention mechanism to simultaneously capture attribute and structural similarities, thereby obtaining richer feature details. An adaptive gating mechanism is then introduced to dynamically adjust the fusion of attribute features and structural features. This allows the model to focus on the most relevant features for anomaly detection, enhancing its robustness and antinoise capability. Our experimental evaluation across multiple real-world datasets demonstrates that DPGAD consistently surpasses existing methods, achieving average improvements of 9.06% in AUC and 11% in F1-score. Especially in scenarios where structural similarity is crucial, DPGAD has a performance advantage of more than 20% compared with the most advanced methods. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

20 pages, 1149 KB  
Review
Occurrence, Properties, Applications and Analytics of Cytosine and Its Derivatives
by Mariusz Kluska, Joanna Jabłońska, Dorota Prukała and Wiesław Prukała
Molecules 2025, 30(17), 3598; https://doi.org/10.3390/molecules30173598 - 3 Sep 2025
Abstract
Cytosine and its derivatives are an important research topic in the fields of bioorganic chemistry, molecular biology and medicine due to their key role in the structure and function of nucleic acids. The article provides a detailed overview of the natural occurrence of [...] Read more.
Cytosine and its derivatives are an important research topic in the fields of bioorganic chemistry, molecular biology and medicine due to their key role in the structure and function of nucleic acids. The article provides a detailed overview of the natural occurrence of cytosine, its biosynthetic and degradation pathways in living organisms, as well as its physicochemical and chemical properties. Particular attention was paid to the biological activity and therapeutic applications of cytosine derivatives, including their use in cancer, antiviral and epigenetic therapy. The analytical section describes high-performance liquid chromatography techniques as a major tool for identifying and determining cytosine and its derivatives in biological samples. Examples of separation conditions, column selection, mobile phases and detection parameters for these compounds are presented. The article also provides chemical structures, graphs, comparative tables and an up-to-date review of the scientific literature, presenting a comprehensive overview of the topic, including biological, chemical and analytical aspects. Full article
Show Figures

Figure 1

21 pages, 753 KB  
Article
Learnable Convolutional Attention Network for Unsupervised Knowledge Graph Entity Alignment
by Weishan Cai and Wenjun Ma
Entropy 2025, 27(9), 924; https://doi.org/10.3390/e27090924 - 3 Sep 2025
Abstract
The success of current entity alignment (EA) tasks largely depends on the supervision information provided by labeled data. Considering the cost of labeled data, most supervised methods are challenging to apply in practical scenarios. Therefore, an increasing number of works based on contrastive [...] Read more.
The success of current entity alignment (EA) tasks largely depends on the supervision information provided by labeled data. Considering the cost of labeled data, most supervised methods are challenging to apply in practical scenarios. Therefore, an increasing number of works based on contrastive learning, active learning, or other deep learning techniques have been developed, to solve the performance bottleneck caused by the lack of labeled data. However, existing unsupervised EA methods still face certain limitations; either their modeling complexity is high or they fail to balance the effectiveness and practicality of alignment. To overcome these issues, we propose a learnable convolutional attention network for unsupervised entity alignment, named LCA-UEA. Specifically, LCA-UEA performs convolution operations before the attention mechanism, ensuring the acquisition of structural information and avoiding the superposition of redundant information. Then, to efficiently filter out invalid neighborhood information of aligned entities, LCA-UEA designs a relation structure reconstruction method based on potential matching relations, thereby enhancing the usability and scalability of the EA method. Notably, a similarity function based on consistency is proposed to better measure the similarity of candidate entity pairs. Finally, we conducted extensive experiments on three datasets of different sizes and types (cross-lingual and monolingual) to verify the superiority of LCA-UEA. Experimental results demonstrate that LCA-UEA significantly improved alignment accuracy, outperforming 25 supervised or unsupervised methods, and improving by 6.4% in Hits@1 over the best baseline in the best case. Full article
(This article belongs to the Special Issue Entropy in Machine Learning Applications, 2nd Edition)
Show Figures

