Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (833)

Search Parameters:
Keywords = grassland remote sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12281 KB  
Article
Vegetation Classification and Extraction of Urban Green Spaces Within the Fifth Ring Road of Beijing Based on YOLO v8
by Bin Li, Xiaotian Xu, Yingrui Duan, Hongyu Wang, Xu Liu, Yuxiao Sun, Na Zhao, Shaoning Li and Shaowei Lu
Land 2025, 14(10), 2005; https://doi.org/10.3390/land14102005 - 6 Oct 2025
Abstract
Real-time, accurate and detailed monitoring of urban green space is of great significance for constructing the urban ecological environment and maximizing ecological benefits. Although high-resolution remote sensing technology provides rich ground object information, it also makes the surface information of urban green spaces [...] Read more.
Real-time, accurate and detailed monitoring of urban green space is of great significance for constructing the urban ecological environment and maximizing ecological benefits. Although high-resolution remote sensing technology provides rich ground object information, it also makes the surface information of urban green spaces more complex. Existing classification methods often struggle to meet the requirements of classification accuracy and the automation demands of high-resolution images. This study utilized GF-7 remote sensing imagery to construct an urban green space classification method for Beijing. The study used the YOLO v8 model as the framework to conduct a fine classification of urban green spaces within the Fifth Ring Road of Beijing, distinguishing between evergreen trees, deciduous trees, shrubs and grasslands. The aims were to address the limitations of insufficient model fit and coarse-grained classifications in existing studies, and to improve vegetation extraction accuracy for green spaces in northern temperate cities (with Beijing as a typical example). The results show that the overall classification accuracy of the trained YOLO v8 model is 89.60%, which is 25.3% and 28.8% higher than that of traditional machine learning methods such as Maximum Likelihood and Support Vector Machine, respectively. The model achieved extraction accuracies of 92.92%, 93.40%, 87.67%, and 93.34% for evergreen trees, deciduous trees, shrubs, and grasslands, respectively. This result confirms that the combination of deep learning and high-resolution remote sensing images can effectively enhance the classification extraction of urban green space vegetation, providing technical support and data guarantees for the refined management of green spaces and “garden cities” in megacities such as Beijing. Full article
(This article belongs to the Special Issue Vegetation Cover Changes Monitoring Using Remote Sensing Data)
Show Figures

Figure 1

28 pages, 4334 KB  
Article
Analysis of Carbon Emissions and Ecosystem Service Value Caused by Land Use Change, and Its Coupling Characteristics in the Wensu Oasis, Northwest China
by Yiqi Zhao, Songrui Ning, An Yan, Pingan Jiang, Huipeng Ren, Ning Li, Tingting Huo and Jiandong Sheng
Agronomy 2025, 15(10), 2307; https://doi.org/10.3390/agronomy15102307 - 29 Sep 2025
Abstract
Oases in arid regions are crucial for sustaining agricultural production and ecological stability, yet few studies have simultaneously examined the coupled dynamics of land use/cover change (LUCC), carbon emissions, and ecosystem service value (ESV) at the oasis–agricultural scale. This gap limits our understanding [...] Read more.
Oases in arid regions are crucial for sustaining agricultural production and ecological stability, yet few studies have simultaneously examined the coupled dynamics of land use/cover change (LUCC), carbon emissions, and ecosystem service value (ESV) at the oasis–agricultural scale. This gap limits our understanding of how different land use trajectories shape trade-offs between carbon processes and ecosystem services in fragile arid ecosystems. This study examines the spatiotemporal interactions between land use carbon emissions and ESV from 1990 to 2020 in the Wensu Oasis, Northwest China, and predicts their future trajectories under four development scenarios. Multi-period remote sensing data, combined with the carbon emission coefficient method, modified equivalent factor method, spatial autocorrelation analysis, the coupling coordination degree model, and the PLUS model, were employed to quantify LUCC patterns, carbon emission intensity, ESV, and its coupling relationships. The results indicated that (1) cultivated land, construction land, and unused land expanded continuously (by 974.56, 66.77, and 1899.36 km2), while grassland, forests, and water bodies declined (by 1363.93, 77.92, and 1498.83 km2), with the most pronounced changes occurring between 2000 and 2010; (2) carbon emission intensity increased steadily—from 23.90 × 104 t in 1990 to 169.17 × 104 t in 2020—primarily driven by construction land expansion—whereas total ESV declined by 46.37%, with water and grassland losses contributing substantially; (3) carbon emission intensity and ESV exhibited a significant negative spatial correlation, and the coupling coordination degree remained low, following a “high in the north, low in the south” distribution; and (4) scenario simulations for 2030–2050 suggested that this negative correlation and low coordination will persist, with only the ecological protection scenario (EPS) showing potential to enhance both carbon sequestration and ESV. Based on spatial clustering patterns and scenario outcomes, we recommend spatially differentiated land use regulation and prioritizing EPS measures, including glacier and wetland conservation, adoption of water-saving irrigation technologies, development of agroforestry systems, and renewable energy utilization on unused land. By explicitly linking LUCC-driven carbon–ESV interactions with scenario-based prediction and evaluation, this study provides new insights into oasis sustainability, offers a scientific basis for balancing agricultural production with ecological protection in the oasis of the arid region, and informs China’s dual-carbon strategy, as well as the Sustainable Development Goals. Full article
Show Figures

