Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (237)

Search Parameters:
Keywords = ground water storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7648 KB  
Article
Study on the Changing Trend of Terrestrial Water Storage in Inner Mongolia Based on GRACE Satellite and GLDAS Hydrological Model
by Yin Cao, Genbatu Ge, Yuhai Bao, An Chang and Runjun Niu
Water 2025, 17(21), 3123; https://doi.org/10.3390/w17213123 - 31 Oct 2025
Viewed by 465
Abstract
To address the challenges of water scarcity and the limited accuracy of terrestrial water storage (TWS) estimation in Inner Mongolia, this study integrates GRACE satellite observations, the GLDAS-Noah hydrological model, and ground-based precipitation records, in combination with Theil–Sen median trend analysis and the [...] Read more.
To address the challenges of water scarcity and the limited accuracy of terrestrial water storage (TWS) estimation in Inner Mongolia, this study integrates GRACE satellite observations, the GLDAS-Noah hydrological model, and ground-based precipitation records, in combination with Theil–Sen median trend analysis and the Mann–Kendall test, to systematically evaluate the spatiotemporal evolution of TWS from 2003 to 2016. The results demonstrate that: (1) GRACE data reliably capture regional water storage dynamics. Over the study period, TWS exhibited a significant overall decline, with an average rate of −5.2 × 10−4 cm/year, and seasonal variations were strongly coupled with precipitation patterns. (2) Spatially, TWS anomalies (TWSa) decreased from northeast to southwest, with values ranging from approximately +1.22 cm to −2.94 cm. The most pronounced decline was detected in the southern Ordos region. (3) Soil water changes were more substantial than those in canopy or snow water, with sharp reductions occurring during 2004–2007 and 2013–2015. Soil water exhibited clear stratification across different depths, and variations in deep soil water and groundwater were primarily influenced by non-precipitation factors. These findings provide a scientific basis for the sustainable utilization of water resources in Inner Mongolia and yield important insights for regional water management and policy formulation. Full article
(This article belongs to the Special Issue Applications of GIS and Remote Sensing in Ecohydrology)
Show Figures

Figure 1

23 pages, 72366 KB  
Article
InSAR Coherence Linked to Soil Moisture, Water Level and Precipitation on a Blanket Peatland in Scotland
by Rachel Z. Walker, Doreen S. Boyd, Roxane Andersen and David J. Large
Remote Sens. 2025, 17(21), 3507; https://doi.org/10.3390/rs17213507 - 22 Oct 2025
Viewed by 491
Abstract
Hydrological changes in peatland are directly related to peat condition. Restoration projects typically aim to raise the water table to enhance peat development, support ecology and increase carbon storage. Remote monitoring of peatland hydrology is challenging but advantageous for assessing condition and restoration [...] Read more.
Hydrological changes in peatland are directly related to peat condition. Restoration projects typically aim to raise the water table to enhance peat development, support ecology and increase carbon storage. Remote monitoring of peatland hydrology is challenging but advantageous for assessing condition and restoration effectiveness. This study explores how temporal Sentinel-1-derived InSAR coherence relates to ground-based measurements of soil moisture, water level and local precipitation at two sites, near-natural (Munsary) and degraded (Knockfin Heights), in the Flow Country, Scotland, alongside regional Wick weather station precipitation data (2015–2024). Stronger seasonal linear relationships were observed between soil moisture and InSAR coherence in spring/summer (R2 reaching 0.83 at Munsary subsite C, p < 0.001), with in-phase cross correlation throughout the year. In contrast, the relationship between water level and InSAR coherence was more complex with an out-of-phase relationship for much of the year and a weaker linear correlation. These relationships varied with peatland condition, strongest at the more intact bog (Munsary). InSAR coherence and precipitation were in-phase, but not linearly correlated, and land use/cover had no significant effect. Outcomes suggest that InSAR coherence could, when combined with other data, assist in mapping soil moisture/water level dynamics in blanket peatlands, and identify the timing of precipitation events in areas with non-frontal rainfall. Full article
(This article belongs to the Special Issue Remote Sensing for the Study of the Changes in Wetlands)
Show Figures