Figure 1

24 pages, 3866 KB  
Article
Improved Heterogeneous Spatiotemporal Graph Network Model for Traffic Flow Prediction at Highway Toll Stations
by Yaofang Zhang, Jian Chen, Fafu Chen and Jianjie Gao
Sustainability 2025, 17(17), 7905; https://doi.org/10.3390/su17177905 - 2 Sep 2025
Abstract
This study aims to guide the management and service of highways towards a more efficient and intelligent direction, and also provides intelligent and green data support for achieving sustainable development goals. The forecasting of traffic flow at highway stations serves as the cornerstone [...] Read more.
This study aims to guide the management and service of highways towards a more efficient and intelligent direction, and also provides intelligent and green data support for achieving sustainable development goals. The forecasting of traffic flow at highway stations serves as the cornerstone for spatiotemporal analysis and is vital for effective highway management and control. Despite considerable advancements in data-driven traffic flow prediction, the majority of existing models fail to differentiate between directions. Specifically, entrance flow prediction has applications in dynamic route guidance, disseminating real-time traffic conditions, and offering optimal entrance selection suggestions. Meanwhile, exit flow prediction is instrumental for congestion and accident alerts, as well as for road network optimization decisions. In light of these needs, this study introduces an enhanced heterogeneous spatiotemporal graph network model tailored for predicting highway station traffic flow. To accurately capture the dynamic impact of upstream toll stations on the target station’s flow, we devise an influence probability matrix. This matrix, in conjunction with the covariance matrix across toll stations, updated graph structure data, and integrated external weather conditions, allows the attention mechanism to assign varied combination weights to the target toll station from temporal, spatial, and external standpoints, thereby augmenting prediction accuracy. We undertook a case study utilizing traffic flow data from the Chengdu-Chengyu station on the Sichuan Highway to gauge the efficacy of our proposed model. The experimental outcomes indicate that our model surpasses other baseline models in performance metrics. This study provides valuable insights for highway management and control, as well as for reducing traffic congestion. Furthermore, this research highlights the importance of using data-driven approaches to reduce carbon emissions associated with transportation, enhance resource allocation at toll plazas, and promote sustainable highway transportation systems. Full article
Show Figures

Figure 1

37 pages, 7453 KB  
Article
A Dynamic Hypergraph-Based Encoder–Decoder Risk Model for Longitudinal Predictions of Knee Osteoarthritis Progression
by John B. Theocharis, Christos G. Chadoulos and Andreas L. Symeonidis
Mach. Learn. Knowl. Extr. 2025, 7(3), 94; https://doi.org/10.3390/make7030094 - 2 Sep 2025
Abstract
Knee osteoarthritis (KOA) is a most prevalent chronic muscoloskeletal disorder causing pain and functional impairment. Accurate predictions of KOA evolution are important for early interventions and preventive treatment planning. In this paper, we propose a novel dynamic hypergraph-based risk model (DyHRM) which integrates [...] Read more.
Knee osteoarthritis (KOA) is a most prevalent chronic muscoloskeletal disorder causing pain and functional impairment. Accurate predictions of KOA evolution are important for early interventions and preventive treatment planning. In this paper, we propose a novel dynamic hypergraph-based risk model (DyHRM) which integrates the encoder–decoder (ED) architecture with hypergraph convolutional neural networks (HGCNs). The risk model is used to generate longitudinal forecasts of KOA incidence and progression based on the knee evolution at a historical stage. DyHRM comprises two main parts, namely the dynamic hypergraph gated recurrent unit (DyHGRU) and the multi-view HGCN (MHGCN) networks. The ED-based DyHGRU follows the sequence-to-sequence learning approach. The encoder first transforms a knee sequence at the historical stage into a sequence of hidden states in a latent space. The Attention-based Context Transformer (ACT) is designed to identify important temporal trends in the encoder’s state sequence, while the decoder is used to generate sequences of KOA progression, at the prediction stage. MHGCN conducts multi-view spatial HGCN convolutions of the original knee data at each step of the historic stage. The aim is to acquire more comprehensive feature representations of nodes by exploiting different hyperedges (views), including the global shape descriptors of the cartilage volume, the injury history, and the demographic risk factors. In addition to DyHRM, we also propose the HyGraphSMOTE method to confront the inherent class imbalance problem in KOA datasets, between the knee progressors (minority) and non-progressors (majority). Embedded in MHGCN, the HyGraphSMOTE algorithm tackles data balancing in a systematic way, by generating new synthetic node sequences of the minority class via interpolation. Extensive experiments are conducted using the Osteoarthritis Initiative (OAI) cohort to validate the accuracy of longitudinal predictions acquired by DyHRM under different definition criteria of KOA incidence and progression. The basic finding of the experiments is that the larger the historic depth, the higher the accuracy of the obtained forecasts ahead. Comparative results demonstrate the efficacy of DyHRM against other state-of-the-art methods in this field. Full article
(This article belongs to the Special Issue Advances in Machine and Deep Learning)
Show Figures