Figure 1

26 pages, 8481 KB  
Article
Spatio-Temporal Evolution of Surface Urban Heat Island Distribution in Mountainous Urban Areas Based on Local Climate Zones: A Case Study of Tongren, China
by Shaojun Lin, Jia Du and Jinyu Fan
Sustainability 2025, 17(19), 8744; https://doi.org/10.3390/su17198744 - 29 Sep 2025
Abstract
Against the backdrop of climate change and the accelerated process of urbanization, the risks of extreme weather and natural disasters that cities are facing are increasing day by day. Based on the framework of the local climate zone (LCZ), this paper studies the [...] Read more.
Against the backdrop of climate change and the accelerated process of urbanization, the risks of extreme weather and natural disasters that cities are facing are increasing day by day. Based on the framework of the local climate zone (LCZ), this paper studies the spatio-temporal evolution of the urban surface morphology and the heat island effect of Tongren City. Using the comprehensive mapping technology of remote sensing and GIS, combined with the inversion of surface temperature, the distribution of LCZs and the changes in heat island intensity were analyzed. The results show that: (1) The net increase in forest coverage area leads to a decrease in shrub and grassland area, resulting in an ecological deficit. (2) The built-up area expands along transportation routes, and industrial areas encroach upon natural space. (3) The urban heat island pattern has evolved from a single core to multiple cores and eventually becomes fragmented. (4) Among the seasonal dominant driving factors of urban heat islands, the impervious water surface is in summer, the terrain roughness and building height are in winter, and the building density is in spring and autumn. These findings provide feasible insights into mitigating the heat island effect through climate-sensitive urban planning. Full article
Show Figures

Figure 1

21 pages, 7619 KB  
Article
The Impact of Ecological Restoration Measures on Carbon Storage: Spatio-Temporal Dynamics and Driving Mechanisms in Karst Desertification Control
by Shui Li, Pingping Yang, Changxin Yang, Haoru Zhang and Xiong Gao
Land 2025, 14(9), 1903; https://doi.org/10.3390/land14091903 - 18 Sep 2025
Viewed by 282
Abstract
Karst landscapes, characterized by ecological constraints such as thin soil layers, severe rock desertification, and fragile habitats, require a clear understanding of the mechanisms regulating carbon storage and the impacts of ecological restoration measures. However, current research lacks detailed insights into the specific [...] Read more.
Karst landscapes, characterized by ecological constraints such as thin soil layers, severe rock desertification, and fragile habitats, require a clear understanding of the mechanisms regulating carbon storage and the impacts of ecological restoration measures. However, current research lacks detailed insights into the specific effects of ecological restoration measures. This study integrates multi-source remote sensing data and adjusts InVEST model parameters to systematically reveal the spatiotemporal evolution of carbon storage and its driving mechanisms in typical karst plateau regions of southwest China under ecological restoration measures. The results indicate: (1) From 2000 to 2020, the carbon stock in the study area increased by 6.09% overall. However, from 2020 to 2025, due to the rapid conversion of forest land into building land and grassland, the carbon stock decreased sharply by 7.69%. (2) Severe rock desertification constrains carbon stock, and afforestation provides significantly higher long-term carbon sink benefits. (3) The spatial heterogeneity of carbon storage is primarily influenced by the combined effects of natural factors (rock desertification, elevation, NDVI) and human factors (POP). Based on the research findings, it is recommended that measures to promote close forests be prioritized in karst regions to protect and restore forest ecosystems. At the same time, local habitat improvement and the establishment of ecological compensation mechanisms should be implemented, and the expansion of building land should be strictly controlled to enhance the stability of ecosystems and their carbon sink functions. These research findings provide a solid scientific basis for enhancing and precisely regulating the carbon sink capacity of fragile karst ecosystems, and are of great significance for formulating scientifically sound and reasonable ecological protection policies. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