Figure 1

21 pages, 3962 KB  
Article
Improving Thermal Performance of Solar Heating Systems
by Sebastian Pater and Krzysztof Kupiec
Appl. Sci. 2025, 15(20), 11118; https://doi.org/10.3390/app152011118 - 16 Oct 2025
Viewed by 500
Abstract
The solar energy reaching the immediate surroundings of a single-family house throughout the year is sufficient to repeatedly and fully cover its heating needs during the heating season in a temperate climate. Nevertheless, modern technology is not yet able to fully solve the [...] Read more.
The solar energy reaching the immediate surroundings of a single-family house throughout the year is sufficient to repeatedly and fully cover its heating needs during the heating season in a temperate climate. Nevertheless, modern technology is not yet able to fully solve the problem of thermal self-sufficiency in single-family houses. It is therefore advisable to seek solutions that improve the thermal efficiency of domestic solar installations. Efficient use of solar radiation heat accumulated during the summer months for heating requires the use of high-volume storage tanks. Another option is to discharge excess heat outside the system during the summer. This publication focuses on the latter solution. A model of the solar heating system for a residential building and pool with a storage tank powered by solar energy has been developed. Simulation calculations were performed, showing that the removal of excess heat is a beneficial solution, especially when this energy can be used to heat water in the pool. The calculations concerned the heating of a single-family house in a temperate climate. Lowering the temperature of the water in the storage tank reduces heat losses from the tank to the environment (ground), while supplying the solar collectors with lower-temperature fluid increases the driving force of the heat transfer process. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

15 pages, 2753 KB  
Article
Investigating Sodium Percarbonate for Upgrading Torrefied Spent Coffee Grounds as Alternative Solid Biofuel by Taguchi Optimization
by Wei-Hsin Chen, Kuan-Ting Lee, Ji-Nien Sung, Nai-Yun Hu and Yun-Sen Xu
Energies 2025, 18(20), 5384; https://doi.org/10.3390/en18205384 - 13 Oct 2025
Viewed by 520
Abstract
Producing solid biofuels with high calorific value and high storage stability under limited energy consumption has become a crucial focus in the global energy field. Low temperature torrefaction below 300 °C is a common method for producing solid biofuels. However, this approach limits [...] Read more.
Producing solid biofuels with high calorific value and high storage stability under limited energy consumption has become a crucial focus in the global energy field. Low temperature torrefaction below 300 °C is a common method for producing solid biofuels. However, this approach limits the carbon content and higher heating value (HHV) of the resulting biochar. Sodium percarbonate is a solid oxidant that can assist in the pyrolysis of organic molecules during the torrefaction to increase carbon content of biochar. Incorporating sodium percarbonate as a strategic additive presents a viable means to address the constraints associated with the torrefaction technologies. This study blended sodium percarbonate with spent coffee grounds (SCGs) to prepare torrefied SCG solid biofuels with high calorific value and high carbon content. Based on the Taguchi method with L9 orthogonal arrays, torrefaction temperature is identified as the most influential factor affecting higher heating value (HHV). Results from FTIR, water activity, hygroscopicity, and mold observation confirmed that torrefied SCGs blended with 0.5 wt% sodium percarbonate (0.5TSSCG) exhibited good storage stability. They were not prone to mold growth under ambient temperature and pressure. 0.5TSSCG with a carbon content of 61.88 wt% exhibited a maximum HHV of 29.42 MJ∙kg−1. These findings indicate that sodium percarbonate contributes to increasing the carbon content and HHV of torrefied SCGs, enabling partial replacement of traditional coal consumption. Full article
(This article belongs to the Special Issue Thermal Decomposition of Biomass and Waste)
Show Figures