Figure 1

24 pages, 3829 KB  
Article
Causal Correction and Compensation Network for Robotics: Applications and Validation in Continuous Control
by Xiaoqing Zhu, Lanyue Bi, Tong Wu, Chuan Zhang and Jiahao Wu
Appl. Sci. 2025, 15(17), 9628; https://doi.org/10.3390/app15179628 - 1 Sep 2025
Viewed by 88
Abstract
Deep Reinforcement Learning (DRL) has achieved remarkable success in robotic control, autonomous driving, and game-playing agents. However, its decision-making process often remains a black box, lacking both interpretability and verifiability. In robotic control tasks, developers cannot pinpoint decision errors or precisely adjust control [...] Read more.
Deep Reinforcement Learning (DRL) has achieved remarkable success in robotic control, autonomous driving, and game-playing agents. However, its decision-making process often remains a black box, lacking both interpretability and verifiability. In robotic control tasks, developers cannot pinpoint decision errors or precisely adjust control strategies based solely on observed robot behaviors. To address this challenge, this work proposes an interpretable DRL framework based on a Causal Correction and Compensation Network (C2-Net), which systematically captures the causal relationships underlying decision-making and enhances policy robustness. C2-Net integrates a Graph Neural Network-based Neural Causal Model (GNN-NCM) to compute causal influence weights for each action. These weights are then dynamically applied to correct and compensate the raw policy outputs, thereby balancing performance optimization and transparency. This work validates the approach on OpenAI Gym’s Hopper, Walker2d, and Humanoid environments, as well as the multi-agent AzureLoong platform built on Isaac Gym. In terms of convergence speed, final return, and policy robustness, experimental results show that C2-Net achieves higher performance over both non-causal baselines and conventional attention-based models. Moreover, it provides rich causal explanations for its decisions. The framework represents a principled shift from correlation to causation and offers a practical solution for the safe and reliable deployment of multi-robot systems. Full article
Show Figures

Figure 1

12 pages, 421 KB  
Article
A Graph Attention Network Combining Multifaceted Element Relationships for Full Document-Level Understanding
by Lorenzo Vaiani, Davide Napolitano and Luca Cagliero
Computers 2025, 14(9), 362; https://doi.org/10.3390/computers14090362 - 1 Sep 2025
Viewed by 84
Abstract
Question answering from visually rich documents (VRDs) is the task of retrieving the correct answer to a natural language question by considering the content of textual and visual elements in the document, as well as the pages’ layout. To answer closed-ended questions that [...] Read more.
Question answering from visually rich documents (VRDs) is the task of retrieving the correct answer to a natural language question by considering the content of textual and visual elements in the document, as well as the pages’ layout. To answer closed-ended questions that require a deep understanding of the hierarchical relationships between the elements, i.e., the full document-level understanding (FDU) task, state-of-the-art graph-based approaches to FDU model the pairwise element relationships in a graph model. Although they incorporate logical links (e.g., a caption refers to a figure) and spatial ones (e.g., a caption is placed below the figure), they currently disregard the semantic similarity among multimodal document elements, thus potentially yielding suboptimal scoring of the elements’ relevance to the input question. In this paper, we propose GRAS-FDU, a new graph attention network tailored to FDU. GATS-FDU is trained to jointly consider multiple document facets, i.e., the local, spatial, and semantic elements’ relationships. The results show that our approach achieves superior performance compared to several baseline methods. Full article
Show Figures

