Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (165)

Search Parameters:
Keywords = grid-forming inverters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2541 KB  
Review
Grid-Forming Converters for Renewable Generation: A Comprehensive Review
by Muhammad Waqas Qaisar and Jingyang Fang
Energies 2025, 18(17), 4565; https://doi.org/10.3390/en18174565 - 28 Aug 2025
Abstract
Grid-forming converters (GFMCs) play an increasingly vital role in integrating renewable energy sources into modern power systems. This article reviews GFMCs, emphasizing their importance in enabling reliable, stable, and resilient operation as power systems evolve toward low-inertia, inverter-dominated configurations. Various GFMC topologies are [...] Read more.
Grid-forming converters (GFMCs) play an increasingly vital role in integrating renewable energy sources into modern power systems. This article reviews GFMCs, emphasizing their importance in enabling reliable, stable, and resilient operation as power systems evolve toward low-inertia, inverter-dominated configurations. Various GFMC topologies are examined based on their suitability for grid-forming functions and performance across different voltage levels. Small-signal modeling approaches are presented to provide deeper insights into system dynamics and converter–grid interactions. The article reviews primary control strategies, including droop control, virtual synchronous machines, and virtual oscillator control, and discusses their impact on synchronization, stability, and power sharing. Finally, the article outlines GFMC applications and challenges, highlighting their impact on system stability. Full article
(This article belongs to the Special Issue Advances in Power Converters and Microgrids)
Show Figures

Figure 1

26 pages, 8623 KB  
Article
Voltage Fluctuation Enhancement of Grid-Connected Power System Using PV and Battery-Based Dynamic Voltage Restorer
by Tao Zhang, Yao Zhang, Zhiwei Wang, Zhonghua Yao and Zhicheng Zhang
Electronics 2025, 14(17), 3413; https://doi.org/10.3390/electronics14173413 - 27 Aug 2025
Abstract
The Dynamic Voltage Restorer (DVR), which is connected in series between the power grid and the load, can rapidly compensate for voltage disturbances to maintain stable voltage at the load end. To enhance the energy supply capacity of the DVR and utilize its [...] Read more.
The Dynamic Voltage Restorer (DVR), which is connected in series between the power grid and the load, can rapidly compensate for voltage disturbances to maintain stable voltage at the load end. To enhance the energy supply capacity of the DVR and utilize its shared circuit topology with photovoltaic (PV) inverters—which enables the dual functions of voltage compensation and PV-storage power generation—this study integrates PV and energy storage as a coordinated energy unit into the DVR, forming a PV-storage-integrated DVR system. The core innovation of this system lies in extending the voltage disturbance detection capability of the DVR to include harmonics. By incorporating a Butterworth filtering module and voltage fluctuation tracking technology, high-precision disturbance identification is achieved, thereby supporting power balance control and functional coordination. Furthermore, a multi-mode-power coordinated regulation method is proposed, enabling dynamic switching between operating modes based on PV output. Simulation and experimental results demonstrate that the proposed system and strategy enable smooth mode transitions. This approach not only ensures reliable voltage compensation for sensitive loads but also enhances the grid-support capability of PV systems, offering an innovative technical solution for the integration of renewable energy and power quality management. Full article
Show Figures

Figure 1

25 pages, 1003 KB  
Review
Power Quality Mitigation in Modern Distribution Grids: A Comprehensive Review of Emerging Technologies and Future Pathways
by Mingjun He, Yang Wang, Zihong Song, Zhukui Tan, Yongxiang Cai, Xinyu You, Guobo Xie and Xiaobing Huang
Processes 2025, 13(8), 2615; https://doi.org/10.3390/pr13082615 - 18 Aug 2025
Viewed by 447
Abstract
The global transition toward renewable energy and the electrification of transportation is imposing unprecedented power quality (PQ) challenges on modern distribution networks, rendering traditional governance models inadequate. To bridge the existing research gap of the lack of a holistic analytical framework, this review [...] Read more.
The global transition toward renewable energy and the electrification of transportation is imposing unprecedented power quality (PQ) challenges on modern distribution networks, rendering traditional governance models inadequate. To bridge the existing research gap of the lack of a holistic analytical framework, this review first establishes a systematic diagnostic methodology by introducing the “Triadic Governance Objectives–Scenario Matrix (TGO-SM),” which maps core objectives—harmonic suppression, voltage regulation, and three-phase balancing—against the distinct demands of high-penetration photovoltaic (PV), electric vehicle (EV) charging, and energy storage scenarios. Building upon this problem identification framework, the paper then provides a comprehensive review of advanced mitigation technologies, analyzing the performance and application of key ‘unit operations’ such as static synchronous compensators (STATCOMs), solid-state transformers (SSTs), grid-forming (GFM) inverters, and unified power quality conditioners (UPQCs). Subsequently, the review deconstructs the multi-timescale control conflicts inherent in these systems and proposes the forward-looking paradigm of “Distributed Dynamic Collaborative Governance (DDCG).” This future architecture envisions a fully autonomous grid, integrating edge intelligence, digital twins, and blockchain to shift from reactive compensation to predictive governance. Through this structured approach, the research provides a coherent strategy and a crucial theoretical roadmap for navigating the complexities of modern distribution grids and advancing toward a resilient and autonomous future. Full article
Show Figures