Figure 1

24 pages, 1553 KB  
Article
Year-Round Modeling of Evaporation and Substrate Temperature of Two Distinct Green Roof Systems
by Dominik Gößner
Urban Sci. 2025, 9(10), 396; https://doi.org/10.3390/urbansci9100396 - 30 Sep 2025
Viewed by 543
Abstract
This paper presents a novel model for the year-round simulation of evapotranspiration (ET) and substrate temperature on two fundamentally different extensive green roof types: a conventional drainage-based “Economy Roof” and a retention-optimized “Retention Roof” featuring capillary water redistribution. The main scope is to [...] Read more.
This paper presents a novel model for the year-round simulation of evapotranspiration (ET) and substrate temperature on two fundamentally different extensive green roof types: a conventional drainage-based “Economy Roof” and a retention-optimized “Retention Roof” featuring capillary water redistribution. The main scope is to bridge the gap in urban climate adaptation by providing a modeling tool that captures both hydrological and thermal functions of green roofs throughout all seasons, notably including periods with dormancy and low vegetation activity. A key novelty is the explicit and empirically validated integration of core physical processes—water storage layer coupling, explicit rainfall interception, and vegetation cover dynamics—with the latter strongly controlled by plant area index (PAI). The PAI, here quantified as the plant surface area per unit ground area using digital image analysis, directly determines interception capacity and vegetative transpiration rates within the model. This process-based representation enables a more realistic simulation of seasonal fluctuations and physiological plant responses, a feature often neglected in previous green roof models. The model, which can be fully executed without high computational power, was validated against comprehensive field measurements from a temperate climate, showing high predictive accuracy (R2 = 0.87 and percentage bias = −1% for ET on the Retention Roof; R2 = 0.91 and percentage bias = −8% for substrate temperature on the Economy Roof). Notably, the layer-specific coupling of vegetation, substrate, and water storage advances ecological realism compared to prior approaches. The results illustrate the model’s practical applicability for urban planners and researchers, offering a user-friendly and transparent tool for integrated assessments of green infrastructure within the context of climate-resilient city design. Full article
Show Figures

Figure 1

19 pages, 4815 KB  
Article
Unraveling Multiscale Spatiotemporal Linkages of Groundwater Storage and Land Deformation in the North China Plain After the South-to-North Water Diversion Project
by Xincheng Wang, Beibei Chen, Ziyao Ma, Huili Gong, Rui Ma, Chaofan Zhou, Dexin Meng, Shubo Zhang, Chong Zhang, Kunchao Lei, Haigang Wang and Jincai Zhang
Remote Sens. 2025, 17(19), 3336; https://doi.org/10.3390/rs17193336 - 29 Sep 2025
Viewed by 456
Abstract
Leveraging multi-source remote sensing datasets and dynamic groundwater monitoring well observations, this study explores the multiscale spatiotemporal linkages of groundwater storage changes and land deformation in North China Plain (NCP) after the South-to-North Water Diversion Project (SNWDP). Firstly, we employed Gravity Recovery and [...] Read more.
Leveraging multi-source remote sensing datasets and dynamic groundwater monitoring well observations, this study explores the multiscale spatiotemporal linkages of groundwater storage changes and land deformation in North China Plain (NCP) after the South-to-North Water Diversion Project (SNWDP). Firstly, we employed Gravity Recovery and Climate Experiment (GRACE) and interferometric synthetic aperture radar (InSAR) technology to estimate groundwater storage (GWS) and land deformation. Secondly and significantly, we proposed a novel GRACE statistical downscaling algorithm that integrates a weight allocation strategy and GWS estimation applied with InSAR technology. Finally, the downscaled results were employed to analyze spatial differences in land deformation across typical ground fissure areas. The results indicate that (1) between 2018 and 2021, groundwater storage in the NCP exhibited a declining trend, with an average reduction of −3.81 ± 0.53 km3/a and a maximum land deformation rate of −177 mm/a; (2) the downscaled groundwater storage anomalies (GWSA) showed high correlation with in situ measurements (R = 0.75, RMSE = 2.91 cm); and (3) in the Shunyi fissure area, groundwater storage on the northern side increased continuously, with a maximum growth rate of 28 mm/a, resulting in surface uplift exceeding 70 mm. Full article
Show Figures