18 pages, 3041 KB  
Article
Spatio-Temporal Dynamics of Wetland Ecosystem and Its Driving Factors in the Qinghai–Tibet Plateau
by Haoyuan Zheng and Yinghui Guan
Water 2025, 17(18), 2746; https://doi.org/10.3390/w17182746 - 17 Sep 2025
Viewed by 399
Abstract
Globally, wetlands have suffered severe degradation due to natural environmental changes and human activities. The wetlands on the Qinghai–Tibet Plateau (QTP) play a unique and critical ecological role, making it essential to understand their spatiotemporal dynamics and driving forces for effective conservation. Based [...] Read more.
Globally, wetlands have suffered severe degradation due to natural environmental changes and human activities. The wetlands on the Qinghai–Tibet Plateau (QTP) play a unique and critical ecological role, making it essential to understand their spatiotemporal dynamics and driving forces for effective conservation. Based on multi-source remote sensing data and Partial Least Squares Structural Equation Modeling (PLS-SEM), this study comprehensively quantified the spatiotemporal changes in wetlands and their key driving factors on the QTP from 1990 to 2020. The results show a net increase in total wetland area (including both natural and artificial wetlands) of approximately 538.72 km2 per year over the 30-year period. Spatially, wetland expansion was most pronounced in the central–western and northern parts of the plateau, primarily driven by the conversion of grasslands, barren lands, and snow/ice cover, while localized degradation persisted in eastern regions. The PLS-SEM demonstrated an excellent fit (R2 = 0.962) and identified human activities—such as ecological restoration policies and infrastructure development—as the dominant direct driver of wetland expansion (path coefficient = 0.918). Climate change, improved vegetation cover, and cryospheric loss also contributed positively to wetland gains (path coefficients = 0.056, 0.044, and 0.138, respectively). This study provides a transferable framework for understanding complex wetland dynamics and their drivers in alpine regions under global environmental change, which is crucial for designing more effective wetland conservation strategies. Full article
(This article belongs to the Special Issue Impact of Climate Change on Water and Soil Erosion)
Show Figures

Figure 1

29 pages, 19475 KB  
Article
Fine-Scale Grassland Classification Using UAV-Based Multi-Sensor Image Fusion and Deep Learning
by Zhongquan Cai, Changji Wen, Lun Bao, Hongyuan Ma, Zhuoran Yan, Jiaxuan Li, Xiaohong Gao and Lingxue Yu
Remote Sens. 2025, 17(18), 3190; https://doi.org/10.3390/rs17183190 - 15 Sep 2025
Viewed by 433
Abstract
Grassland classification via remote sensing is essential for ecosystem monitoring and precision management, yet conventional satellite-based approaches are fundamentally constrained by coarse spatial resolution. To overcome this limitation, we harness high-resolution UAV multi-sensor data, integrating multi-scale image fusion with deep learning to achieve [...] Read more.
Grassland classification via remote sensing is essential for ecosystem monitoring and precision management, yet conventional satellite-based approaches are fundamentally constrained by coarse spatial resolution. To overcome this limitation, we harness high-resolution UAV multi-sensor data, integrating multi-scale image fusion with deep learning to achieve fine-scale grassland classification that satellites cannot provide. First, four categories of UAV data, including RGB, multispectral, thermal infrared, and LiDAR point cloud, were collected, and a fused image tensor consisting of 10 channels (NDVI, VCI, CHM, etc.) was constructed through orthorectification and resampling. For feature-level fusion, four deep fusion networks were designed. Among them, the MultiScale Pyramid Fusion Network, utilizing a pyramid pooling module, effectively integrated spectral and structural features, achieving optimal performance in all six image fusion evaluation metrics, including information entropy (6.84), spatial frequency (15.56), and mean gradient (12.54). Subsequently, training and validation datasets were constructed by integrating visual interpretation samples. Four backbone networks, including UNet++, DeepLabV3+, PSPNet, and FPN, were employed, and attention modules (SE, ECA, and CBAM) were introduced separately to form 12 model combinations. Results indicated that the UNet++ network combined with the SE attention module achieved the best segmentation performance on the validation set, with a mean Intersection over Union (mIoU) of 77.68%, overall accuracy (OA) of 86.98%, F1-score of 81.48%, and Kappa coefficient of 0.82. In the categories of Leymus chinensis and Puccinellia distans, producer’s accuracy (PA)/user’s accuracy (UA) reached 86.46%/82.30% and 82.40%/77.68%, respectively. Whole-image prediction validated the model’s coherent identification capability for patch boundaries. In conclusion, this study provides a systematic approach for integrating multi-source UAV remote sensing data and intelligent grassland interpretation, offering technical support for grassland ecological monitoring and resource assessment. Full article
Show Figures

