Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,758)

Search Parameters:
Keywords = growth suppression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 899 KB  
Article
Terminalia chebula Fruit Extract Ameliorates Peripheral Edema by Inhibiting NF-κB and MAPK Signaling Pathways
by Sang-Hyup Lee, Sang-Yoon Kim, Yun-Gu Gwon, Su-Ha Lee, Ji-Soo Jeong, Je-Won Ko, Tae-Won Kim and Bong-Keun Choi
Int. J. Mol. Sci. 2025, 26(20), 9965; https://doi.org/10.3390/ijms26209965 (registering DOI) - 13 Oct 2025
Abstract
Peripheral edema is a pathological condition caused by abnormal fluid accumulation in the interstitial space due to elevated vascular permeability and inflammation. This study evaluated the therapeutic efficacy of Terminalia chebula fruit extract (TCE) in inflammation-induced peripheral edema and clarified its molecular mechanisms. [...] Read more.
Peripheral edema is a pathological condition caused by abnormal fluid accumulation in the interstitial space due to elevated vascular permeability and inflammation. This study evaluated the therapeutic efficacy of Terminalia chebula fruit extract (TCE) in inflammation-induced peripheral edema and clarified its molecular mechanisms. Using hydrogen peroxide (H2O2)-stimulated human umbilical vein endothelial cells (HUVECs), TCE was tested for effects on cell viability, inflammatory gene expression, intracellular reactive oxygen species, endothelial barrier integrity, and vascular endothelial growth factor (VEGF)-induced migration. Its influence on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling was examined. In vivo, TCE was assessed in acetic acid-induced peritoneal vascular permeability and carrageenan-induced paw edema models, followed by histological analysis and serum tumor necrosis factor-α (TNF-α) measurement. TCE restored cell viability (76.2% to 94.8%), reduced TNF, IL6, and PTGS2 mRNA expression, and decreased reactive oxygen species by 27.2%. It enhanced barrier integrity, increased transendothelial electrical resistance, and inhibited VEGF-induced migration. TCE suppressed NF-κB and MAPK activation. In vivo, TCE reduced Evans blue extravasation by 41.6% and paw edema by 67.5%. Histology showed reduced dermal thickening and inflammatory infiltration, and serum TNF-α levels were lowered. TCE attenuates peripheral edema by preserving endothelial barrier function and suppressing inflammatory signaling, supporting its potential as a therapeutic agent for inflammation-associated vascular dysfunction and edema. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
16 pages, 2463 KB  
Article
Thymopentin Enhances Antitumor Immunity Through Thymic Rejuvenation and T Cell Functional Reprogramming
by Md Amir Hossain, Ye Zhang, Li Ji, Yumei Chen, Yue Luan, Yaxuan Si, Yuqing Fang, Junlan Qiu, Zhuo Wang and Guilai Liu
Biomedicines 2025, 13(10), 2494; https://doi.org/10.3390/biomedicines13102494 (registering DOI) - 13 Oct 2025
Abstract
Background/Objectives: T cell dysfunction represents a fundamental barrier to effective cancer immunotherapy. Although immune checkpoint blockades and adoptive cell transfer have achieved clinical success, therapeutic resistance remains prevalent across cancer types. Thymopentin (TP5), a synthetic immunomodulatory pentapeptide (Arg-Lys-Asp-Val-Tyr), has demonstrated immunostimulatory properties, [...] Read more.
Background/Objectives: T cell dysfunction represents a fundamental barrier to effective cancer immunotherapy. Although immune checkpoint blockades and adoptive cell transfer have achieved clinical success, therapeutic resistance remains prevalent across cancer types. Thymopentin (TP5), a synthetic immunomodulatory pentapeptide (Arg-Lys-Asp-Val-Tyr), has demonstrated immunostimulatory properties, yet its anticancer potential remains unexplored. The aim of this study was to investigate TP5’s antitumor efficacy and underlying immunological mechanisms. Methods: We evaluated TP5’s therapeutic effects in multiple murine tumor models, including B16-F10 melanoma, MC38 colorectal carcinoma, Hepa 1-6, and LM3 hepatocellular carcinoma. Immune cell populations and functional states were characterized using flow cytometry, ELISAs, and immunofluorescence analyses. The potential of TP5 as an adjuvant for T cell-based therapies was also systematically assessed. Results: The TP5 treatment markedly suppressed tumor growth across caner models through strictly T cell-dependent mechanisms. Critically, TP5 promoted thymic rejuvenation under immunocompromised conditions, restoring the thymus–tumor immunological balance and revitalizing peripheral T cell immunity. TP5 functionally reprogrammed T cell states, preserving effector function while ameliorating exhaustion. Furthermore, TP5 demonstrated synergistic efficacy when combined with adoptive T cell therapies, enhancing both proliferation and effector functions. Conclusions: TP5 represents a promising immunomodulator that addresses fundamental limitations of current T cell therapies by simultaneously enhancing T cell function and reversing thymic involution under immunocompromised conditions. Our findings provide compelling evidence for TP5’s clinical translation in cancer treatment. Full article
27 pages, 5449 KB  
Article
High-Blue/Low-Red Mixed Light Modulates Photoperiodic Flowering in Chrysanthemum via Photoreceptor and Sugar Pathways
by Jingli Yang, Zhengyang Cheng, Jinnan Song and Byoung Ryong Jeong
Plants 2025, 14(20), 3151; https://doi.org/10.3390/plants14203151 (registering DOI) - 13 Oct 2025
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.), a typical short-day plant (SDP), relies on photoperiod and light quality signals to regulate flowering and growth. Red light interruptions inhibit its flowering, whereas supplemental blue light can counteract this inhibitory effect. To investigate how “high-blue/low-red” mixed light [...] Read more.
Chrysanthemum (Chrysanthemum morifolium Ramat.), a typical short-day plant (SDP), relies on photoperiod and light quality signals to regulate flowering and growth. Red light interruptions inhibit its flowering, whereas supplemental blue light can counteract this inhibitory effect. To investigate how “high-blue/low-red” mixed light (RBL) regulates chrysanthemum flowering and growth, we treated ‘Gaya Glory’ plants with 4 h of supplemental or night-interruptional RBL (S-RBL4 or NI-RBL4, 0 or 30 ± 3 μmol m−2 s−1 PPFD) under 10 h short-day and 13 h long-day conditions (SD10 and LD13; white light, WL; 300 ± 5 μmol m−2 s−1 PPFD), recorded as SD10, SD10 + S-RBL4, SD10 + NI-RBL4, LD13, LD13 + S-RBL4, and LD13 + NI-RBL4, respectively. Under SD10 conditions, S-RBL4 promoted flowering and enhanced nutritional quality, whereas NI-RBL4 suppressed flowering. Under LD13 conditions, both treatments alleviated flowering inhibition, with S-RBL4 exhibiting a more pronounced inductive effect. Chrysanthemums displayed superior vegetative growth and physiological metabolism under LD13 compared to SD10, as evidenced by higher photosynthetic efficiency, greater carbohydrate accumulation, and more robust stem development. Furthermore, S-RBL4 exerted a stronger regulatory influence than NI-RBL4 on photosynthetic traits, the activities of sugar metabolism-related enzymes, and gene expression. The photoperiodic flowering of chrysanthemum was coordinately regulated by the photoreceptor-mediated and sugar-induced pathways: CmCRY1 modulated the expression of florigenic genes (CmFTLs) and anti-florigenic gene (CmAFT) to transmit light signals, while S-RBL4 activated sucrose-responsive flowering genes CmFTL1/2 through enhanced photosynthesis and carbohydrate accumulation, thereby jointly regulating floral initiation. The anti-florigenic gene CmTFL1 exhibited dual functionality—its high expression inhibited flowering and promoted lateral branch and leaf growth, but only under sufficient sugar availability, indicating that carbohydrate status modulates its functional activity. Full article
(This article belongs to the Special Issue Advances in Plant Cultivation and Physiology of Horticultural Crops)
Show Figures