Graphical abstract

26 pages, 4007 KB  
Article
Carbon Benefits and Water Costs of Cover Crops by Assimilating Sentinel-2 and Landsat-8 Images in a Crop Model
by Taeken Wijmer, Rémy Fieuzal, Jean François Dejoux, Ahmad Al Bitar, Tiphaine Tallec and Eric Ceschia
Remote Sens. 2025, 17(19), 3290; https://doi.org/10.3390/rs17193290 - 25 Sep 2025
Viewed by 534
Abstract
The use of cover crops is one of the most effective practices for maintaining, or even improving, the carbon balance of agricultural soils, while offering various ecosystem benefits. However, replacing bare soil with cover crops can increase transpiration and potentially reduce the water [...] Read more.
The use of cover crops is one of the most effective practices for maintaining, or even improving, the carbon balance of agricultural soils, while offering various ecosystem benefits. However, replacing bare soil with cover crops can increase transpiration and potentially reduce the water available for subsequent cash crops. The study takes place in southwestern France where it is essential to strike a balance between carbon storage and water availability, and where agroecological practices are encouraged and water resources are limited and expected to diminish with climate change. In this study, estimates of cover crop biomass production, as well as of the components of the water and carbon cycles, are carried out using a hybrid approach, AgriCarbon-EO, combining modeling, remote sensing, and assimilation, with quantification of target variables and their uncertainties at decametric resolution. The SAFYE-CO2 agrometeorological model used in AgriCarbon-EO is calibrated to represent cover crops development, and simulated variables are compared with CO2 fluxes and evapotranspiration measured by eddy covariance (for NEE, R2 = 0.57, RMSE = 0.97 gC·m−2; for ETR, R2 = 0.42, RMSE = 0.87 mm), as well as to an extensive above-ground biomass dataset (R2 = 0.71, RMSE = 93.3 g·m−2). Knowing the local performance of the approach, a large-scale, decametric-resolution modeling exercise was carried out to simulate winter cover crops in southwestern France, over five contrasting fallow periods. The significant variability in cover crop phenology and above-ground biomass was characterized, and estimates of the amount of humified carbon added to the soil by cover crops were quantified at the pixel level. With amounts ranging from 40 to 130 gC·m−2 for most of the considered pixels, these new SOC values show clear trends as a function of cumulative evapotranspiration. However, the impact of cover crops on soil water content appears to be minimal due to spring precipitation. Full article
(This article belongs to the Special Issue Remote Sensing Application in the Carbon Flux Modelling)
Show Figures

Figure 1

17 pages, 3664 KB  
Article
Physically Based Canopy Interception Model for a Beech Forest Using Remote Sensing Data
by Katalin Anita Zagyvai-Kiss, Zoltán Gribovszki, Péter Kalicz, Katarina Zabret, József Szilágyi and András Herceg
Forests 2025, 16(9), 1469; https://doi.org/10.3390/f16091469 - 16 Sep 2025
Viewed by 537
Abstract
Precipitation retained by tree canopies (~25%) is a key part of the forest water cycle, making our understanding of it vital for ecohydrological studies. Canopy interception varies seasonally with changes in canopy storage capacity. While remote sensing for rainfall partitioning is still developing, [...] Read more.
Precipitation retained by tree canopies (~25%) is a key part of the forest water cycle, making our understanding of it vital for ecohydrological studies. Canopy interception varies seasonally with changes in canopy storage capacity. While remote sensing for rainfall partitioning is still developing, there is a strong demand for the calibration of canopy interception models based on ground measurements. In addition, most studies cover no longer than a few years, limiting long-term insights. Therefore, the main objective of this study is to upgrade a Merriam-type canopy interception model (derived partly from physical parameters) for European beech (Fagus sylvatica L.), which takes into account the dynamically changing reservoir capacity of the canopy (based on remotely sensed LAI data). The model was tested with annual precipitation totals for the period of 2017–2022. The results indicate that interception has a significant partitional effect on rainfall, which is notable in terms of its proportions, especially for small precipitation events (0–5 mm). The value of yearly interception was 20% (13% in dormancy and 24% in the growing season). The calibrated model can provide beech interception values in areas with similar climatic parameters to those of the study area. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