Figure 1

26 pages, 1255 KB  
Article
Interpretable Knowledge Tracing via Transformer-Bayesian Hybrid Networks: Learning Temporal Dependencies and Causal Structures in Educational Data
by Nhu Tam Mai, Wenyang Cao and Wenhe Liu
Appl. Sci. 2025, 15(17), 9605; https://doi.org/10.3390/app15179605 - 31 Aug 2025
Viewed by 134
Abstract
Knowledge tracing, the computational modeling of student learning progression through sequential educational interactions, represents a critical component for adaptive learning systems and personalized education platforms. However, existing approaches face a fundamental trade-off between predictive accuracy and interpretability: deep sequence models excel at capturing [...] Read more.
Knowledge tracing, the computational modeling of student learning progression through sequential educational interactions, represents a critical component for adaptive learning systems and personalized education platforms. However, existing approaches face a fundamental trade-off between predictive accuracy and interpretability: deep sequence models excel at capturing complex temporal dependencies in student interaction data but lack transparency in their decision-making processes, while probabilistic graphical models provide interpretable causal relationships but struggle with the complexity of real-world educational sequences. We propose a hybrid architecture that integrates transformer-based sequence modeling with structured Bayesian causal networks to overcome this limitation. Our dual-pathway design employs a transformer encoder to capture complex temporal patterns in student interaction sequences, while a differentiable Bayesian network explicitly models prerequisite relationships between knowledge components. These pathways are unified through a cross-attention mechanism that enables bidirectional information flow between temporal representations and causal structures. We introduce a joint training objective that simultaneously optimizes sequence prediction accuracy and causal graph consistency, ensuring learned temporal patterns align with interpretable domain knowledge. The model undergoes pre-training on 3.2 million student–problem interactions from diverse MOOCs to establish foundational representations, followed by domain-specific fine-tuning. Comprehensive experiments across mathematics, computer science, and language learning demonstrate substantial improvements: 8.7% increase in AUC over state-of-the-art knowledge tracing models (0.847 vs. 0.779), 12.3% reduction in RMSE for performance prediction, and 89.2% accuracy in discovering expert-validated prerequisite relationships. The model achieves a 0.763 F1-score for early at-risk student identification, outperforming baselines by 15.4%. This work demonstrates that sophisticated temporal modeling and interpretable causal reasoning can be effectively unified for educational applications. Full article
Show Figures

Figure 1

24 pages, 1689 KB  
Article
Safeguarding Brand and Platform Credibility Through AI-Based Multi-Model Fake Profile Detection
by Vishwas Chakranarayan, Fadheela Hussain, Fayzeh Abdulkareem Jaber, Redha J. Shaker and Ali Rizwan
Future Internet 2025, 17(9), 391; https://doi.org/10.3390/fi17090391 - 29 Aug 2025
Viewed by 281
Abstract
The proliferation of fake profiles on social media presents critical cybersecurity and misinformation challenges, necessitating robust and scalable detection mechanisms. Such profiles weaken consumer trust, reduce user engagement, and ultimately harm brand reputation and platform credibility. As adversarial tactics and synthetic identity generation [...] Read more.
The proliferation of fake profiles on social media presents critical cybersecurity and misinformation challenges, necessitating robust and scalable detection mechanisms. Such profiles weaken consumer trust, reduce user engagement, and ultimately harm brand reputation and platform credibility. As adversarial tactics and synthetic identity generation evolve, traditional rule-based and machine learning approaches struggle to detect evolving and deceptive behavioral patterns embedded in dynamic user-generated content. This study aims to develop an AI-driven, multi-modal deep learning-based detection system for identifying fake profiles that fuses textual, visual, and social network features to enhance detection accuracy. It also seeks to ensure scalability, adversarial robustness, and real-time threat detection capabilities suitable for practical deployment in industrial cybersecurity environments. To achieve these objectives, the current study proposes an integrated AI system that combines the Robustly Optimized BERT Pretraining Approach (RoBERTa) for deep semantic textual analysis, ConvNeXt for high-resolution profile image verification, and Heterogeneous Graph Attention Networks (Hetero-GAT) for modeling complex social interactions. The extracted features from all three modalities are fused through an attention-based late fusion strategy, enhancing interpretability, robustness, and cross-modal learning. Experimental evaluations on large-scale social media datasets demonstrate that the proposed RoBERTa-ConvNeXt-HeteroGAT model significantly outperforms baseline models, including Support Vector Machine (SVM), Random Forest, and Long Short-Term Memory (LSTM). Performance achieves 98.9% accuracy, 98.4% precision, and a 98.6% F1-score, with a per-profile speed of 15.7 milliseconds, enabling real-time applicability. Moreover, the model proves to be resilient against various types of attacks on text, images, and network activity. This study advances the application of AI in cybersecurity by introducing a highly interpretable, multi-modal detection system that strengthens digital trust, supports identity verification, and enhances the security of social media platforms. This alignment of technical robustness with brand trust highlights the system’s value not only in cybersecurity but also in sustaining platform credibility and consumer confidence. This system provides practical value to a wide range of stakeholders, including platform providers, AI researchers, cybersecurity professionals, and public sector regulators, by enabling real-time detection, improving operational efficiency, and safeguarding online ecosystems. Full article
Show Figures