Figure 1

10 pages, 836 KB  
Article
Evaluation of the Effect of Alpha2-Adrenergic Receptor Stimulation on Prolactin Secretion Using the Clonidine Test in the Diagnosis of Children with Short Stature
by Angelika Pakuła, Anna Fedorczak, Marzena Kolasa-Kicińska, Anna Łupińska, Maciej Hilczer, Arkadiusz Zygmunt and Renata Stawerska
Int. J. Mol. Sci. 2025, 26(20), 9939; https://doi.org/10.3390/ijms26209939 (registering DOI) - 13 Oct 2025
Abstract
Prolactin (PRL) and growth hormone (GH) originate from somatomammotropic cells and share regulatory mechanisms. Alpha2-adrenergic receptor stimulation with clonidine is routinely used in diagnosing GH deficiency (GHD), yet its effect on PRL secretion remains unclear. This study aimed to assess the [...] Read more.
Prolactin (PRL) and growth hormone (GH) originate from somatomammotropic cells and share regulatory mechanisms. Alpha2-adrenergic receptor stimulation with clonidine is routinely used in diagnosing GH deficiency (GHD), yet its effect on PRL secretion remains unclear. This study aimed to assess the impact of clonidine-induced α2-adrenergic receptor stimulation on PRL secretion and compare PRL dynamics between children with idiopathic short stature (ISS) and GHD. Forty-nine children with height < −2.0 SD (29 ISS, 20 GHD) underwent clonidine stimulation (0.15 mg/m2 administered orally). Serum GH and PRL were measured at 0, 30, 60, 90, and 120 min. Groups did not differ in chronological age, bone age, height SDS, or BMI SDS. Both groups exhibited a significant decrease in PRL at 30, 60, and 90 min compared to baseline. In ISS, PRL concentrations increased from 60 min onward, returning near baseline at 120 min. In GHD, PRL remained suppressed throughout the test. GH and PRL concentrations correlated positively at 90 (r = 0.35, p < 0.05) and 120 min (r = 0.35, p < 0.05). Clonidine-induced alpha2-adrenergic stimulation suppresses PRL in both ISS and GHD, but recovery is observed only in ISS, suggesting a potential involvement of GH signaling in PRL regulation. Full article
Show Figures