Figure 1

29 pages, 3502 KB  
Article
Hybrid Adaptive Learning-Based Control for Grid-Forming Inverters: Real-Time Adaptive Voltage Regulation, Multi-Level Disturbance Rejection, and Lyapunov-Based Stability
by Amoh Mensah Akwasi, Haoyong Chen, Junfeng Liu and Otuo-Acheampong Duku
Energies 2025, 18(16), 4296; https://doi.org/10.3390/en18164296 - 12 Aug 2025
Viewed by 374
Abstract
This paper proposes a Hybrid Adaptive Learning-Based Control (HALC) algorithm for voltage regulation in grid-forming inverters (GFIs), addressing the challenges posed by voltage sags and swells. The HALC algorithm integrates two key control strategies: Model Predictive Control (MPC) for short-term optimization, and reinforcement [...] Read more.
This paper proposes a Hybrid Adaptive Learning-Based Control (HALC) algorithm for voltage regulation in grid-forming inverters (GFIs), addressing the challenges posed by voltage sags and swells. The HALC algorithm integrates two key control strategies: Model Predictive Control (MPC) for short-term optimization, and reinforcement learning (RL) for long-term self-improvement for immediate response to grid disturbances. MPC is modeled to predict and adjust control actions based on short-term voltage fluctuations while RL continuously refines the inverter’s response by learning from historical grid conditions, enhancing overall system stability and resilience. The proposed multi-stage control framework is modeled based on a mathematical representation using a control feedback model with dynamic optimal control. To enhance voltage stability, Lyapunov is used to operate across different time scales: milliseconds for immediate response, seconds for short-term optimization, and minutes to hours for long-term learning. The HALC framework offers a scalable solution for dynamically improving voltage regulation, reducing power losses, and optimizing grid resilience over time. Simulation is conducted and the results are compared with other existing methods. Full article
Show Figures

Figure 1

22 pages, 3713 KB  
Article
Co-Adaptive Inertia–Damping Control of Grid-Forming Energy Storage Inverters for Suppressing Active Power Overshoot and Frequency Deviation
by Huiping Zheng, Boyu Ma, Xueting Cheng, Yang Cui and Liming Bo
Energies 2025, 18(16), 4255; https://doi.org/10.3390/en18164255 - 11 Aug 2025
Viewed by 308
Abstract
With the large-scale integration of renewable energy through power electronic inverters,
modern power systems are gradually transitioning to low-inertia systems. Grid-forming
inverters are prone to power overshoot and frequency deviation when facing external
disturbances, threatening system stability. Existing methods face two main challenges [...] Read more.
With the large-scale integration of renewable energy through power electronic inverters,
modern power systems are gradually transitioning to low-inertia systems. Grid-forming
inverters are prone to power overshoot and frequency deviation when facing external
disturbances, threatening system stability. Existing methods face two main challenges in
dealing with complex disturbances: neural-network-based approaches have high computational
burdens and long response times, while traditional linear algorithms lack sufficient
precision in adjustment, leading to inadequate system response accuracy and stability. This
paper proposes an innovative coordinated adaptive control strategy for virtual inertia and
damping. The strategy utilizes a Radial Basis Function neural network for the adaptive
regulation of virtual inertia, while the damping coefficient is adjusted using a linear algorithm.
This approach provides refined inertia regulation while maintaining computational
efficiency, optimizing the rate of change in frequency and frequency deviation. Simulation
results demonstrate that the proposed control strategy significantly outperforms traditional
methods in improving system performance. In the active power reference variation
scenario, frequency overshoot is reduced by 65.4%, active power overshoot decreases by
66.7%, and the system recovery time is shortened. In the load variation scenario, frequency
overshoot is reduced by approximately 3.6%, and the maximum frequency deviation is
reduced by approximately 26.9%. In the composite disturbance scenario, the frequency
peak is reduced by approximately 0.1 Hz, the maximum frequency deviation decreases by
35%, and the power response improves by 23.3%. These results indicate that the proposed
method offers significant advantages in enhancing system dynamic response, frequency
stability, and power overshoot suppression, demonstrating its substantial potential for
practical applications. Full article
Show Figures