Figure 1

23 pages, 10375 KB  
Article
Extraction of Photosynthetic and Non-Photosynthetic Vegetation Cover in Typical Grasslands Using UAV Imagery and an Improved SegFormer Model
by Jie He, Xiaoping Zhang, Weibin Li, Du Lyu, Yi Ren and Wenlin Fu
Remote Sens. 2025, 17(18), 3162; https://doi.org/10.3390/rs17183162 - 12 Sep 2025
Viewed by 401
Abstract
Accurate monitoring of the coverage and distribution of photosynthetic (PV) and non-photosynthetic vegetation (NPV) in the grasslands of semi-arid regions is crucial for understanding the environment and addressing climate change. However, the extraction of PV and NPV information from Unmanned Aerial Vehicle (UAV) [...] Read more.
Accurate monitoring of the coverage and distribution of photosynthetic (PV) and non-photosynthetic vegetation (NPV) in the grasslands of semi-arid regions is crucial for understanding the environment and addressing climate change. However, the extraction of PV and NPV information from Unmanned Aerial Vehicle (UAV) remote sensing imagery is often hindered by challenges such as low extraction accuracy and blurred boundaries. To overcome these limitations, this study proposed an improved semantic segmentation model, designated SegFormer-CPED. The model was developed based on the SegFormer architecture, incorporating several synergistic optimizations. Specifically, a Convolutional Block Attention Module (CBAM) was integrated into the encoder to enhance early-stage feature perception, while a Polarized Self-Attention (PSA) module was embedded to strengthen contextual understanding and mitigate semantic loss. An Edge Contour Extraction Module (ECEM) was introduced to refine boundary details. Concurrently, the Dice Loss function was employed to replace the Cross-Entropy Loss, thereby more effectively addressing the class imbalance issue and significantly improving both the segmentation accuracy and boundary clarity of PV and NPV. To support model development, a high-quality PV and NPV segmentation dataset for Hengshan grassland was also constructed. Comprehensive experimental results demonstrated that the proposed SegFormer-CPED model achieved state-of-the-art performance, with a mIoU of 93.26% and an F1-score of 96.44%. It significantly outperformed classic architectures and surpassed all leading frameworks benchmarked here. Its high-fidelity maps can bridge field surveys and satellite remote sensing. Ablation studies verified the effectiveness of each improved module and its synergistic interplay. Moreover, this study successfully utilized SegFormer-CPED to perform fine-grained monitoring of the spatiotemporal dynamics of PV and NPV in the Hengshan grassland, confirming that the model-estimated fPV and fNPV were highly correlated with ground survey data. The proposed SegFormer-CPED model provides a robust and effective solution for the precise, semi-automated extraction of PV and NPV from high-resolution UAV imagery. Full article
Show Figures

Graphical abstract

29 pages, 35542 KB  
Article
A Novel Remote Sensing Framework Integrating Geostatistical Methods and Machine Learning for Spatial Prediction of Diversity Indices in the Desert Steppe
by Zhaohui Tang, Chuanzhong Xuan, Tao Zhang, Xinyu Gao, Suhui Liu, Yaobang Song and Fang Guo
Agriculture 2025, 15(18), 1926; https://doi.org/10.3390/agriculture15181926 - 11 Sep 2025
Viewed by 372
Abstract
Accurate assessments are vital for the effective conservation of desert steppe ecosystems, which are essential for maintaining biodiversity and ecological balance. Although geostatistical methods are commonly used for spatial modeling, they have limitations in terms of feature extraction and capturing non-linear relationships. This [...] Read more.
Accurate assessments are vital for the effective conservation of desert steppe ecosystems, which are essential for maintaining biodiversity and ecological balance. Although geostatistical methods are commonly used for spatial modeling, they have limitations in terms of feature extraction and capturing non-linear relationships. This study therefore proposes a novel remote sensing framework that integrates geostatistical methods and machine learning to predict the Shannon–Wiener index in desert steppe. Five models, Kriging interpolation, Random Forest, Support Vector Machine, 3D Convolutional Neural Network and Graph Attention Network, were employed for parameter inversion. The Helmert variance component estimation method was introduced to integrate the model outputs by iteratively evaluating residuals and assigning relative weights, enabling both optimal prediction and model contribution quantification. The ensemble model yielded a high prediction accuracy with an R2 of 0.7609. This integration strategy improves the accuracy of index prediction, and enhances the interpretability of the model regarding weight contributions in space. The proposed framework provides a reliable, scalable solution for biodiversity monitoring and supports scientific decision-making for grassland conservation and ecological restoration. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