Figure 1

16 pages, 3990 KB  
Article
G-Box Factors 14-3-3 Proteins Negatively Regulate Cucumber Mosaic Virus Infection Tolerance in Arabidopsis
by Shunkang Zhou, Dongwei Huang, Yaling Zhao, Zejie Xie, Sen Lu, Lijuan Xie, Qingqi Lin and Hua Qi
Plants 2025, 14(20), 3147; https://doi.org/10.3390/plants14203147 (registering DOI) - 13 Oct 2025
Abstract
Cucumber mosaic virus (CMV), a representative species of the genus Cucumvirus in the family Bromoviridae, is globally distributed and infects over 1200 monocot and dicot plants. 14-3-3 proteins serve as molecular adaptors that bind phosphorylated target proteins and play significant roles in [...] Read more.
Cucumber mosaic virus (CMV), a representative species of the genus Cucumvirus in the family Bromoviridae, is globally distributed and infects over 1200 monocot and dicot plants. 14-3-3 proteins serve as molecular adaptors that bind phosphorylated target proteins and play significant roles in multiple signaling pathways, including plant growth and development, hormone signaling, and responses to abiotic and biotic stimuli. Although an increasing body of evidence supports the prominent roles of 14-3-3 proteins in regulating plant immunity, their specific roles in plant responses to CMV infection remain unclear. Here, we demonstrate that 14-3-3λ and 14-3-3κ knockout Arabidopsis plants display enhanced tolerance to CMV infection, with significantly suppressed viral replication compared to wild-type (WT) plants. Additionally, we conducted transcriptomics analysis by comparing the CMV-infected 14-3-3λ 14-3-3κ (14-3-3λ/κ) double mutant to the WT using RNA-seq. The KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment and differentially expressed gene (DEG) results mainly suggest that plant hormone signaling, transcription factor activity, and the autophagy pathway are significantly involved in 14-3-3-mediated CMV tolerance in Arabidopsis. This study reveals new functions and potential molecular mechanisms of 14-3-3 proteins in regulating plant response to CMV infection and provides valuable insights into agricultural production. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

16 pages, 3274 KB  
Article
Antifungal Activity of Artemisia capillaris Essential Oil Against Alternaria Species Causing Black Spot on Yanbian Pingguoli Pear in China
by Zu-Xin Kou, Yue Dang, Li Liu, Xue-Hong Wu and Yu Fu
Plants 2025, 14(20), 3146; https://doi.org/10.3390/plants14203146 (registering DOI) - 13 Oct 2025
Abstract
Black spot is currently one of the most widespread diseases affecting Yanbian Pingguoli pears (Pyrus pyrifolia cv. ‘Pingguoli’), resulting in significant economic losses for fruit farmers. It is mainly caused by infestation by the fungal group of Alternaria species. To date, no [...] Read more.
Black spot is currently one of the most widespread diseases affecting Yanbian Pingguoli pears (Pyrus pyrifolia cv. ‘Pingguoli’), resulting in significant economic losses for fruit farmers. It is mainly caused by infestation by the fungal group of Alternaria species. To date, no research has reported the presence of Alternaria species and the pathogen of black spot disease on Yanbian Pingguoli pears in China. This study isolated, identified, and performed molecular profiling of 124 Alternaria strains collected from 15 major growing areas of Yanbian Pingguoli pear (more than 5000 trees). Moreover, the study evaluated the ability of Artemisia capillaris essential oil (AcEO) to suppress the mycelial expansion of Alternaria pathogens and conducted comprehensive chemical profiling. Overall, 124 pathogenic fungi were identified as Alternaria tenuissima (67 isolates, 54.0%) and A. alternate (57 isolates, 46.0%). AcEO showed a strong inhibitory effect on the two Alternaria species, with a minimal inhibitory concentration (MIC) value equivalent to 5.0 μL/mL. Eucalyptol, 2,2-Dimethyl-3-methylenebicyclo [2.2.1] heptane, (-)-alcanfor, and β-copaene were identified as the predominant bioactive components of AcEO. AcEO demonstrated concentration-dependent inhibition of the mycelial growth of A. tenuissima and A. alternata. These findings position AcEO as a promising candidate for developing sustainable fungicides to combat Alternaria-induced crop losses. Full article
(This article belongs to the Special Issue Natural Compounds for Controlling Plant Pathogens)
Show Figures