21 pages, 6845 KB  
Article
The Impact of Climate Change on the State of Moraine Lakes in Northern Tian Shan: Case Study on Four Moraine Lakes
by Nurmakhambet Sydyk, Gulnara Iskaliyeva, Madina Sagat, Aibek Merekeyev, Larissa Balakay, Azamat Kaldybayev, Zhaksybek Baygurin and Bauyrzhan Abishev
Water 2025, 17(17), 2533; https://doi.org/10.3390/w17172533 - 26 Aug 2025
Viewed by 1475
Abstract
Glacial-lake outburst floods (GLOFs) threaten more than three million residents of south-east Kazakhstan, yet quantitative data on lake growth and storage are scarce. We inventoried 154 lakes on the northern flank of the Ile-Alatau and selected four moraine-dammed basins with the greatest historical [...] Read more.
Glacial-lake outburst floods (GLOFs) threaten more than three million residents of south-east Kazakhstan, yet quantitative data on lake growth and storage are scarce. We inventoried 154 lakes on the northern flank of the Ile-Alatau and selected four moraine-dammed basins with the greatest historical flood activity for detailed study. Annual lake outlines (2016–2023) were extracted from 3 m PlanetScope imagery with a Normalised Difference Water Index workflow, while late-ablation echo-sounder surveys (2023–2024) yielded sub-metre bathymetric grids. A regionally calibrated area–volume power law translated each shoreline to water storage, and field volumes served as an independent accuracy check. The lakes display divergent trajectories. Rapid thermokarst development led to a 37% increase in the surface area of Lake 13bis, expanding from 0.039 km2 to 0.054 km2 over a 5-year period. In contrast, engineering-induced drawdown resulted in a 44% reduction in the area of Lake 6, from 0.019 km2 to 0.011 km2. Lakes 5 and 2, which are supplied by actively retreating glaciers, exhibited surface area increases of 4.8% and 15%, expanding from 0.077 km2 to 0.088 km2 and from 0.061 km2 to 0.070 km2, respectively. The empirical model reproduces field volumes to within ±25% for four lakes, confirming its utility for rapid hazard screening, but overestimates storage in low-relief basins and underestimates artificially drained lakes. This is the first study in Ile-Alatau to fuse daily 3 m multispectral imagery with ground-truth bathymetry, delivering an 8-year, volume-resolved record of lake evolution. The results identify Lake 5 and Lake 2 as priority targets for early-warning systems and demonstrate that sustained intervention can effectively suppress GLOF risk. Incorporating these storage trajectories into regional disaster plans will sharpen evacuation mapping, optimise resource allocation, and inform transboundary water-hazard policy under accelerating climate change. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

19 pages, 7005 KB  
Article
Water Level Response to Earthquakes in an Open Well and in a Closed Well—Analysis of Field Observations
by Hallel Lutzky, Ittai Kurzon, Haim Gvirtzman, Vladimir Lyakhovsky and Eyal Shalev
Water 2025, 17(16), 2453; https://doi.org/10.3390/w17162453 - 19 Aug 2025
Viewed by 830
Abstract
Seismic waves induce pore pressure changes in aquifers, leading to water level oscillations in wells. These oscillations are often used to estimate the poroelastic properties of aquifers, but their interpretation is influenced by factors such as aquifer properties, seismic wave characteristics, and wellbore [...] Read more.
Seismic waves induce pore pressure changes in aquifers, leading to water level oscillations in wells. These oscillations are often used to estimate the poroelastic properties of aquifers, but their interpretation is influenced by factors such as aquifer properties, seismic wave characteristics, and wellbore storage. The aim of this study is to evaluate the effect of wellbore storage on seismically induced water level oscillations. We analyze water level responses to similar seismic forcing in two adjacent deep wells (~1000 m) tapping the same confined aquifer: one open (artesian) and one closed (flowing artesian). Seismic forcing was characterized using ground motion velocity data from a nearby seismic station. The results show that the wells differ by three orders of magnitude in their wellbore storage. In the open well, pore pressure oscillations are reliably detected only for teleseismic events, while in the closed well, they are also reliably recorded for regional earthquakes. Under these conditions, it is possible to estimate the first-order approximation of the aquifer’s poroelastic coefficients. These findings emphasize the importance of accounting for wellbore storage when interpreting seismically induced water level fluctuations. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 4704 KB  
Article
Effect of Waste Metal and Chamotte Fillers on the Thermal and Mechanical Properties of Geopolymer Composites for Energy Storage Applications
by Aleš Soukup, Mohammadtaghi Vakili and Pavlína Hájková
Materials 2025, 18(16), 3853; https://doi.org/10.3390/ma18163853 - 17 Aug 2025
Viewed by 588
Abstract
This study investigates the effects of varying filler content on the thermal and mechanical performance of metakaolinite-based geopolymer composites designed for thermal energy storage applications. The composites were formulated using a geopolymer binder, combined with a thermally stable filler (ground chamotte) and a [...] Read more.
This study investigates the effects of varying filler content on the thermal and mechanical performance of metakaolinite-based geopolymer composites designed for thermal energy storage applications. The composites were formulated using a geopolymer binder, combined with a thermally stable filler (ground chamotte) and a thermal energy storage filler (waste steel chips) in different proportions. Chamotte content within the binder matrix (binder + chamotte) ranged from 20 to 40 wt.%, while steel chip content varied from 0 to 40 wt.% of the total composite mass. The thermal properties of the composites were evaluated at room temperature and compared with conventional reference materials, including Ultraboard, chamotte brick, and magnetite brick. Mechanical performance, specifically flexural and compressive strength, was evaluated at room temperature and after exposure to elevated temperatures (800 and 1100 °C), followed by two cooling regimes, slow furnace cooling and rapid water quenching. Microstructural characterization via optical microscopy was used to examine filler dispersion and matrix–filler interactions. The results showed that the thermal effusivity of the optimized composites exceeded that of chamotte brick by more than 50%. The highest flexural (12.68 MPa) and compressive (86.18 MPa) strengths were achieved in the composite containing 20 wt.% steel chips, prior to thermal exposure. Microstructural observations revealed the diverse geometry of the steel chips and arrangement of the chamotte particles. These findings highlight the potential of incorporating metallic waste materials into geopolymer systems to develop multifunctional composites with improved thermal storage capacity and mechanical resilience. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