24 pages, 3981 KB  
Article
Spatial and Temporal Evolution of Urban Functional Areas Supported by Multi-Source Data: A Case Study of Beijing Municipality
by Jiaxin Li, Minrui Zheng, Haichao Jia and Xinqi Zheng
Land 2025, 14(9), 1818; https://doi.org/10.3390/land14091818 - 6 Sep 2025
Viewed by 357
Abstract
Urban livability and sustainable development remain major global challenges, yet the interplay between urban planning layouts and actual human activities has not been sufficiently examined. This study investigates this relationship in Beijing by integrating multi-source spatiotemporal data, including point of interest (POI), Land [...] Read more.
Urban livability and sustainable development remain major global challenges, yet the interplay between urban planning layouts and actual human activities has not been sufficiently examined. This study investigates this relationship in Beijing by integrating multi-source spatiotemporal data, including point of interest (POI), Land Use Cover Change (LUCC), remote sensing data, and the railway network. Defining urban functional units as “street + railway network”, we analyze the spatial–temporal evolution within the 6th Ring Road over the past four decades and propose targeted strategies for the urban functional layout. The results reveal the following: (1) The evolution of Beijing’s urban functions can be divided into four stages (1980–1990, 1990–2005, 2005–2015, and 2015–2020), with continuous population growth (+142%) driving the over-concentration of functions in central districts. (2) Between 2010 and 2020, the POI densities of medical services (+133.6%) and transport services (+130.48%) increased most rapidly, subsequently stimulating the expansion of other urban functions. (3) High-density functional facilities and construction land (+179.10%) have expanded significantly within the 6th Ring Road, while green space (cropland, forestland and grassland) has decreased by 86.97%, resulting in a severe imbalance among land use types. To address these issues, we recommend the following: redistributing high-intensity functions to sub-centers such as Tongzhou and Xiongan New Area to alleviate population pressure, expanding high-capacity rail transit to reinforce 30–50 km commuting links between the core and periphery, and establishing ecological corridors to connect green wedges, thereby enhancing carbon sequestration and environmental quality. This integrated framework offers transferable insights for other megacities, providing guidance for sustainable functional planning that aligns human activity patterns with urban spatial structures. Full article
(This article belongs to the Section Land Socio-Economic and Political Issues)
Show Figures

Figure 1

14 pages, 7065 KB  
Article
Estimation of Burned Fuel Volumes in Heathland Ecosystems Using Multitemporal UAV LiDAR and Superpixel Classification
by Alexander Wim Van Hout, Atefe Choopani, Dimitris Stavrakoudis, Ward De Witte, Ioannis Gitas, Koenraad Van Meerbeek and Sam Ottoy
Drones 2025, 9(9), 615; https://doi.org/10.3390/drones9090615 - 1 Sep 2025
Viewed by 522
Abstract
Accurate quantification of wildland fuel consumption is essential for effective fire management in Northern European heathland ecosystems, yet traditional assessment methods remain spatially limited and labour-intensive. This study combined multitemporal UAV LiDAR with SLIC superpixel-based classification to directly measure fuel consumption following a [...] Read more.
Accurate quantification of wildland fuel consumption is essential for effective fire management in Northern European heathland ecosystems, yet traditional assessment methods remain spatially limited and labour-intensive. This study combined multitemporal UAV LiDAR with SLIC superpixel-based classification to directly measure fuel consumption following a prescribed burn in a Belgian heathland. Pre- and post-fire LiDAR surveys were conducted to capture vegetation height changes. Superpixel segmentation successfully classified three vegetation types (grassland, heather and trees with understory vegetation) with 97.8% accuracy. Fuel consumption analysis revealed remarkable differences between vegetation types, with heather (mean ± SD: 0.165 ± 0.102 m) exhibiting the highest consumption compared to grass (0.089 ± 0.088 m) and tree understory vegetation (0.091 ± 0.068 m). Statistical analysis confirmed the significant differences between all vegetation types (p-value < 0.001). This methodology provides quantitative evidence for developing vegetation-specific burning protocols by demonstrating the critical importance of both pre- and post-fire remote sensing data. The approach demonstrates the effectiveness of UAV-based multitemporal LiDAR for precise fuel consumption assessment in heathland fire management. Full article
(This article belongs to the Special Issue Drones for Wildfire and Prescribed Fire Science)
Show Figures