Figure 1

17 pages, 2641 KB  
Article
Pilot Protection for Transmission Line of Grid-Forming Photovoltaic Systems Based on Jensen–Shannon Distance
by Kuan Li, Qiang Huang and Rongqi Fan
Appl. Sci. 2025, 15(15), 8697; https://doi.org/10.3390/app15158697 - 6 Aug 2025
Viewed by 246
Abstract
When faults occur in transmission lines of grid-forming PV systems, the LVRT control and virtual impedance function cause the fault characteristics of grid-forming inverters to differ significantly from those of synchronous generators, which deteriorates the performance of existing protection schemes. To address this [...] Read more.
When faults occur in transmission lines of grid-forming PV systems, the LVRT control and virtual impedance function cause the fault characteristics of grid-forming inverters to differ significantly from those of synchronous generators, which deteriorates the performance of existing protection schemes. To address this issue, this paper analyzes the fault characteristics of PV transmission lines under grid-forming control objectives and the adaptability of traditional current differential protection. Subsequently, a novel pilot protection based on the Jensen–Shannon distance is proposed for transmission line of grid-forming PV systems. Initially, the post-fault current samples are modeled as discrete probability distributions. The Jensen–Shannon distance algorithm quantifies the similarity between the distributions on both line ends. Based on the calculated distance results, internal and external faults are distinguished, optimizing the performance of traditional waveform-similarity-based pilot protection. Simulation results verify that the proposed protection reliably identifies internal and external faults on the protected line. It demonstrates satisfactory performance across different fault resistances and fault types, and exhibits strong noise immunity and synchronization error tolerance. In addition, the proposed pilot protection is compared with the existing waveform-similarity-based protection schemes. Full article
(This article belongs to the Special Issue Power System Protection: Current and Future Prospectives)
Show Figures

Figure 1

17 pages, 6108 KB  
Article
Grid-Forming Buck-Type Current-Source Inverter Using Hybrid Model-Predictive Control
by Gianni Avilan-Losee and Hang Gao
Energies 2025, 18(15), 4124; https://doi.org/10.3390/en18154124 - 4 Aug 2025
Viewed by 337
Abstract
Grid-forming (GFM) inverters have recently seen wider adoption in microgrids and inverter-based-resource (IBR)-penetrated grids, and are primarily used to establish grid voltage under a wide array of conditions. In the existing literature, GFM control is almost exclusively applied using voltage-source inverters (VSIs). However, [...] Read more.
Grid-forming (GFM) inverters have recently seen wider adoption in microgrids and inverter-based-resource (IBR)-penetrated grids, and are primarily used to establish grid voltage under a wide array of conditions. In the existing literature, GFM control is almost exclusively applied using voltage-source inverters (VSIs). However, due to the inherent limitations of available semiconductor devices’ current ratings, inverter-side current must be limited in VSIs, particularly during grid-fault conditions. These limitations complicate the real-world application of GFM functionality in VSIs, and complex control methodologies and tuning parameters are required as a result. In the following study, GFM control is instead applied to a buck-type current-source inverter (CSI) using a combination of linear droop-control and finite-control-set (FCS) mode-predictive control (MPC) that will be referred to herein as hybrid model-predictive control (HMPC). The resulting inverter features a simple topology, inherent current limiting capabilities, and a relatively simple and intuitive control structure. Verification was performed on a 1MVA/630V system via MATLAB/Simulink, and the simulation results demonstrate strong performance in voltage establishment, power regulation, and low-voltage ride through under-grid-fault conditions, highlighting its potential as a competent alternative to VSIs in GFM applications, and lacking the inherent limitations and/or complexity of existing GFM control methodologies. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