26 pages, 12136 KB  
Article
Integrated Analysis of Satellite and Geological Data to Characterize Ground Deformation in the Area of Bologna (Northern Italy) Using a Cluster Analysis-Based Approach
by Alberto Manuel Garcia Navarro, Celine Eid, Vera Rocca, Christoforos Benetatos, Claudio De Luca, Giovanni Onorato and Riccardo Lanari
Remote Sens. 2025, 17(15), 2645; https://doi.org/10.3390/rs17152645 - 30 Jul 2025
Cited by 1 | Viewed by 718
Abstract
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human [...] Read more.
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human activities (e.g., ground water production and underground gas storage—UGS). We apply a multidisciplinary approach integrating subsurface geology, ground water production, advanced differential interferometry synthetic aperture radar—DInSAR, gas storage data, and land use information to characterize and analyze the spatial and temporal variations in vertical ground deformations. Seasonal and trend decomposition using loess (STL) and cluster analysis techniques are applied to historical DInSAR vertical time series, targeting three representatives areas close to the city of Bologna. The main contribution of the study is the attempt to correlate the lateral extension of ground water bodies with seasonal ground deformations and water production data; the results are validated via knowledge of the geological characteristics of the uppermost part of the Po Plain area. Distinct seasonal patterns are identified and correlated with ground water production withdrawal and UGS operations. The results highlight the influence of superficial aquifer characteristics—particularly the geometry, lateral extent, and hydraulic properties of sedimentary bodies—on the ground movements behavior. This case study outlines an effective multidisciplinary approach for subsidence characterization providing critical insights for risk assessment and mitigation strategies, relevant for the future development of CO2 and hydrogen storage in depleted reservoirs and saline aquifers. Full article
Show Figures