Figure 1

24 pages, 5793 KB  
Article
Comparative Assessment of Planar Density and Stereoscopic Density for Estimating Grassland Aboveground Fresh Biomass Across Growing Season
by Cong Xu, Jinchen Wu, Yuqing Liang, Pengyu Zhu, Siyang Wang, Fangming Wu, Wei Liu, Xin Mei, Zhaoju Zheng, Yuan Zeng, Yujin Zhao, Bingfang Wu and Dan Zhao
Remote Sens. 2025, 17(17), 3038; https://doi.org/10.3390/rs17173038 - 1 Sep 2025
Viewed by 799
Abstract
Grassland aboveground biomass (AGB) serves as a critical indicator of ecosystem productivity and carbon cycling, playing a pivotal role in ecosystem functioning. The advances in hyperspectral and terrestrial Light Detection and Ranging (LiDAR) data have provided new opportunities for grassland AGB monitoring, but [...] Read more.
Grassland aboveground biomass (AGB) serves as a critical indicator of ecosystem productivity and carbon cycling, playing a pivotal role in ecosystem functioning. The advances in hyperspectral and terrestrial Light Detection and Ranging (LiDAR) data have provided new opportunities for grassland AGB monitoring, but current research remains predominantly focused on data-driven machine learning models. The black-box nature of such approaches resulted in a lack of clear interpretation regarding the coupling relationships between these two data types in grassland AGB estimation. For grassland aboveground fresh biomass, the theoretical estimation can be decomposed into either the product of planar density (PD) and plot area or the product of stereoscopic density (SD) and grassland community volume. Based on this theory, our study developed a semi-mechanistic remote sensing model for grassland AGB estimation by integrating hyperspectral-derived biomass density with extracted structural parameters from terrestrial LiDAR. Initially, we built hyperspectral estimation models for both PD and SD of grassland fresh AGB using PLSR. Subsequently, by integrating the inversion results with grassland quadrat area and community volume measurements, respectively, we achieved quadrat-scale remote sensing estimation of grassland AGB. Finally, we conducted comparative accuracy assessments of both methods across different phenological stages to evaluate their performance differences. Our results demonstrated that SD, which incorporated structural features, could be more precisely estimated (R2 = 0.90, nRMSE = 7.92%, Bias% = 0.01%) based on hyperspectral data compared to PD (R2 = 0.79, nRMSE = 10.19%, Bias% = −7.25%), with significant differences observed in their respective responsive spectral bands. PD showed greater sensitivity to shortwave infrared regions, while SD exhibited stronger associations with visible, red-edge, and near-infrared bands. Although both methods achieved comparable overall AGB estimation accuracy (PD-based: R2 = 0.79, nRMSE = 10.19%, Bias% = −7.25%; SD-based: R2 = 0.82, nRMSE = 10.58%, Bias% = 1.86%), the SD-based approach effectively mitigated the underestimation of high biomass values caused by spectral saturation effects and also demonstrated superior and more stable performance across different growth periods (R2 > 0.6). This work provided concrete physical meaning to the integration of hyperspectral and LiDAR data for grassland AGB monitoring and further suggested the potential of multi-source remote sensing data fusion in estimating grassland AGB. The findings offered theoretical foundations for developing large-scale grassland AGB monitoring models using airborne and spaceborne remote sensing platforms. Full article
(This article belongs to the Special Issue Advances in Multi-Sensor Remote Sensing for Vegetation Monitoring)
Show Figures