20 pages, 5404 KB  
Article
Adaptive Transient Synchronization Support Strategy for Grid-Forming Energy Storage Facing Inverter Faults
by Chao Xing, Jiajie Xiao, Peiqiang Li, Xinze Xi, Yunhe Chen and Qi Guo
Electronics 2025, 14(15), 2980; https://doi.org/10.3390/electronics14152980 - 26 Jul 2025
Viewed by 358
Abstract
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze [...] Read more.
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze the transient response mechanism of the grid-forming energy storage grid-connected inverter under faults, revealing the negative coupling relationship between active power output and transient stability, as well as the positive coupling relationship between reactive power output and transient stability. Based on this, through the analysis of the dynamic characteristics of the fault overcurrent, the negative correlation between the fault inrush current and impedance and the positive correlations among the fault steady-state current, active power, and voltage at the point of common coupling are identified. Then, a variable proportional–integral controller is designed to adaptively correct the active power reference value command, and the active power during the fault is gradually restored via the frequency feedback mechanism. Meanwhile, the reactive power reference value is dynamically adjusted according to the voltage at the point of common coupling to effectively support the voltage. Finally, the effectiveness of the proposed strategy is verified in MATLAB/Simulink. Full article
(This article belongs to the Special Issue Energy Saving Management Systems: Challenges and Applications)
Show Figures

Figure 1

25 pages, 2495 KB  
Article
Integration Strategies for Large-Scale Renewable Interconnections with Grid Forming and Grid Following Inverters, Capacitor Banks, and Harmonic Filters
by Soham Ghosh, Arpit Bohra, Sreejata Dutta and Saurav Verma
Energies 2025, 18(15), 3934; https://doi.org/10.3390/en18153934 - 23 Jul 2025
Viewed by 418
Abstract
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the [...] Read more.
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the system’s demand. While current grid-following (GFL) IBRs, which are equipped with fast and rigid control systems, continue to dominate the inverter landscape, there has been a notable surge in research focused on grid-forming (GFM) inverters in recent years. This study conducts a comparative analysis of the practicality and control methodologies of GFM inverters relative to traditional GFL inverters from a system planning perspective. A comprehensive framework aimed at assisting system developers and consulting engineers in the grid-integration of wide-scale renewable energy sources (RESs), incorporating strategies for the deployment of inverters, capacitor banks, and harmonic filters, is proposed in this paper. The discussion includes an examination of the reactive power capabilities of the plant’s inverters and the provision of additional reactive power to ensure compliance with grid interconnection standards. Furthermore, the paper outlines a practical approach to assess the necessity for enhanced filtering measures to mitigate potential resonant conditions and achieve harmonic compliance at the installation site. The objective of this work is to offer useful guidelines and insights for the effective addition of RES into contemporary power systems. Full article
Show Figures

Figure 1

22 pages, 1475 KB  
Systematic Review
A Systematic Review of Grid-Forming Control Techniques for Modern Power Systems and Microgrids
by Paul Arévalo, Carlos Ramos and Agostinho Rocha
Energies 2025, 18(14), 3888; https://doi.org/10.3390/en18143888 - 21 Jul 2025
Viewed by 1026
Abstract
Looking toward the future, governments around the world have started to change their energy mix due to climate change. The new energy mix will consist mainly of Inverter-Based Resources (IBRs), such as wind and solar power. This transition from a synchronous to a [...] Read more.
Looking toward the future, governments around the world have started to change their energy mix due to climate change. The new energy mix will consist mainly of Inverter-Based Resources (IBRs), such as wind and solar power. This transition from a synchronous to a non-synchronous grid introduces new challenges in stability, resilience, and synchronization, necessitating advanced control strategies. Among these, Grid-Forming (GFM) control techniques have emerged as an effective solution for ensuring stable operations in microgrids and large-scale power systems with high IBRs integration. This paper presents a systematic review of GFM control techniques, focusing on their principles and applications. Using the PRISMA 2020 methodology, 75 studies published between 2015 and 2025 were synthesized to evaluate the characteristics of GFM control strategies. The review organizes GFM strategies, evaluates their performance under varying operational scenarios, and emphasizes persistent challenges like grid stability, inertia emulation, and fault ride-through capabilities. Furthermore, this study examines real-world implementations of GFM technology in modern power grids. Notable projects include the UK’s National Grid Pathfinder Program, which integrates GFM inverters to enhance stability, and Australia’s Hornsdale Power Reserve, where battery energy storage with GFM capabilities supports grid frequency regulation. Full article
(This article belongs to the Topic Modern Power Systems and Units)
Show Figures