Figure 1

27 pages, 9975 KB  
Article
Study on the Hydrogeological Characteristics of Roof Limestone Aquifers After Mining Damage in Karst Mining Areas
by Xianzhi Shi, Guosheng Xu, Ziwei Qian and Weiqiang Zhang
Water 2025, 17(15), 2264; https://doi.org/10.3390/w17152264 - 30 Jul 2025
Viewed by 586
Abstract
To study hydrogeological characteristics after the occurrence of abnormal water bursts from the weak water-rich (permeable) aquifer of the Changxing Formation limestone overlying deep working faces during production in Guizhou karst landform mining areas, hydrogeological data covering the exploration and production periods of [...] Read more.
To study hydrogeological characteristics after the occurrence of abnormal water bursts from the weak water-rich (permeable) aquifer of the Changxing Formation limestone overlying deep working faces during production in Guizhou karst landform mining areas, hydrogeological data covering the exploration and production periods of the Xinhua mining region in Jinsha County, Guizhou Province, were collected. On the basis of surface and underground drilling, geophysical exploration techniques, empirical equations, and indoor material simulation methods, the hydrogeological evolution characteristics of the Changxing Formation limestone in the mining region after mining damage to coalbed 9 were studied. The research results indicated that the ratio of the height of the roof failure fracture zone (as obtained via numerical simulation and ground borehole detection) to the mining height exceeded 25.78, which is far greater than the empirical model calculation values (from 13.0 to 15.8). After mining the underlying coalbed 9, an abnormal water-rich area developed in the Changxing Formation limestone, and mining damage fractures led to the connection of the original dissolution fissures and karst caves within the limestone, resulting in the weak water-rich (permeable) aquifer of the Changxing Formation limestone becoming a strong water-rich (permeable) aquifer, which served as the water source for mine water bursts. Over time, after mining damage occurrence, the voids in the Changxing Formation limestone were gradually filled with various substances, yielding water storage space and connectivity decreases. The specific yield decreased with an increasing water burst time and interval after the cessation of mining in the supply area, and the correlation coefficient R was 0.964, indicating a high degree of correlation between the two parameters. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

11 pages, 4560 KB  
Article
Valorization of Forest Biomass Through Biochar for Static Floating Applications in Agricultural Uses
by Óscar González-Prieto, Luis Ortiz Torres and María Esther Costas Costas
Biomass 2025, 5(3), 44; https://doi.org/10.3390/biomass5030044 - 30 Jul 2025
Viewed by 927
Abstract
The feasibility of utilizing biochar as a static floating material for agricultural applications was researched to prevent evaporation from open water static storage systems or as a floating barrier in slurry pits, for instance. Five types of biochar were created from chips, bark, [...] Read more.
The feasibility of utilizing biochar as a static floating material for agricultural applications was researched to prevent evaporation from open water static storage systems or as a floating barrier in slurry pits, for instance. Five types of biochar were created from chips, bark, and pellets of pine and residues from two acacia species using a pyrolysis time between 60 and 120 min and mean temperatures between 380 and 690 °C in a simple double-chamber reactor. Biomass and biochar were characterized for their main properties: bulk density, moisture content, volatile matter, ash content, fixed carbon, and pH. Biochar was also evaluated through a basic floatability test over 27 days (648 h) in distilled water. The highest fixed carbon content was observed in pine bark biochar (69.5%), followed by the pine pellets (67.4%) and pine chips (63.4%). Despite their high carbon content, the pellets exhibited a low floatability level, whereas pine bark biochar showed superior static floatage times, together with chip and ground chip biochar. These results suggest that biochar produced from bark and wood chips may be suitable for application as floatability material in water or slurry management systems. These results warrant further research into the static floating of biochar. Full article
Show Figures

Figure 1

16 pages, 2460 KB  
Article
Continuous Chamber Gangue Storage for Sustainable Mining in Coal Mines: Principles, Methods, and Environmental Benefits
by Jinhai Liu, Yuanhang Wang, Jiajie Li, Desire Ntokoma, Zhengxing Yu, Sitao Zhu and Michael Hitch
Sustainability 2025, 17(15), 6865; https://doi.org/10.3390/su17156865 - 28 Jul 2025
Cited by 1 | Viewed by 664
Abstract
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution [...] Read more.
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution for coal mines. The principles of this approach emphasize minimizing disturbance to overlying strata, enabling uninterrupted mining operations, and reducing both production costs and environmental risks. By storing the surface or underground gangue in continuous chambers, the proposed method ensures the roof stability, maximizes the waste storage, and prevents the interaction between mining and waste management processes. Detailed storage sequences and excavation methods are discussed, including continuous and jump-back excavation strategies tailored to varying roof conditions. The process flows for both underground and ground-based chamber storage are described, highlighting the integration of gangue crushing, paste preparation, and pipeline transport for efficient underground storage. In a case study with annual storage of 500,000 t gangue, the annual economic benefit reached CNY 1,111,425,000. This technology not only addresses the urgent need for sustainable coal gangue management, but also aligns with the goals of resource conservation, ecological protection, and the advancement of green mining practices in the coal industry. Full article
Show Figures

Figure 1

Back to TopTop