Figure 1

20 pages, 9752 KB  
Article
Satellite Remote Sensing Reveals Global Dam Impacts on Riparian Vegetation Dynamics Under Future Climate Scenarios
by Yunlong Liu, Mengxi He, Zhucheng Zhang, Tong Sun, Yanyi Li and Li He
Remote Sens. 2025, 17(17), 3018; https://doi.org/10.3390/rs17173018 - 30 Aug 2025
Viewed by 798
Abstract
The rapid global expansion of hydropower poses questions about the resilience and sustainability of riparian vegetation, especially in the context of ongoing climate change. Satellite remote sensing provides a valuable means for monitoring long-term and spatially continuous changes in vegetation, offering insights into [...] Read more.
The rapid global expansion of hydropower poses questions about the resilience and sustainability of riparian vegetation, especially in the context of ongoing climate change. Satellite remote sensing provides a valuable means for monitoring long-term and spatially continuous changes in vegetation, offering insights into how dams influence RV dynamics worldwide. Here, we integrated satellite-derived environmental indicators, including Normalized Difference Vegetation Index (NDVI), to quantify and compare riparian vegetation trends upstream and downstream of dams globally. By applying paired linear regression analyses to pre- and post-construction NDVI time series, we identified dams associated with significant RV degradation following impoundment. Furthermore, we employed Gradient Boosting Regression Models (GBRM), calibrated using current observational data and driven by CMIP6 climate projections, to forecast global riparian vegetation trends through the year 2100 under various climate scenarios. Our analysis reveals that, although widespread vegetation degradation was not evident up to 2017—and many regions showed slight improvements—future projections under higher-emission pathways (SSP3-7.0 and SSP5-8.5) indicate substantial RV declines after 2040, particularly in high-latitude forests, grasslands, and arid regions. Conversely, tropical and subtropical riparian forests are predicted to maintain stable or increasing NDVI under moderate emission scenarios (SSP1-2.6). These results highlight the potential for adaptive dam development strategies supported by continued satellite-based monitoring to help reduce climate-related risks to riparian vegetation in regions. Full article
Show Figures

Figure 1

28 pages, 16915 KB  
Article
The Analysis of Spatial and Temporal Changes in Ecological Quality and Its Drivers in the Baiyangdian Watershed
by Haoyang Wang, Chunyi Li, Meng Li, Yangying Zhan, Kexin Liu and Junxuan Li
Remote Sens. 2025, 17(17), 3017; https://doi.org/10.3390/rs17173017 - 30 Aug 2025
Viewed by 752
Abstract
As a critical ecological security node in North China, the Baiyangdian Basin underpins regional water resources, biodiversity conservation, and environmental risk mitigation. Its ecological integrity is fundamental to the sustainable development of the Beijing–Tianjin–Hebei (BTH) megaregion. This study leveraged Google Earth Engine (GEE) [...] Read more.
As a critical ecological security node in North China, the Baiyangdian Basin underpins regional water resources, biodiversity conservation, and environmental risk mitigation. Its ecological integrity is fundamental to the sustainable development of the Beijing–Tianjin–Hebei (BTH) megaregion. This study leveraged Google Earth Engine (GEE) to quantify spatiotemporal ecosystem dynamics within the Baiyangdian watershed from 1990 to 2023, utilizing the Remote Sensing Ecological Index (RSEI). The primary drivers influencing the watershed’s ecological and environmental quality were subsequently analyzed. The results show that the ecological quality of the Baiyangdian Basin showed fluctuating changes from 1990 to 2023. Overall, the northwestern part of the Baiyangdian Basin improved significantly, while the southeastern part was slightly degraded, and the intensity of the change between different RSEI grades was low, mainly fluctuating between poor, medium, and good grades. Both anthropogenic and natural factors have high explanatory power for the ecological quality of the Baiyangdian watershed, and the land use type in particular is the main driver of changes in the RSEI area. The explanatory power of these factors was significantly enhanced by the interaction between them, especially the interaction between the land use type and other drivers. Within the drivers of the land use type, the cropland area, woodland area, shrub area, and grassland area have a significant influence. In summary, the area change in different land use types is the main factor influencing the ecological quality of the Baiyangdian watershed. This study has demonstrative value and implications for large-scale shallow lakes and wetlands, ecological barriers in rapidly urbanizing regions, the integrated management of cross-administrative watersheds, and the use of the GEE platform for long time-series and large-scale ecological monitoring and assessment. Full article
Show Figures