Figure 1

32 pages, 10857 KB  
Article
Improved Fault Resilience of GFM-GFL Converters in Ultra-Weak Grids Using Active Disturbance Rejection Control and Virtual Inertia Control
by Monigaa Nagaboopathy, Kumudini Devi Raguru Pandu, Ashmitha Selvaraj and Anbuselvi Shanmugam Velu
Sustainability 2025, 17(14), 6619; https://doi.org/10.3390/su17146619 - 20 Jul 2025
Viewed by 616
Abstract
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair [...] Read more.
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair voltage and frequency stability, imposing challenging conditions for Inverter-Based Resources. To address these challenges, this paper considers a 110 KVA, three-phase, two-level Voltage Source Converter, interfacing a 700 V DC link to a 415 V AC ultra-weak grid. X/R = 1 is controlled using Sinusoidal Pulse Width Modulation, where the Grid-Connected Converter operates in Grid-Forming Mode to maintain voltage and frequency stability under a steady state. During symmetrical and asymmetrical faults, the converter transitions to Grid-Following mode with current control to safely limit fault currents and protect the system integrity. After fault clearance, the system seamlessly reverts to Grid-Forming Mode to resume voltage regulation. This paper proposes an improved control strategy that integrates voltage feedforward reactive power support and virtual capacitor-based virtual inertia using Active Disturbance Rejection Control, a robust, model-independent controller, which rapidly rejects disturbances by regulating d and q-axes currents. To test the practicality of the proposed system, real-time implementation is carried out using the OPAL-RT OP4610 platform, and the results are experimentally validated. The results demonstrate improved fault current limitation and enhanced DC link voltage stability compared to a conventional PI controller, validating the system’s robust Fault Ride-Through performance under ultra-weak grid conditions. Full article
Show Figures

Figure 1

15 pages, 5752 KB  
Article
Coordinated Control of Grid-Forming Inverters for Adaptive Harmonic Mitigation and Dynamic Overcurrent Control
by Khaliqur Rahman, Jun Hashimoto, Kunio Koseki, Dai Orihara and Taha Selim Ustun
Electronics 2025, 14(14), 2793; https://doi.org/10.3390/electronics14142793 - 11 Jul 2025
Viewed by 454
Abstract
This paper proposes a coordinated control strategy for grid-forming inverters (GFMs) to address two critical challenges in evolving power systems. These are the active harmonic mitigation under nonlinear loading conditions and dynamic overcurrent control during grid disturbances. The proposed framework integrates a shunt [...] Read more.
This paper proposes a coordinated control strategy for grid-forming inverters (GFMs) to address two critical challenges in evolving power systems. These are the active harmonic mitigation under nonlinear loading conditions and dynamic overcurrent control during grid disturbances. The proposed framework integrates a shunt active filter (SAF) mechanism within the GFM control structure to achieve a real-time suppression of harmonic distortions from the inverter and grid currents. In parallel, a virtual impedance-based dynamic current limiting strategy is incorporated to constrain fault current magnitudes, ensuring the protection of power electronic components and maintaining system stability. The SAF operates in a current-injection mode aligned with harmonic components, derived via instantaneous reference frame transformations and selective harmonic extraction. The virtual impedance control (VIC) dynamically modulates the inverter’s output impedance profile based on grid conditions, enabling adaptive response during fault transients to limit overcurrent stress. A detailed analysis is performed for the coordinated control of the grid-forming inverter. Supported by simulations and analytical methods, the approach ensures system stability while addressing overcurrent limitations and active harmonic filtering under nonlinear load conditions. This establishes a viable solution for the next-generation inverter-dominated power systems where reliability, power quality, and fault resilience are paramount. Full article
Show Figures

Figure 1

21 pages, 1730 KB  
Article
Stability Analysis of Power Systems with High Penetration of State-of-the-Art Inverter Technologies
by Sayan Samanta, Bowen Yang and Gab-Su Seo
Energies 2025, 18(14), 3645; https://doi.org/10.3390/en18143645 - 10 Jul 2025
Viewed by 549
Abstract
With the increasing level of inverter-based resources (IBRs) in modern power systems, this paper presents a small-signal stability analysis for power systems comprising synchronous generators (SGs) and IBRs. Four types of inverter controls are considered: two grid-following (GFL) controls, with or without grid [...] Read more.
With the increasing level of inverter-based resources (IBRs) in modern power systems, this paper presents a small-signal stability analysis for power systems comprising synchronous generators (SGs) and IBRs. Four types of inverter controls are considered: two grid-following (GFL) controls, with or without grid support functions; droop-based grid-forming (GFM) controls; and virtual oscillator control-based GFM. We also analyze the impact of STATCOM and synchronous condensers on system stability to assess their role in the energy mix transition. With the small-signal dynamic behavior of the major technologies modeled, this paper provides stringent stability assessments using the IEEE 39-bus benchmark system modified to simulate future power systems. The exhaustive test cases allow for (a) assessing the impacts of different types and controls of generation and supplementary grid assets, as well as system inertia and line impedance on grid stability, and (b) elucidating pathways for the stabilization of IBR-dominated power systems. The analysis also indicates that future power systems can be stabilized with only a fraction of the total generation as voltage sources without SGs or significant system inertia if they are well distributed. This study provides insights into future power system operations with a high level of IBRs that can also be used for planning and operation studies. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