Figure 1

22 pages, 10459 KB  
Article
Effect of Extracellular Matrix Derived from Porcine Tissue on Stemness of Porcine Spermatogonial Stem Cells
by Donghyeon Kim, Min-Gi Han, Yoseop Jeon, Hyoyoung Maeng, Youngseok Choi, Kwonho Hong, Jeong Tae Do and Hyuk Song
Int. J. Mol. Sci. 2025, 26(20), 9937; https://doi.org/10.3390/ijms26209937 (registering DOI) - 13 Oct 2025
Abstract
The extracellular matrix (ECM) supports spermatogonial stem cell (SSC) function by mimicking biochemical and structural features of the native niche. However, optimal feeder systems and ECM materials remain key limitations in porcine SSC (pSSC) cultures. We developed a porcine-derived ECM (pECM) from porcine [...] Read more.
The extracellular matrix (ECM) supports spermatogonial stem cell (SSC) function by mimicking biochemical and structural features of the native niche. However, optimal feeder systems and ECM materials remain key limitations in porcine SSC (pSSC) cultures. We developed a porcine-derived ECM (pECM) from porcine feet and evaluated its effectiveness in supporting pSSC maintenance and proliferation under feeder-dependent conditions. We examined protein molecular weight distribution and pECM extract composition. Surface characterization was performed using scanning electron microscopy and atomic force microscopy. We compared pECM with conventional coatings, including gelatin and non-coated controls, using morphological analysis, WST-1 assay, cell cycle analysis, and gene/protein expression of SSC markers. pECM promoted larger, well-defined pSSC colonies and enhanced stemness-related marker expression, including PGP9.5, Thy-1, PLZF, GFRA1, NANOG, and VASA. Additionally, pECM facilitated active pSSC proliferation while suppressing feeder overgrowth, contributing to a stable and functional co-culture environment. Conversely, gelatin supported early feeder proliferation but led to growth saturation, whereas N/C showed delayed attachment and reduced viability. These findings suggest that pECM mimics the native SSC niche and improves pSSC culture. The dual function of pECM in regulating feeder behavior and enhancing pSSC maintenance highlights its potential as a biomaterial for species lacking established feeder-free protocols. Full article
(This article belongs to the Special Issue Molecular Research in Animal Reproduction)
Show Figures

Figure 1

16 pages, 3529 KB  
Article
Functional Validation of ALDOA in Regulating Muscle Cell Fate: Based on In Vitro Proliferation, Apoptosis, and Differentiation Experiments
by Hongzhen Cao, Jing Wang, Yunzhou Wang, Jingsen Huang, Wei Chen, Hui Tang, Junfeng Chen, Baosong Xing and Yongqing Zeng
Genes 2025, 16(10), 1186; https://doi.org/10.3390/genes16101186 - 12 Oct 2025
Abstract
Background/Objectives: This study systematically investigated the expression characteristics of the ALDOA gene in skeletal muscle cells and its effects on cell proliferation, apoptosis, and differentiation. Methods: We constructed an ALDOA overexpression vector and transfected it into C2C12 cells and porcine skeletal [...] Read more.
Background/Objectives: This study systematically investigated the expression characteristics of the ALDOA gene in skeletal muscle cells and its effects on cell proliferation, apoptosis, and differentiation. Methods: We constructed an ALDOA overexpression vector and transfected it into C2C12 cells and porcine skeletal muscle satellite cells. Results: We found that ALDOA exhibited the highest expression in the longissimus dorsi muscle and was primarily localized in the cell nucleus. Overexpression of ALDOA significantly inhibited cell proliferation, induced G0/G1 phase arrest, and downregulated the expression of proliferation-related genes such as CDK2 and Cyclin D1. Concurrently, ALDOA overexpression markedly promoted apoptosis. Regarding differentiation, although ALDOA expression was upregulated during differentiation, its overexpression significantly suppressed the expression of myogenic differentiation-related genes (such as MYOD, MYOG, MEF2C), suggesting a negative regulatory role in differentiation control. Conclusions: This study reveals the multifaceted regulatory functions of ALDOA in skeletal muscle cells, providing experimental evidence for deepening the understanding of its mechanisms in muscle development and regeneration. This study provides the first functional evidence that ALDOA acts as a multifunctional regulator in skeletal muscle cells, negatively governing cell growth and fate decisions by inhibiting proliferation, promoting apoptosis, and impeding myogenic differentiation, thereby extending its role beyond glycolysis to direct governance of cellular processes. This study reveals for the first time that ALDOA possesses dual functions in muscle cells, regulating both metabolism and transcription. Full article
(This article belongs to the Special Issue Advances in Pig Genetic and Genomic Breeding)
Show Figures