Figure 1

21 pages, 5171 KB  
Article
FDBRP: A Data–Model Co-Optimization Framework Towards Higher-Accuracy Bearing RUL Prediction
by Muyu Lin, Qing Ye, Shiyue Na, Dongmei Qin, Xiaoyu Gao and Qiang Liu
Sensors 2025, 25(17), 5347; https://doi.org/10.3390/s25175347 - 28 Aug 2025
Viewed by 326
Abstract
This paper proposes Feature fusion and Dilated causal convolution model for Bearing Remaining useful life Prediction (FDBRP), an integrated framework for accurate Remaining Useful Life (RUL) prediction of rolling bearings that combines three key innovations: (1) a data augmentation module employing sliding-window processing [...] Read more.
This paper proposes Feature fusion and Dilated causal convolution model for Bearing Remaining useful life Prediction (FDBRP), an integrated framework for accurate Remaining Useful Life (RUL) prediction of rolling bearings that combines three key innovations: (1) a data augmentation module employing sliding-window processing and two-dimensional feature concatenation with label normalization to enhance signal representation and improve model generalizability, (2) a feature fusion module incorporating an enhanced graph convolutional network for spatial modeling, an improved multi-scale temporal convolution for dynamic pattern extraction, and an efficient multi-scale attention mechanism to optimize spatiotemporal feature consistency, and (3) an optimized dilated convolution module utilizing interval sampling to expand the receptive field, and combines the residual connection structure to realize the regularization of the neural network and enhance the ability of the model to capture long-range dependencies. Experimental validation showcases the effectiveness of proposed approach, achieving a high average score of 0.756564 and demonstrating a lower average error of 10.903656 in RUL prediction for test bearings compared to state-of-the-art benchmarks. This highlights the superior RUL prediction capability of the proposed methodology. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

23 pages, 3218 KB  
Article
Cross-Architecture Binary Code Similarity-Detection Method Based on Contextual Information
by Xingyu Zeng, Yujie Yang, Qiaoyan Wen and Sujuan Qin
Appl. Sci. 2025, 15(17), 9458; https://doi.org/10.3390/app15179458 - 28 Aug 2025
Viewed by 285
Abstract
With the rapid growth of software scale, binary code similarity detection is of great significance in security analysis tasks, such as malicious code detection and vulnerability mining. However, due to differences in instruction sets and inconsistent intermediate languages used by different compilers, with [...] Read more.
With the rapid growth of software scale, binary code similarity detection is of great significance in security analysis tasks, such as malicious code detection and vulnerability mining. However, due to differences in instruction sets and inconsistent intermediate languages used by different compilers, with existing methods it is difficult to effectively implement cross-architecture detection. To address the problem of insufficient cross-architecture feature extraction in existing methods, we propose a cross-architecture binary code similarity-detection method based on contextual information. We design an assembly instruction-classification method that maps instructions implementing the same function under different architectures to the same semantic space, and makes the model learn the common features of semantically similar instructions under different architectures more efficiently through comparative learning to better capture semantic context information. In order to better capture the contextual structural information between basic blocks, we introduce graph attention neural networks to reduce the interference of noisy nodes that contain fewer instructions. The combination of semantic contextual information as well as structural contextual information ultimately improves the detection accuracy. Experimental results show that compared with existing methods, the proposed method has better performance in accuracy, precision, recall and F1-score. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

43 pages, 17950 KB  
Article
Fault Diagnosis of Rolling Bearings Based on HFMD and Dual-Branch Parallel Network Under Acoustic Signals
by Hengdi Wang, Haokui Wang and Jizhan Xie
Sensors 2025, 25(17), 5338; https://doi.org/10.3390/s25175338 - 28 Aug 2025
Viewed by 279
Abstract
This paper proposes a rolling bearing fault diagnosis method based on HFMD and a dual-branch parallel network, aiming to address the issue of diagnostic accuracy being compromised by the disparity in data quality across different source domains due to sparse feature separation in [...] Read more.
This paper proposes a rolling bearing fault diagnosis method based on HFMD and a dual-branch parallel network, aiming to address the issue of diagnostic accuracy being compromised by the disparity in data quality across different source domains due to sparse feature separation in rolling bearing acoustic signals. Traditional methods face challenges in feature extraction, sensitivity to noise, and difficulties in handling coupled multi-fault conditions in rolling bearing fault diagnosis. To overcome these challenges, this study first employs the HawkFish Optimization Algorithm to optimize Feature Mode Decomposition (HFMD) parameters, thereby improving modal decomposition accuracy. The optimal modal components are selected based on the minimum Residual Energy Index (REI) criterion, with their time-domain graphs and Continuous Wavelet Transform (CWT) time-frequency diagrams extracted as network inputs. Then, a dual-branch parallel network model is constructed, where the multi-scale residual structure (Res2Net) incorporating the Efficient Channel Attention (ECA) mechanism serves as the temporal branch to extract key features and suppress noise interference, while the Swin Transformer integrating multi-stage cross-scale attention (MSCSA) acts as the time-frequency branch to break through local perception bottlenecks and enhance classification performance under limited resources. Finally, the time-domain graphs and time-frequency graphs are, respectively, input into Res2Net and Swin Transformer, and the features from both branches are fused through a fully connected layer to obtain comprehensive fault diagnosis results. The research results demonstrate that the proposed method achieves 100% accuracy in open-source datasets. In the experimental data, the diagnostic accuracy of this study demonstrates significant advantages over other diagnostic models, achieving an accuracy rate of 98.5%. Under few-shot conditions, this study maintains an accuracy rate no lower than 95%, with only a 2.34% variation in accuracy. HFMD and the dual-branch parallel network exhibit remarkable stability and superiority in the field of rolling bearing fault diagnosis. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

21 pages, 2678 KB  
Article
TopoTempNet: A High-Accuracy and Interpretable Decoding Method for fNIRS-Based Motor Imagery
by Qiulei Han, Hongbiao Ye, Yan Sun, Ze Song, Jian Zhao, Lijuan Shi and Zhejun Kuang
Sensors 2025, 25(17), 5337; https://doi.org/10.3390/s25175337 - 28 Aug 2025
Viewed by 348
Abstract
Functional near-infrared spectroscopy (fNIRS) offers a safe and portable signal source for brain–computer interface (BCI) applications, particularly in motor imagery (MI) decoding. However, its low sampling rate and hemodynamic delay pose challenges for temporal modeling and dynamic brain network analysis. To address these [...] Read more.
Functional near-infrared spectroscopy (fNIRS) offers a safe and portable signal source for brain–computer interface (BCI) applications, particularly in motor imagery (MI) decoding. However, its low sampling rate and hemodynamic delay pose challenges for temporal modeling and dynamic brain network analysis. To address these limitations in temporal dynamics, static graph modeling, and feature fusion interpretability, we propose TopoTempNet, an innovative topology-enhanced temporal network for biomedical signal decoding. TopoTempNet integrates multi-level graph features with temporal modeling through three key innovations: (1) multi-level topological feature construction using local and global functional connectivity metrics (e.g., connection strength, density, global efficiency); (2) a graph-modulated attention mechanism combining Transformer and Bi-LSTM to dynamically model key connections; and (3) a multimodal fusion strategy uniting raw signals, graph structures, and temporal representations into a high-dimensional discriminative space. Evaluated on three public fNIRS datasets (MA, WG, UFFT), TopoTempNet achieves superior accuracy (up to 90.04% ± 3.53%) and Kappa scores compared to state-of-the-art models. The ROC curves and t-SNE visualizations confirm its excellent feature discrimination and structural clarity. Furthermore, the statistical analysis of graph features reveals the model’s ability to capture task-specific functional connectivity patterns, enhancing the interpretability of decoding outcomes. TopoTempNet provides a novel pathway for building interpretable and high-performance BCI systems based on fNIRS. Full article
(This article belongs to the Special Issue (Bio)sensors for Physiological Monitoring)
Show Figures

Figure 1

20 pages, 2942 KB  
Article
Towards Efficient Waste Handling: Structural Group Reduction in Lifting Mechanism Design
by Emilian Mosnegutu, Claudia Tomozei, Florin Nedeff, Dana Chitimus, Diana Mirila, Iwona Wiewiórska, Marcin Jasiński and Nicoleta Sporea
Processes 2025, 13(9), 2744; https://doi.org/10.3390/pr13092744 - 28 Aug 2025
Viewed by 274
Abstract
This article presents a theoretical kinematic analysis of a mechanism for lifting and emptying household waste containers, critical components of garbage truck operations. The study focuses on optimizing waste handling mechanisms and highlights the impact of design parameters on performance. Using both classical [...] Read more.
This article presents a theoretical kinematic analysis of a mechanism for lifting and emptying household waste containers, critical components of garbage truck operations. The study focuses on optimizing waste handling mechanisms and highlights the impact of design parameters on performance. Using both classical analytical methods and modern simulation tools, including Mathcad 15 and Linkage v.3.16.14 software, the analysis identifies key influences of structural parameters on motion behavior. Unlike previous studies (which, for the mechanism under study, would use five structural groups), this work models the mechanism with fewer structural groups (three structural groups are used), simplifying analysis without sacrificing accuracy. Simulations confirm the validity of the calculations, showing no discrepancies in component movements and a maximum of 2.81% variation in linear velocities at all critical points. Detailed motion graphs illustrate the trajectories of mobile joints, with particular attention to angular variations and linear speeds, underscoring the importance of parameter optimization for enhanced performance. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

16 pages, 1464 KB  
Article
Transient Stability Assessment of Power Systems Built upon a Deep Spatio-Temporal Feature Extraction Network
by Yu Nan, Meng Tong, Zhenzhen Kong, Huichao Zhao and Yadong Zhao
Energies 2025, 18(17), 4547; https://doi.org/10.3390/en18174547 - 27 Aug 2025
Viewed by 297
Abstract
The rapid and accurate identification of power system transient stability status is a fundamental prerequisite for ensuring the secure and reliable operation of large-scale power grids. With the increasing complexity and heterogeneity of modern power system components, system nonlinearity has grown significantly, rendering [...] Read more.
The rapid and accurate identification of power system transient stability status is a fundamental prerequisite for ensuring the secure and reliable operation of large-scale power grids. With the increasing complexity and heterogeneity of modern power system components, system nonlinearity has grown significantly, rendering traditional time-domain simulation and direct methods unable to meet accuracy and efficiency requirements simultaneously. To further improve the prediction accuracy of power system transient stability and provide more refined assessment results, this paper integrates deep learning with power system transient stability and proposes a transient stability assessment of power systems built upon a deep spatio-temporal feature extraction network method. First, a spatio-temporal feature extraction module is constructed by combining an improved graph attention network with a residual bidirectional temporal convolutional network, aiming to capture the spatial and bidirectional temporal characteristics of transient stability data. Second, a classification module is developed using the Kolmogorov–Arnold network to establish the mapping relationship between spatio-temporal features and transient stability states. This enables the accurate determination of the system’s transient stability status within a short time after fault occurrence. Finally, a weighted cross-entropy loss function is employed to address the issue of low prediction accuracy caused by the imbalanced sample distribution in the evaluation model. The feasibility, effectiveness, and superiority of the proposed method are validated through tests on the New England 10-machine 39-bus system and the NPCC 48-machine 140-bus system. Full article
Show Figures

Figure 1

Back to TopTop