Figure 1

15 pages, 5208 KB  
Article
Chain-Spectrum Analysis of Land Use/Cover Change Based on Vector Tracing Method in Northern Oman
by Siyu Zhou and Caihong Ma
Land 2025, 14(9), 1740; https://doi.org/10.3390/land14091740 - 27 Aug 2025
Viewed by 609
Abstract
Land use/cover (LUCC) change in arid oasis–desert ecotones has significant implications for spatial governance in ecologically fragile regions. To better capture the temporal and spatial complexity of land transitions, this study developed a vector tracing method by integrating time-series remote sensing data with [...] Read more.
Land use/cover (LUCC) change in arid oasis–desert ecotones has significant implications for spatial governance in ecologically fragile regions. To better capture the temporal and spatial complexity of land transitions, this study developed a vector tracing method by integrating time-series remote sensing data with vector-based transfer pathways. Analysis of northern Oman from 1995 to 2020 revealed the following: (1) Arable land and impervious surfaces expanded from 0.51% to 1.09% and from 0.31% to 0.98%, respectively, while sand declined from 99.03% to 97.01%. Spatially, arable land was concentrated in piedmont irrigation zones, impervious surfaces near coastal cities, and shrubland and grassland along the Al-Hajar Mountains, forming a complementary land use mosaic. (2) Human activities were the dominant driver, with typical one-way chains accounting for 69.76% of total change. Sand was mainly transformed into arable land (7C1, 7D1, 7E1; where the first part denotes the original type, the letter denotes the year of change, and the last digit denotes the new type), impervious surfaces (7C6, 7D6, 7E6), and shrubland (7E4). (3) Water scarcity and an arid climate remained primary constraints, manifested in typical reciprocating chains in the oasis–desert interface (7D1E7, 7A1B7, 7C1D7) and in the arid vegetation zone along the Al-Hajar Mountain foothills (7D3E7, 7C3D7), together accounting for 24.50% of total change. (4) The region exhibited coordinated transitions among oasis, urban, and ecological land, avoiding the common conflict of cropland loss to urbanization. During the study period, transitions among arable land, impervious surfaces, forest, shrubland, and wetland were rare (Type 16: 3.31%, Type 82: 2.89%, Type 12: 0.04%, Type 18: 0.01%). The case of northern Oman provides a valuable reference for collaborative spatial governance in ecologically fragile arid zones. Future research should integrate socio-economic drivers, climate change projections, and higher-temporal-resolution data to enhance the applicability of the chain-spectrum method in other arid regions. Full article
Show Figures

Figure 1

10 pages, 1376 KB  
Proceeding Paper
Mapping Soil Moisture Using Drones: Challenges and Opportunities
by Ricardo Díaz-Delgado, Pauline Buysse, Thibaut Peres, Thomas Houet, Yannick Hamon, Mikaël Faucheux and Ophelie Fovert
Eng. Proc. 2025, 94(1), 18; https://doi.org/10.3390/engproc2025094018 - 25 Aug 2025
Viewed by 1134
Abstract
Droughts are becoming more frequent, severe, and impactful across the globe. Agroecosystems, which are human-made ecosystems with high water demand that provide essential ecosystem services, are vulnerable to extreme droughts. Although water use efficiency in agriculture has increased in rec ent decades, drought [...] Read more.
Droughts are becoming more frequent, severe, and impactful across the globe. Agroecosystems, which are human-made ecosystems with high water demand that provide essential ecosystem services, are vulnerable to extreme droughts. Although water use efficiency in agriculture has increased in rec ent decades, drought management should be based on long-term, proactive strategies rather than crisis management. The AgrHyS network of sites in French Brittany collects high-resolution soil moisture data from agronomic stations and catchments to improve understanding of temporal soil moisture dynamics and enhance water use efficiency. Frequent mapping of soil moisture and plant water stress is crucial for assessing water stress risk in the context of global warming. Although satellite remote sensing provides reliable, periodic global data on surface soil moisture, it does so at a very coarse spatial resolution. The intrinsic spatial heterogeneity of surface soil moisture requires a higher spatial resolution in order to address upcoming challenges on a local scale. Drones are an excellent tool for upscaling point measurements to catchment level using different onboard cameras. In this study, we evaluated the potential of multispectral images, thermal images and LiDAR data captured in several concurrent drone flights for high-resolution mapping of soil moisture spatial variability, using in situ point measurements of soil water content and plant water stress in both agricultural areas and natural ecosystems. Statistical models were fitted to map soil water content in two areas: a natural marshland and a grassland-covered agricultural field. Our results demonstrate the statistical significance of topography, land surface temperature and red band reflectance in the natural area for retrieving soil water content. In contrast, the grasslands were best predicted by the transformed normalised difference vegetation index (TNDVI). Full article
Show Figures

Figure 1

Back to TopTop