Figure 1

16 pages, 4546 KB  
Article
Cultivation of Arthrospira platensis in Veterinary Hospital Wastewater Enhances Pigment Production and Reduces Antibiotic Resistance Genes
by Authen Promariya, Sekbunkorn Treenarat, Nattaphong Akrimajirachoote, Wanat Sricharern and Wuttinun Raksajit
Biology 2025, 14(10), 1396; https://doi.org/10.3390/biology14101396 - 12 Oct 2025
Abstract
Veterinary hospital wastewater (VHW) is a significant environmental concern due to its high nutrient content, organic pollutants, and antibiotic resistance genes (ARGs). This study evaluated the physicochemical properties of VHW, its potential to support Arthrospira platensis cultivation, and its effects on microbial and [...] Read more.
Veterinary hospital wastewater (VHW) is a significant environmental concern due to its high nutrient content, organic pollutants, and antibiotic resistance genes (ARGs). This study evaluated the physicochemical properties of VHW, its potential to support Arthrospira platensis cultivation, and its effects on microbial and resistome profiles. VHW contained high levels of ammonia nitrogen, total Kjeldahl nitrogen, biological oxygen demand (BOD), and chemical oxygen demand (COD), indicating substantial contamination. A. platensis was cultivated for 8 days in Zarrouk medium supplemented with 0–100% VHW. Biomass production peaked in 25% VHW (0.78 ± 0.05 g/L), while growth was strongly suppressed at concentrations ≥75%. Pigment levels in 25% VHW increased significantly compared to the control: 1.3-fold for chlorophyll-a (12.0 μg/mL), 1.5-fold for carotenoids (4.4 μg/mL), 1.7-fold for phycocyanin (120 μg/mL), and 2.3-fold for allophycocyanin (54 μg/mL). Shotgun metagenomic analysis revealed that A. platensis cultivation markedly altered the microbial community and reduced the prevalence of ARGs. In 25% VHW, Proteobacteria dominated the community (97.0%), but their abundance declined to 11.6% when co-cultivated with A. platensis. Likewise, Acinetobacter sp. carrying high levels of the aph gene, along with Methylophaga sp. and Pseudomonas_E sp. harboring oqxB, decreased substantially, suggesting that A. platensis effectively suppressed ARG-rich genera. These findings highlight the dual potential of A. platensis for sustainable pigment-rich biomass production and efficient wastewater treatment. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