23 pages, 2540 KB  
Article
Decentralised Consensus Control of Hybrid Synchronous Condenser and Grid-Forming Inverter Systems in Renewable-Dominated Low-Inertia Grids
by Hamid Soleimani, Asma Aziz, S M Muslem Uddin, Mehrdad Ghahramani and Daryoush Habibi
Energies 2025, 18(14), 3593; https://doi.org/10.3390/en18143593 - 8 Jul 2025
Cited by 1 | Viewed by 450
Abstract
The increasing penetration of renewable energy sources (RESs) has significantly altered the operational characteristics of modern power systems, resulting in reduced system inertia and fault current capacity. These developments introduce new challenges for maintaining frequency and voltage stability, particularly in low-inertia grids that [...] Read more.
The increasing penetration of renewable energy sources (RESs) has significantly altered the operational characteristics of modern power systems, resulting in reduced system inertia and fault current capacity. These developments introduce new challenges for maintaining frequency and voltage stability, particularly in low-inertia grids that are dominated by inverter-based resources (IBRs). This paper presents a hierarchical control framework that integrates synchronous condensers (SCs) and grid-forming (GFM) inverters through a leader–follower consensus control architecture to address these issues. In this approach, selected GFMs act as leaders to restore nominal voltage and frequency, while follower GFMs and SCs collaboratively share active and reactive power. The primary control employs droop-based regulation, and a distributed secondary layer enables proportional power sharing via peer-to-peer communication. A modified IEEE 14-bus test system is implemented in PSCAD to validate the proposed strategy under scenarios including load disturbances, reactive demand variations, and plug-and-play operations. Compared to conventional droop-based control, the proposed framework reduces frequency nadir by up to 0.3 Hz and voltage deviation by 1.1%, achieving optimised sharing indices. Results demonstrate that consensus-based coordination enhances dynamic stability and power-sharing fairness and supports the flexible integration of heterogeneous assets without requiring centralised control. Full article
(This article belongs to the Special Issue Advances in Sustainable Power and Energy Systems: 2nd Edition)
Show Figures

Figure 1

39 pages, 7836 KB  
Review
Synchronverter Control Strategy: A Review of Different Improvements and Applications
by Michell J. Quintero-Durán, John E. Candelo-Becerra, Mario Eduardo González-Niño, Saúl Andrés Hernández-Moreno and Rodolpho Fernando Váz
Energies 2025, 18(13), 3574; https://doi.org/10.3390/en18133574 - 7 Jul 2025
Viewed by 910
Abstract
In power grids that integrate renewable energy sources, the virtual synchronous machine (VSM) or synchronverter offers a viable solution to the challenge posed by reduced inertia. This technology employs inverters to transfer power to the electrical network that relies on a control algorithm [...] Read more.
In power grids that integrate renewable energy sources, the virtual synchronous machine (VSM) or synchronverter offers a viable solution to the challenge posed by reduced inertia. This technology employs inverters to transfer power to the electrical network that relies on a control algorithm emulating the dynamic behavior of synchronous machines. Over the past decade, it has been applied in various contexts, leveraging its control structure based on the fundamental equations of synchronous machines. Although several review articles have been published on control strategies for grid-forming inverters, they often lack a specific focus on recent developments related to the synchronverter. Therefore, this paper aims to fill that gap by presenting a detailed review on high-quality research databases to retrieve recent documents published in recent years. These documents were classified according to journals, conferences, and books. A keyword bibliographic analysis was performed to identify the attractive topics related to the synchronverter control strategy. The paper reviews recent improvements in and applications of the synchronverter, identifying emerging trends and new potential use cases to provide a workflow guide for readers and researchers, as the documents are presented in comprehensive tables, streamlining the process of locating specific references. In addition, some advantages and disadvantages of synchronverters are reported. Full article
Show Figures

Figure 1

Back to TopTop