Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = graphene–Ni-17Mo alloy composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6337 KB  
Article
Preparation and Characterization of Graphene-Nanosheet-Reinforced Ni-17Mo Alloy Composites for Advanced Nuclear Reactor Applications
by Xiaoxin Ge, Yanxin Jiang, Xu Yu, Guopeng Zhang, Yunjia Shi, Bin Cai, Qing Peng and Hai Huang
Materials 2025, 18(5), 1061; https://doi.org/10.3390/ma18051061 - 27 Feb 2025
Cited by 2 | Viewed by 803
Abstract
Molten salt reactors (MSRs) offer advantages such as enhanced safety, reduced nuclear waste, and cost effectiveness. However, the corrosive nature of fluoride-based molten salts challenges the longevity of structural materials. Ni-based alloys, like Hastelloy N, have shown resistance to fluoride salt corrosion but [...] Read more.
Molten salt reactors (MSRs) offer advantages such as enhanced safety, reduced nuclear waste, and cost effectiveness. However, the corrosive nature of fluoride-based molten salts challenges the longevity of structural materials. Ni-based alloys, like Hastelloy N, have shown resistance to fluoride salt corrosion but suffer from issues like helium embrittlement caused by neutron irradiation. To address these concerns, the incorporation of graphene (Gr) into Ni-based alloys is being explored. Gr’s superior mechanical properties and irradiation tolerance make it a promising reinforcement material. In this study, a Ni-17Mo alloy, a simplified model of Hastelloy N, was combined with reduced graphene oxide (RGO) using powder metallurgy. The effects of milling time and sintering temperature on the microstructure and mechanical properties were systematically studied. The results indicated that optimal sintering at 1100 °C enhanced tensile strength and ductility. Additionally, RGO incorporation improved the alloy’s strength but reduced its elongation. This research highlights the potential of Gr-reinforced Ni-based alloys for advanced MSR applications, offering insights into fabrication techniques and their impact on material properties. Full article
(This article belongs to the Special Issue Advances in Computation and Modeling of Materials Mechanics)
Show Figures

Figure 1

Back to TopTop