12 pages, 1376 KB  
Article
Resensitizing the Untreatable: Zidovudine and Polymyxin Combinations to Combat Pan-Drug-Resistant Klebsiella pneumoniae
by Jan Naseer Kaur, Jack F. Klem, Gebremedhin S. Hailu, Nader N. Nasief, Yang Liu, Allison Hanna, Albert Chen, Patricia Holden, Shivali Kapoor, Nicholas M. Smith, Mark Sutton, Jian Li and Brian T. Tsuji
Pharmaceuticals 2025, 18(10), 1531; https://doi.org/10.3390/ph18101531 - 11 Oct 2025
Abstract
Background: The emergence of pan-drug-resistant (PDR) Klebsiella pneumoniae has compromised the efficacy of last-line agents, leaving few therapeutic options. Repurposing zidovudine, an FDA-approved thymidine analog with antibacterial activity, may enhance existing therapies, but pharmacodynamic data under clinically relevant conditions are scarce. This study [...] Read more.
Background: The emergence of pan-drug-resistant (PDR) Klebsiella pneumoniae has compromised the efficacy of last-line agents, leaving few therapeutic options. Repurposing zidovudine, an FDA-approved thymidine analog with antibacterial activity, may enhance existing therapies, but pharmacodynamic data under clinically relevant conditions are scarce. This study addresses this gap using static and dynamic in vitro models. Materials/methods: A PDR strain of Klebsiella pneumoniae harboring blaNDM-1, blaCMY-6, blaCTX-M-15, blaSHV-2, and disrupted mgrB was used in this study. Minimum inhibitory concentrations (MICs) followed by static time-kills were performed to investigate the synergistic interplay between zidovudine and last-line antibiotics (ceftazidime/avibactam, polymyxin B). To simulate human pharmacokinetics, a hollow-fiber infection model (HFIM) was employed using steady-state concentrations of zidovudine (4 mg/L), polymyxin B (4 mg/L), and avibactam (22 mg/L). Structural and morphological effects on bacterial cells were examined via fluorescence microscopy following glutaraldehyde fixation. Results: In this study, the PDR K. pneumoniae showed a ~5-fold reduction in polymyxin MIC when combined with zidovudine (from >4 µg/mL to 0.25 µg/mL). Time-kill assays demonstrated ≥2.5 log10 CFU/mL bacterial reduction with zidovudine-based combinations, whereas monotherapies failed to inhibit bacterial growth. In the HFIM, the triple combination achieved rapid bactericidal activity (>3 log10 CFU/mL reduction within 4 h) and sustained killing (>5–6 log10 reduction maintained through 216 h), with bacterial counts remaining below 1 CFU/mL. In contrast, dual combinations initially reduced bacterial burden (1–3 log10 reduction) but failed to maintain suppression, with significant regrowth (>1010 CFU/mL) observed by 168 h. Microscopy corroborated these findings, revealing extensive cellular damage in the zidovudine-containing treatment arms. These HFIM results underscore the potential of zidovudine-based triple therapy in overcoming resistance to last-line antibiotics in K. pneumoniae. Conclusions: Our results provide promising unprecedented insight into novel zidovudine-based combination therapies against difficult-to-treat MBL Gram-negatives. The observed synergy in MIC reduction, rapid killing in time-kill assays, and near-complete eradication in the HFIM underscore the therapeutic potential of this triple combination. Future studies will focus on broadening the application of these novel combinations to other ‘superbugs’, such as highly resistant strains of Acinetobacter baumannii and Pseudomonas aeruginosa. Full article
(This article belongs to the Section Pharmacology)
17 pages, 2277 KB  
Article
Mitigating Microbiologically Influenced Corrosion of Iron Caused by Sulphate-Reducing Bacteria Using ZnO Nanoparticles
by Harith Ambepitiya, Supun Rathnayaka, Yashodha Perera, Chamindu Jayathilake, Himashi Ferdinandez, Ajith Herath, Udul Sanjula, Aishwarya Rathnayake, Charitha Basnayaka and Eustace Fernando
Processes 2025, 13(10), 3239; https://doi.org/10.3390/pr13103239 (registering DOI) - 11 Oct 2025
Viewed by 38
Abstract
Microbiologically Influenced Corrosion (MIC) significantly endangers steel infrastructure, particularly in marine and buried environments, causing considerable economic and environmental damage. Sulphate-reducing bacteria (SRB) are primary supporters of MIC, accelerating iron corrosion through hydrogen sulfide production. Conventional mitigation strategies, including protective coatings and cathodic [...] Read more.
Microbiologically Influenced Corrosion (MIC) significantly endangers steel infrastructure, particularly in marine and buried environments, causing considerable economic and environmental damage. Sulphate-reducing bacteria (SRB) are primary supporters of MIC, accelerating iron corrosion through hydrogen sulfide production. Conventional mitigation strategies, including protective coatings and cathodic protection, often face challenges such as limited effectiveness against SRB and the aggressiveness of saltwater corrosion. This study explores a novel approach by directly introducing zinc oxide (ZnO) nanoparticles into the microbial medium to inhibit SRB activity and reduce MIC. Iron metal coupons were immersed in seawater under three conditions: control (seawater only), seawater with SRB, and SRB with ZnO nanoparticles. These coupons were used as electrodes in microbial fuel cells to obtain real-time voltage readings. At the same time, corrosion was evaluated using cyclic voltammetry (CV), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), mass loss, and pH measurements. Results demonstrate that ZnO nanoparticles significantly inhibited SRB growth, as confirmed by the antibiotic susceptibility test (ABST). It was revealed that the corrosion rate increased by 21.3% in the presence of SRB compared to the control, whereas the ZnO-added electrode showed a 21.7% reduction in corrosion rate relative to the control. SEM showed prominent corrosive products on SRB-exposed coupons. ZnO-added coupons exhibited a protective layer with grass-like whisker structures, and EDX results confirmed reduced sulfur and iron sulfide deposits, indicating suppressed SRB metabolic activity. ABST confirmed ZnO’s antimicrobial properties by producing clear inhibition zones. ZnO nanoparticles offer the dual benefits of antimicrobial activity and corrosion resistance by forming protective self-coatings and inhibiting microbial growth, making them a scalable and eco-friendly alternative to traditional corrosion inhibitors. This application can significantly extend the lifespan of iron structures, particularly in environments prone to microbial corrosion, demonstrating the potential of nanomaterials in combating microbiologically influenced corrosion (MIC). Full article
Show Figures

Figure 1

13 pages, 1564 KB  
Article
Impact of Light-Activated Nanocomposite with Erythrosine B on agr Quorum Sensing System in Staphylococcus aureus
by Larysa Bugyna, Ľubomír Švantner, Katarína Bilská, Marek Pribus and Helena Bujdáková
Antibiotics 2025, 14(10), 1010; https://doi.org/10.3390/antibiotics14101010 - 11 Oct 2025
Viewed by 43
Abstract
Backround: The agr (accessory gene regulator) quorum sensing (QS) system of Staphylococcus aureus participates significantly in its virulence and biofilm formation—either through its activation or suppression. The aim of this study was to investigate the impact of photoactive nanomaterials that have been functionalized [...] Read more.
Backround: The agr (accessory gene regulator) quorum sensing (QS) system of Staphylococcus aureus participates significantly in its virulence and biofilm formation—either through its activation or suppression. The aim of this study was to investigate the impact of photoactive nanomaterials that have been functionalized with erythrosine B (EryB) on the modulation of this agr QS system on three methicillin-resistant S. aureus (MRSA). Methods: The functionality of the agr system was determined by the CAMP test and by quantitative PCR (qPCR) to analyze the expression of the hld gene, which is located within the RNAIII and encodes δ-hemolysin. The biofilm was evaluated by crystal violet assay and fluorescence microscopy. The anti-biofilm activity was determined by calculating the colony-forming units. The relative expression of the hld gene, determined by qPCR. Results: Using the CAMP test, S66 and S68 strains were found to be agr-positive, and strain S73 was agr-negative. The relative expression of the hld gene increased only in the agr-positive strains (600- and 1000-fold). In these strains, the biofilm was less compact compared to the dense biofilm formed by the agr-negative strain. The anti-biofilm effectiveness on the nanocomposite with EryB after irradiation reduced the growth of biofilm cells by 100- to 1000-fold compared to the biofilm on polyurethane alone. The qPCR results showed a significant decrease in the relative expression of the hld gene in the agr-positive strains after irradiation compared to the non-irradiated samples. Conclusions: These results suggest that photoactive nanocomposites with EryB can significantly reduce biofilm formed by MRSA strains, regardless of the functionality of the agr QS system. Full article
Show Figures

Figure 1

27 pages, 6020 KB  
Article
Engineered Nanobody-Bearing Extracellular Vesicles Enable Precision Trop2 Knockdown in Resistant Breast Cancer
by Jassy Mary S. Lazarte, Mounika Aare, Sandeep Chary Padakanti, Arvind Bagde, Aakash Nathani, Zachary Meeks, Li Sun, Yan Li and Mandip Singh
Pharmaceutics 2025, 17(10), 1318; https://doi.org/10.3390/pharmaceutics17101318 - 11 Oct 2025
Viewed by 56
Abstract
Background/Objectives: Trophoblast cell surface antigen 2 (Trop2), a transmembrane glycoprotein overexpressed in a broad spectrum of epithelial malignancies but minimally expressed in normal tissues, has emerged as a clinically relevant prognostic biomarker and therapeutic target, particularly in breast cancer. This study aims [...] Read more.
Background/Objectives: Trophoblast cell surface antigen 2 (Trop2), a transmembrane glycoprotein overexpressed in a broad spectrum of epithelial malignancies but minimally expressed in normal tissues, has emerged as a clinically relevant prognostic biomarker and therapeutic target, particularly in breast cancer. This study aims to develop an enhanced way of targeting Trop2 expression in tumors and blocking it using extracellular vesicles (EVs) bioengineered to express a nanobody sequence against Trop2 (NB60 E). Methods: Here, a plasmid construct was designed to express the Trop2 sequence, NB60, flanked with HA tag and myc epitope and a PDGFR transmembrane domain in the C-terminal region, and was transfected into HEK293T cells for EVs isolation. The potency of NB60 E to knock down Trop2 in letrozole-resistant breast cancer cells (LTLT-Ca and MDA-MB-468 cells) was initially investigated. Thereafter, the effects of NB60 E on the cell viability and downstream signaling pathway of Trop2 via MTT assay and Western blotting were determined. Lastly, we also examined whether NB60 E treatment in Jurkat T cells affects IL-6, TNF-α, and IL-2 cytokine production by enzyme-linked immunosorbent assay (ELISA). Results: Results revealed treatment with NB60 E significantly reduced surface Trop2 expression across both cell lines by 23.5 ± 1.5% in MDA-MB-468, and 61.5 ± 1.5% in LTLT-Ca, relative to the HEK293T-derived control EVs (HEK293T E). NB60 E treatment resulted in a marked reduction in LTLT-Ca cell viability by 52.8 ± 0.9% at 48 h post-treatment. This was accompanied by downregulation of key oncogenic signaling molecules: phosphorylated ERK1/2 (p-ERK 1/2) decreased by 30 ± 4%, cyclin D1 by 67 ± 11%, phosphorylated STAT3 (p-STAT3) by 71.8 ± 1.6%, and vimentin by 40.8 ± 1.4%. ELISA analysis revealed significant decreases in IL-6 (−57.5 ± 1.5%, 7.4 ± 0.35 pg/mL) and TNF-α (−32.1 ± 0.3%, 6.1 ± 1.2 pg/mL) levels, coordinated by an increase in IL-2 secretion (22.1 ± 2.7%, 49.2 ± 1.1 pg/mL). Quantitative analysis showed marked reductions in the number of nodes (−45 ± 4.4%), junctions (−55 ± 3.5%), and branch points (−38 ± 1.2%), indicating suppression of angiogenic capacity. In vivo experiment using near-infrared Cy7 imaging demonstrated rapid and tumor-selective accumulation of NB60 E within 4 h post-administration, followed by efficient systemic clearance by 24 h. The in vivo results demonstrate the effectiveness of NB60 E in targeting Trop2-enriched tumors while being efficiently cleared from the system, thus minimizing off-target interactions with normal cells. Lastly, Trop2 expression in LTLT-Ca tumor xenografts revealed a significant reduction of 41.0 ± 4% following NB60 E treatment, confirming efficient targeted delivery. Conclusions: We present a first-in-field NB60 E-grafted EV therapy that precisely homes to Trop2-enriched breast cancers, silences multiple growth-and-invasion pathways, blocks angiogenesis, and rewires cytokine crosstalk, achieving potent antitumor effects with self-clearing, biomimetic carriers. Our results here show promising potential for the use of NB60 E as anti-cancer agents, not only for letrozole-resistant breast cancer but also for other Trop2-expressing cancers. Full article
(This article belongs to the Special Issue Extracellular Vesicles for Targeted Delivery)
Show Figures

Graphical abstract

16 pages, 12939 KB  
Article
Strategic Carbon Source Selection Enhances Biomass and Paramylon Yields in Mixotrophic Euglena gracilis Cultivation
by Xue Xiao, Rui He, Xinyue Guo, Xinxin Zhao, Zhengfei Yang, Yongqi Yin, Minato Wakisaka and Jiangyu Zhu
Microorganisms 2025, 13(10), 2339; https://doi.org/10.3390/microorganisms13102339 (registering DOI) - 11 Oct 2025
Viewed by 81
Abstract
Euglena gracilis’s mixotrophic metabolism offers biotechnological potential. This study investigated how glucose, sodium acetate, ethanol, and propanetriol regulate its growth, photosynthesis, and paramylon production. All carbon sources boosted paramylon yield versus photoautotrophic controls. Ethanol and glucose were both highly effective, supporting the [...] Read more.
Euglena gracilis’s mixotrophic metabolism offers biotechnological potential. This study investigated how glucose, sodium acetate, ethanol, and propanetriol regulate its growth, photosynthesis, and paramylon production. All carbon sources boosted paramylon yield versus photoautotrophic controls. Ethanol and glucose were both highly effective, supporting the highest biomass accumulation (5.71 and 4.42-fold increases, respectively) and paramylon content without a significant difference between them. Ethanol supplementation enhanced chlorophyll b via coupled TCA cycle/glyoxylate shunt activity, while glucose showed the strongest tendency for high paramylon and the highest carotenoid content (13.36-fold higher). Sodium acetate triggered alkaline stress (pH 8.5), suppressing pigments and inducing spherical cells. Propanetriol reduced biomass but enhanced PSII efficiency (Fv/Fm). These results demonstrate carbon source-driven metabolic partitioning: ethanol and glucose both excel in promoting growth and storage, while additionally directing carbon toward chlorophyll b or carotenoids, respectively. These findings enable targeted bioprocess optimization: selection between ethanol or glucose can be based on the value of co-products, advancing E. gracilis as a sustainable cell factory. Full article
Show Figures

Graphical abstract

16 pages, 9032 KB  
Article
Spatiotemporal Evolution, Transition, and Ecological Impacts of Flash and Slowly Evolving Droughts in the Dongjiang River Basin, China
by Qiang Huang, Liao Ouyang, Zimiao Wang and Jiayao Lin
Water 2025, 17(20), 2925; https://doi.org/10.3390/w17202925 - 10 Oct 2025
Viewed by 162
Abstract
Based on 0.1° × 0.1° soil moisture reanalysis data from 1950 to 2024, combined with remote sensing ecological products such as Enhanced Vegetation Index (EVI) and gross primary productivity (GPP), this study systematically investigates the spatiotemporal evolution, transition process, and ecological responses of [...] Read more.
Based on 0.1° × 0.1° soil moisture reanalysis data from 1950 to 2024, combined with remote sensing ecological products such as Enhanced Vegetation Index (EVI) and gross primary productivity (GPP), this study systematically investigates the spatiotemporal evolution, transition process, and ecological responses of flash droughts and slowly evolving droughts (including seasonal and cross-seasonal droughts) in the Dongjiang River Basin of China. The results indicate the following: (1) The average occurrence frequencies of flash droughts, seasonal droughts, and cross-seasonal droughts within the basin were 4.1%, 7.8%, and 8.4%, respectively. (2) The vast majority of flash droughts (approximately 90.1%) further developed into longer-lasting, slowly evolving droughts, indicating that flash droughts serve as a critical precursor to persistent drought events. Moreover, winter was identified as the key season for the occurrence of flash droughts and their transition to slowly evolving droughts. (3) In terms of ecological response, droughts significantly suppressed vegetation growth, but ecosystem resilience exhibited notable differences: although flash droughts caused relatively mild initial suppression, they were accompanied by a severe lack of ecosystem resilience; in contrast, cross-seasonal droughts, despite inducing stronger suppression, were met with higher ecosystem resilience. This study underscores the importance of the early monitoring and warning of flash droughts, and the findings provide a scientific basis for drought risk management in humid basins. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop