Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (22,926)

Search Parameters:
Keywords = growth-promotion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5106 KB  
Article
From Transcription Factors Dysregulation to Malignancy: In Silico Reconstruction of Cancer’s Foundational Drivers—The Eternity Triangle
by Anna Lisa Cammarota, Albino Carrizzo, Margot De Marco, Nenad Bukvic, Francesco Jacopo Romano, Alessandra Rosati and Massimiliano Chetta
Int. J. Mol. Sci. 2025, 26(20), 9933; https://doi.org/10.3390/ijms26209933 (registering DOI) - 12 Oct 2025
Abstract
Cancer is a multifaceted disease characterized by uncontrolled cell division resulting from substantial disruptions of normal biological processes. Central to its development is cellular transformation, which involves a dynamic sequence of events including chromosomal translocations, genetic mutations, abnormal DNA methylation, post-translational protein modifications, [...] Read more.
Cancer is a multifaceted disease characterized by uncontrolled cell division resulting from substantial disruptions of normal biological processes. Central to its development is cellular transformation, which involves a dynamic sequence of events including chromosomal translocations, genetic mutations, abnormal DNA methylation, post-translational protein modifications, and other genetic and epigenetic alterations. These changes compromise physiological regulatory mechanisms and contribute to accelerated tumor growth. A critical factor in this process is the dysregulation of transcription factors (TFs) which regulate gene expression and DNA transcription. Dysregulation of TFs initiates a cascade of biochemical events, such as abnormal DNA replication, that further enhance cell proliferation and increase genomic instability. This microenvironment not only sustains tumor growth but also promotes the accumulation of somatic mutations, thereby fueling tumor evolution and heterogeneity. In this study, we employed an in silico approach to identify TFs regulating 622 key genes whose mutations are implicated in carcinogenesis. Transcriptional regulatory networks were analyzed through bioinformatics methods to elucidate molecular pathways involved in cancer development. A thorough understanding of these processes may help to clarify the function of dysregulated TFs and facilitate the development of novel therapeutic approaches designed to make cancer treatments personalized and efficacious. Full article
(This article belongs to the Special Issue Cell Proliferation and Differentiation in Cancer)
13 pages, 8649 KB  
Article
Negative Pressure Wound Therapy in the Treatment of Complicated Wounds of the Foot and Lower Limb in Diabetic Patients: A Retrospective Case Series
by Octavian Mihalache, Laurentiu Simion, Horia Doran, Andra Bontea Bîrligea, Dan Cristian Luca, Elena Chitoran, Florin Bobircă, Petronel Mustățea and Traian Pătrașcu
J. Clin. Med. 2025, 14(20), 7193; https://doi.org/10.3390/jcm14207193 (registering DOI) - 12 Oct 2025
Abstract
Background: Diabetes-related foot diseases represent a global health problem because of the associated complications, the risk of amputation, and the economic burden on health systems. Negative pressure wound therapy (NPWT) is a technique that uses sub-atmospheric pressure to help promote wound healing [...] Read more.
Background: Diabetes-related foot diseases represent a global health problem because of the associated complications, the risk of amputation, and the economic burden on health systems. Negative pressure wound therapy (NPWT) is a technique that uses sub-atmospheric pressure to help promote wound healing by reducing the inflammatory exudate while keeping the wound moist, inhibiting bacterial growth, and promoting the formation of granulation tissue. Objective: This study aimed to assess the effectiveness of NPWT in preventing major amputation in diabetic patients with complicated foot or lower limb infections and to contextualize the results through a review of the existing literature. Materials and methods: We conducted a retrospective study at the First Surgical Department of “Dr. I. Cantacuzino” Clinical Hospital in Bucharest, Romania, over a 15-year period, including 30 consecutive adult patients with diabetes and soft tissue foot or lower limb infections treated with NPWT. Patients with non-diabetic ulcers, incomplete medical data, or aged under 18 were excluded. All patients underwent initial surgical debridement, minor amputation, or drainage procedures, followed by the application of NPWT using a standard protocol. Dressings were changed every 2–4 days for a total of 7–10 days. Antibiotic therapy was adapted according to the culture results. The primary outcome was limb preservation, defined as avoidance of major amputation. Secondary outcomes included in-hospital mortality and wound status at discharge. Results: NPWT was associated with a favorable outcome in 24 patients (80%), defined by wound granulation or healing without the need for major amputation. Five patients (16.6%) underwent major amputation because of failure of the primary lesion treatment, and one patient died. No statistically significant association was observed between the outcomes and standard classification scores (WIFI, IWGDF, and TPI). A comprehensive literature review helped to integrate these findings into the existing pool of knowledge. Conclusions: NPWT may support limb preservation in selected diabetic foot cases. While the retrospective design and the small sample size of the study limit generalizability, these results reinforce the need for further controlled studies to evaluate NPWT in real-life clinical settings. The correct use of NPWT combined with etiological treatment may offer a maximum chance to avoid major amputation in patients with diabetes-related foot diseases. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

32 pages, 2349 KB  
Review
Acellular Extracellular Matrix Scaffolds in Regenerative Medicine: Advances in Decellularization and Clinical Applications
by Caijun Jin, Xinrui Zhang, Yongxun Jin, Pham Ngoc Chien and Chan Yeong Heo
J. Funct. Biomater. 2025, 16(10), 383; https://doi.org/10.3390/jfb16100383 (registering DOI) - 12 Oct 2025
Abstract
Decellularized extracellular matrix (dECM) scaffolds preserve native tissue structure and biochemical cues while minimizing immune responses, creating biomimetic templates that promote cell integration and tissue remodeling. This review examines the current state of dECM research, encompassing decellularization methods, scaffold quality evaluation assays, and [...] Read more.
Decellularized extracellular matrix (dECM) scaffolds preserve native tissue structure and biochemical cues while minimizing immune responses, creating biomimetic templates that promote cell integration and tissue remodeling. This review examines the current state of dECM research, encompassing decellularization methods, scaffold quality evaluation assays, and tissue-specific applications across dermis, nerve, heart, lung, adipose, and placental ECMs. We analyze commercially available dECM products and ongoing clinical trials, while highlighting recent advances including 3D bioprinting and the integration of dECM with stem cells and growth factors. Despite these promising developments, several challenges continue to limit broader clinical translation: protocol standardization, residual immunogenicity, mechanical durability, and regulatory, manufacturing, and cost barriers. To address these limitations, we outline future directions focusing on patient-specific scaffolds, scalable bioprocessing, and integrated biofabrication strategies that will enable the development of safe and effective dECM-based therapies. Full article
(This article belongs to the Special Issue Advanced Functional Biomaterials in Regenerative Medicine)
20 pages, 1463 KB  
Article
Europe 2020 Strategy and 20/20/20 Targets: An Ex Post Assessment Across EU Member States
by Norbert Życzyński, Bożena Sowa, Tadeusz Olejarz, Alina Walenia, Wiesław Lewicki and Krzysztof Gurba
Sustainability 2025, 17(20), 9030; https://doi.org/10.3390/su17209030 (registering DOI) - 12 Oct 2025
Abstract
The 2020 Europe Strategy was designed as a comprehensive framework to promote smart, sustainable and inclusive growth in the European Union (EU), particularly emphasising the ‘20/20/20’ targets related to climate protection and energy policy. This study provides an ex post evaluation of the [...] Read more.
The 2020 Europe Strategy was designed as a comprehensive framework to promote smart, sustainable and inclusive growth in the European Union (EU), particularly emphasising the ‘20/20/20’ targets related to climate protection and energy policy. This study provides an ex post evaluation of the extent to which the strategy’s objectives were achieved in the member states of the EU in the period 2010–2020. The analysis is based on Eurostat data and uses Hellwig’s multidimensional comparative analysis to construct a synthetic indicator of progress. The results show that EU countries have made significant advances in reducing greenhouse gas emissions and increasing the share of renewable energy in gross final energy consumption, with Sweden and Finland identified as leaders, while Malta and Hungary lagged behind. Primary energy consumption overall decreased, although only a minority of the member states reached the planned thresholds. Progress was less evident in research and development (R&D) expenditure, where the average value of the EU remained below the 3% GDP target, and strong disparities persisted between innovation leaders and weaker performers. Improvements in higher education attainment were observed, contributing to the long-term goal of a knowledge-based economy, although labour market difficulties, especially among young people, remained unresolved. The findings suggest that, although the Strategy contributed to tangible progress in several areas, uneven achievements among member states limited its overall effectiveness. The study is limited by the reliance on aggregate statistical data and a single methodological approach. Future research should extend the analysis to longer time horizons, include qualitative assessments of national policies, and address implications for the implementation of the European Green Deal and subsequent EU development strategies. Full article
23 pages, 3245 KB  
Article
Analysis of Changes in the Microbial Biodiversity of Soil Contaminated with Cr(III) and Cr(VI)
by Edyta Boros-Lajszner, Jadwiga Wyszkowska, Małgorzata Baćmaga and Jan Kucharski
Appl. Sci. 2025, 15(20), 10951; https://doi.org/10.3390/app152010951 (registering DOI) - 12 Oct 2025
Abstract
Contamination with heavy metals, including chromium that exists in two oxidation states—Cr(III) and Cr(VI)—poses a significant challenge for the soil environment. Both chemical forms of chromium can exert toxic effects on microorganisms that play a key role in maintaining soil fertility and plant [...] Read more.
Contamination with heavy metals, including chromium that exists in two oxidation states—Cr(III) and Cr(VI)—poses a significant challenge for the soil environment. Both chemical forms of chromium can exert toxic effects on microorganisms that play a key role in maintaining soil fertility and plant health. The aim of the study was to compare the selective toxic effects of Cr(III) and Cr(VI) ions on soil bacterial and fungal taxonomic diversity using NGS technology. The data obtained enabled a comprehensive characterisation of the taxonomic profile of the soil microbiome exposed to both forms of chromium, providing a basis for further research into the adaptation and resistance mechanisms of microorganisms. The calculated diversity indices, in particular the Shannon-Wiener index, suggest that Cr(VI) is more toxic to bacteria than Cr(III). In soil contaminated with chromium, the relative abundance of chromium-resistant bacteria of the phylum Actinobacteriota increased to the detriment of chromium-sensitive Acidobacteriota and Proteobacteriota. The abundance of Ascomycota, the dominant fungal phylum, increased in soil with Cr(III) and decreased in soil with Cr(VI). Cr(III) promoted the growth of bacteria of the genera Phycicoccus and Arthrobacter and Penicillium fungi. In turn, Cr(VI) stimulated the growth of bacteria of the genera Mycoplana and Cellulosimicrobium, and Trichoderma fungi. The study demonstrated that microbial resistance mechanisms are influenced by the chemical form of chromium. In addition, the increased abundance of chromium-resistant taxa highlights their potential for the bioremediation of soils contaminated with this element. Full article
(This article belongs to the Special Issue Degraded Soil Treatment and Influence on Biodiversity)
Show Figures

Figure 1

17 pages, 3393 KB  
Article
Response of Soil Properties, Bacterial Community Structure, and Function to Mulching Practices in Urban Tree Pits: A Case Study in Beijing
by Yi Zheng, Jixin Cao, Ying Wang, Yafen Wei, Yu Tian and Yanchun Wang
Forests 2025, 16(10), 1573; https://doi.org/10.3390/f16101573 (registering DOI) - 12 Oct 2025
Abstract
Soil degradation and poor fertility severely constrain vegetation growth in urban ecosystems, particularly in compacted and nutrient-depleted tree pits. Mulching has emerged as an effective strategy to improve soil quality and regulate soil–microbe–plant interactions, yet the combined use of organic and inorganic mulching [...] Read more.
Soil degradation and poor fertility severely constrain vegetation growth in urban ecosystems, particularly in compacted and nutrient-depleted tree pits. Mulching has emerged as an effective strategy to improve soil quality and regulate soil–microbe–plant interactions, yet the combined use of organic and inorganic mulching in urban landscapes remains underexplored. In this study, a one-year field experiment was conducted to evaluate the effects of four mulching treatments on soil bacterial community diversity and functional potential. Four treatments were applied green waste compost + wood chips (GW), green waste compost + wood chips + volcanic rocks (GWV), green waste compost + wood chips + pebbles (GWP), and a non-mulched control (CK). Organic mulching (GW) effectively reduced bulk density, enhanced cellulase and protease activities, increased bacterial community richness and balance, and enriched microbial genes associated with carbon and nitrogen metabolism, while organic–inorganic mulching further promoted soil nutrition and reshaped bacterial community structure. Soil pH, nitrogen content, and protease activity served as key drivers of bacterial community structure and function. These findings demonstrate that different mulching practices provide distinct ecological advantages, and together highlight the role of mulching in regulating soil–microbe–plant interactions and improving urban tree pit management. Full article
(This article belongs to the Special Issue Deadwood Decomposition and Its Impact on Forest Soil)
Show Figures

Figure 1

12 pages, 1751 KB  
Article
Platelet Polyphosphate Signals Through NFκB to Induce Myofibroblast Differentiation
by Patrick M. Suess, Chanel C. La, Sreeparna Vappala, Jayachandran N. Kizhakkedathu and James H. Morrissey
Biomolecules 2025, 15(10), 1441; https://doi.org/10.3390/biom15101441 (registering DOI) - 12 Oct 2025
Abstract
Myofibroblasts drive wound healing and fibrotic disease through generation of contractile force to promote wound closure and production of matrix proteins to generate scar tissue. Platelets secrete many pro-wound healing molecules, including cytokines and growth factors. We previously reported that inorganic polyphosphate, secreted [...] Read more.
Myofibroblasts drive wound healing and fibrotic disease through generation of contractile force to promote wound closure and production of matrix proteins to generate scar tissue. Platelets secrete many pro-wound healing molecules, including cytokines and growth factors. We previously reported that inorganic polyphosphate, secreted by activated platelets, is chemotactic for fibroblasts and induces a myofibroblast phenotype. Using NIH-3T3 cells and primary human fibroblasts, we examined the impact of inhibitors of cell-surface receptors and intracellular signaling molecules on polyphosphate-induced myofibroblast differentiation. We now report that polyphosphate-induced differentiation of fibroblasts to myofibroblasts occurs through a signaling pathway mediated by the receptor for advanced glycation end products (RAGE) and nuclear factor kappa B (NFκB) transcription factor. Inhibition of these signaling components ablated the effects of polyphosphate on fibroblasts. Platelet releasates also induced NFκB signaling and myofibroblast differentiation. Blocking the polyphosphate content of platelet releasates with a biocompatible polyP inhibitor rendered the releasates unable to induce myofibroblast differentiation. These results identify a cell-surface receptor and intracellular transcription factor utilized by platelet polyphosphate to promote wound healing through myofibroblast differentiation and may provide targets for promoting wound healing or altering the disease progression of fibrosis. Full article
(This article belongs to the Special Issue Polyphosphate (PolyP) in Health and Disease)
Show Figures

Figure 1

17 pages, 2870 KB  
Article
Nitrogen-Doped Carbon Dots Alleviate Pesticide Toxicity in Tomato by Regulating Antioxidant Systems
by Xu Zhang, Yu Xin, Hao Wang, Yuting Dang, Wenhui Wang, Yi Gao, Yu Han, Rongrui Kang, Qinghua Shi and Han Du
Int. J. Mol. Sci. 2025, 26(20), 9916; https://doi.org/10.3390/ijms26209916 (registering DOI) - 12 Oct 2025
Abstract
The overuse of pesticides has raised serious food-safety and environmental concerns. Carbon dots (CDs) can act as biostimulants by enhancing photosynthesis, thereby promoting plant growth and stress tolerance. However, their roles in plant pesticide detoxification remain unclear. This study synthesized nitrogen-doped carbon dots [...] Read more.
The overuse of pesticides has raised serious food-safety and environmental concerns. Carbon dots (CDs) can act as biostimulants by enhancing photosynthesis, thereby promoting plant growth and stress tolerance. However, their roles in plant pesticide detoxification remain unclear. This study synthesized nitrogen-doped carbon dots (N-CDs) with strong blue fluorescence, excellent biocompatibility, and no cytotoxicity observed in HEK 293T cells. The N-CDs were synthesized from 1.025 g citric acid and 0.379 g urea, producing particles with a size of around 2.42 nm and abundant hydrophilic groups. When applied to tomato plants, N-CDs (especially at 150 mg·L−1) significantly reduced chlorothalonil (CHT) residues affecting tomato, by up to 66%. Importantly, N-CDs also improved tomato plant growth, reversing the negative effects of CHT on key parameters such as height, leaf area, and biomass. Indeed, under CHT conditions, N-CDs significantly reduced the contents of malondialdehyde, superoxide, and hydrogen peroxide. In contrast, N-CDs significantly increased the activities of superoxide dismutase, peroxidases, catalase, and ascorbate peroxidase to 117.57%, 158.53%, 162.79%, and 152.23%, respectively. Notably, N-CDs dramatically changed the glutathione pool for tomato detoxification. Overall, this study synthesized the non-cytotoxic N-CDs that not only promote tomato growth but also alleviate CHT toxicity by strengthening the tomato’s antioxidant defense system. Full article
Show Figures

Figure 1

18 pages, 573 KB  
Article
Green Growth’s Unintended Burden: The Distributional and Well-Being Impacts of China’s Energy Transition
by Li Liu and Jichuan Sheng
Energies 2025, 18(20), 5367; https://doi.org/10.3390/en18205367 (registering DOI) - 11 Oct 2025
Abstract
Achieving environmentally sustainable growth is a core challenge for developing economies, yet the welfare consequences of green development policies for vulnerable populations remain understudied. This article investigates the distributional impacts of one of the world’s largest development interventions: China’s energy transition. By integrating [...] Read more.
Achieving environmentally sustainable growth is a core challenge for developing economies, yet the welfare consequences of green development policies for vulnerable populations remain understudied. This article investigates the distributional impacts of one of the world’s largest development interventions: China’s energy transition. By integrating provincial-level energy metrics with a decade-long household panel survey (CFPS), we employ a fixed-effects model to provide a holistic assessment of the policy’s effects on household well-being. The analysis reveals a stark trade-off: a 10% increase in clean energy adoption generates significant non-monetary well-being gains, equivalent to a 190,000 CNY annual income rise, primarily through improved environmental quality and cleaner cooking fuel access. However, these benefits are partially offset by rising energy costs. Our heterogeneity analysis reveals a clear regressive burden: the transition significantly increases energy expenditures for rural and low-income households, while having a negligible or even cost-reducing effect on their urban and high-income counterparts. Our findings demonstrate that while the energy transition promotes aggregate welfare, its benefits are unevenly distributed, potentially exacerbating energy poverty and inequality. This underscores a critical development challenge: green growth is not automatically inclusive. We argue that for the energy transition to be truly pro-poor, it must be accompanied by robust social protection mechanisms, such as targeted subsidies, to shield the most vulnerable from the adverse economic shocks of the policy. Full article
Show Figures

Figure 1

23 pages, 18619 KB  
Article
Comprehensive Identification and Expression Analysis of the SWEET Gene Family in Actinidia eriantha Reveals That Two AeSWEET11 Genes Function in Sucrose and Hexose Transport
by Xin Feng, Qingqing Huang, Minxia Gao, Ruilian Lai and Yiting Chen
Plants 2025, 14(20), 3140; https://doi.org/10.3390/plants14203140 (registering DOI) - 11 Oct 2025
Abstract
Sugars are key metabolites influencing the flavor and quality of kiwifruit, with their accumulation in fruit relying on sugar transporters. Recently identified sugar transporters known as SWEETs play significant roles in modulating plant growth, development, and fruit ripening. However, the characteristics of SWEET [...] Read more.
Sugars are key metabolites influencing the flavor and quality of kiwifruit, with their accumulation in fruit relying on sugar transporters. Recently identified sugar transporters known as SWEETs play significant roles in modulating plant growth, development, and fruit ripening. However, the characteristics of SWEET genes in Actinidia eriantha remain poorly understood. In this study, a total of 26 AeSWEET genes were identified across 17 chromosomes. These genes encoded proteins ranging from 198 to 305 amino acids in length and contained 5 to 7 transmembrane helices. Both interspecific and intraspecific phylogenetic trees categorized AeSWEET proteins into four distinct clades. The motif and domain structures were conserved within each clade, although variations were observed in exon-intron organizations. One tandem and fourteen segmental duplication events were identified as primary drivers of the AeSWEET family expansion. Comparative syntenic mapping showed a closer homology of the AeSWEET family with that of dicotyledons compared to monocotyledons. Promoter cis-element analysis indicated the potential responses of AeSWEET genes to five phytohormones and seven environmental stressors. Quantitative real-time PCR analysis revealed tissue-specific expression profiles of AeSWEET genes, with two AeSWEET11 genes (AeSWEET11a and AeSWEET11b) showing significantly higher expression levels in fruit tissues. Their expressions were positively correlated with sucrose, fructose, and glucose contents throughout fruit development and ripening. Transient transformation tests in tobacco leaves verified the predominant localization of AeSWEET11a and AeSWEET11b to the plasma membrane. Functional assays in yeast mutants revealed that AeSWEET11a and AeSWEET11b both possessed sucrose and hexose transport activities. These findings highlight the potential of targeting AeSWEET11a and AeSWEET11b to enhance sugar accumulation in the fruit of A. eriantha, thereby providing a foundation for improving the flavor profile of commercial cultivars. Full article
Show Figures

Figure 1

20 pages, 2684 KB  
Article
Genome-Wide Identification and Expression Analysis of the SRS Gene Family in Hylocereus undatus
by Fanjin Peng, Lirong Zhou, Shuzhang Liu, Renzhi Huang, Guangzhao Xu and Zhuanying Yang
Plants 2025, 14(20), 3139; https://doi.org/10.3390/plants14203139 (registering DOI) - 11 Oct 2025
Abstract
SHORT INTERNODE (SHI)-Related Sequence (SRS) transcription factors play crucial roles in plant growth, development, and stress responses and have been extensively studied in various plant species. However, the molecular functions and regulatory mechanisms of SRS genes in the economically important tropical fruit crop [...] Read more.
SHORT INTERNODE (SHI)-Related Sequence (SRS) transcription factors play crucial roles in plant growth, development, and stress responses and have been extensively studied in various plant species. However, the molecular functions and regulatory mechanisms of SRS genes in the economically important tropical fruit crop pitaya (Hylocereus undatus) remain poorly understood. This study identified 9 HuSRS genes in pitaya via bioinformatics analysis, with subcellular localization predicting nuclear distributions for all. Gene structure analysis showed 1–4 exons, and conserved motifs (RING-type zinc finger and IXGH domains) were shared across subclasses. Phylogenetic analysis classified the HuSRS genes into three subfamilies. Subfamily I (HuSRS1HuSRS4) is closely related to poplar and tomato homologs and subfamily III (HuSRS6HuSRS8) contains a recently duplicated paralogous pair (HuSRS7/HuSRS8) and shows affinity to rice SRS genes. Protein structure prediction revealed dominance of random coils, α-helices, and extended strands, with spatial similarity correlating to subfamily classification. Interaction networks showed HuSRS1, HuSRS2, HuSRS7 and HuSRS8 interact with functional proteins in transcription and hormone signaling. Promoter analysis identified abundant light/hormone/stress-responsive elements, with HuSRS5 harboring the most motifs. Transcriptome and qPCR analyses revealed spatiotemporal expression patterns: HuSRS4, HuSRS5, and HuSRS7 exhibited significantly higher expression levels in callus (WG), which may be associated with dedifferentiation capacity. In seedlings, HuSRS9 exhibited extremely high transcriptional accumulation in stem segments, while HuSRS1, HuSRS5, HuSRS7 and HuSRS8 were highly active in cotyledons. This study systematically analyzed the characteristics of the SRS gene family in pitaya, revealing its evolutionary conservation and spatio-temporal expression differences. The research results have laid a foundation for in-depth exploration of the function of the SRS gene in the tissue culture and molecular breeding of pitaya. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
26 pages, 6730 KB  
Review
Coal-Based Direct Reduction for Dephosphorization of High- Phosphorus Iron Ore: A Critical Review
by Hongda Xu, Rui Li, Jue Kou, Xiaojin Wen, Jiawei Lin, Jiawen Yin, Chunbao Sun and Tichang Sun
Minerals 2025, 15(10), 1067; https://doi.org/10.3390/min15101067 (registering DOI) - 11 Oct 2025
Abstract
Conventional separation methods often prove ineffective for complex, refractory high-phosphorus iron ores. Recent advances propose a coal-based direct reduction dephosphorization-magnetic separation process, achieving significant dephosphorization efficiency. This review systematically analyzes phosphorus occurrence states in high-phosphorus oolitic iron ores across global deposits, particularly within [...] Read more.
Conventional separation methods often prove ineffective for complex, refractory high-phosphorus iron ores. Recent advances propose a coal-based direct reduction dephosphorization-magnetic separation process, achieving significant dephosphorization efficiency. This review systematically analyzes phosphorus occurrence states in high-phosphorus oolitic iron ores across global deposits, particularly within iron minerals. We categorize contemporary research and elucidate dephosphorization mechanisms during coal-based direct reduction. Key factors influencing iron mineral phase transformation, iron enrichment, and phosphorus removal are comprehensively evaluated. Phosphorus primarily exists as apatite and collophane gangue m horization agents function by: (1) inhibiting phosphorus-bearing mineral reactions or binding phosphorus into soluble salts to prevent incorporation into metallic iron; (2) enhancing iron oxide reduction and coal gasification; (3) disrupting oolitic structures, promoting metallic iron particle growth, and improving the intergrowth relationship between metallic iron and gangue. Iron mineral phase transformations follow the sequence: Fe2O3 → Fe3O4 → FeO (FeAl2O4, Fe2SiO4) → Fe. Critical parameters for effective dephosphorization under non-reductive phosphorus conditions include reduction temperature, duration, reductant/dephosphorization agent types/dosages. Future research should focus on: (1) investigating phosphorus forms in iron minerals for targeted ore utilization; (2) reducing dephosphorization agent consumption and developing sustainable alternatives; (3) refining models for metallic iron growth and improving energy efficiency; (4) optimizing reduction atmosphere control; (5) implementing low-carbon emission strategies. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
22 pages, 4812 KB  
Article
Physiological, Productive, and Nutritional Performance of Tomato Plants Treated with Iron and Zinc Nanoparticles via Foliar Application Under Deficit Irrigation
by Erika Caminha Almeida, Francisco Hevilásio Freire Pereira, Kaiki Nogueira Ferreira, Antonio Carlos de Sena Rodrigues, Railene Hérica Carlos Rocha Araújo, José Ebson Janoca de Souza, Carlos Sávio Gomes Ramos, Guilherme Lopes, Leônidas Canuto dos Santos, Francisco Bezerra Neto, Francisco Vaniés da Silva Sá, José Zilton Lopes Santos, Ronaldo do Nascimento and Josinaldo Lopes Araujo Rocha
Horticulturae 2025, 11(10), 1228; https://doi.org/10.3390/horticulturae11101228 (registering DOI) - 11 Oct 2025
Abstract
Water deficit in the semi-arid region of Brazil is a critical limiting factor for tomato (Solanum lycopersicum Mill.), plant development and productivity. We evaluated whether foliar zinc (ZnO NPs) and iron (Fe2O3NPs) nano-oxides and their conventional salts (ZnSO [...] Read more.
Water deficit in the semi-arid region of Brazil is a critical limiting factor for tomato (Solanum lycopersicum Mill.), plant development and productivity. We evaluated whether foliar zinc (ZnO NPs) and iron (Fe2O3NPs) nano-oxides and their conventional salts (ZnSO4·7H2O and FeSO4·7H2O) mitigate water deficit effects on tomato (hybrid HM 2798). A split-plot field experiment was conducted with two irrigation levels (50% and 100% ETc) and five foliar treatments: control (no application), FeSO4·7H2O (T1), Fe2O3NPs (T2), ZnONPs (T3), ZnSO4·7H2O (T4), with four replications, totaling 40 experimental plots (2 irrigation levels × 5 foliar treatments × 4 replicates). The water deficit significantly reduced the leaf area index, photosynthetic rate, membrane stability, calcium and boron contents in fruits, and total and marketable yield. Foliar application of iron and zinc nano-oxides and their conventional sources had a limited effect on tomato plant growth but increased the photosynthetic rate under both irrigation levels. Under full irrigation, ZnSO4·7H2O increased total fruit production by 61% and fruit Zn content by 18.1%. In turn, Fe2O3 NPs (T2) led increases in fruit iron content by 117.3% under water deficit and 135.2% under full irrigation. Foliar application of Fe as Fe2O3 NPs is promising to promote the biofortification of tomato fruits with this micronutrient, especially in regions with deficiency problems of this micronutrient. Full article
(This article belongs to the Special Issue Advances in Sustainable Cultivation of Horticultural Crops)
Show Figures

Graphical abstract

15 pages, 2964 KB  
Article
Optimizing Amendment Ratios for Sustainable Recovery of Aeolian Sandy Soils in Coal Mining Subsidence Areas: An Orthogonal Experiment on Medicago sativa
by Lijun Hao, Zhenqi Hu, Qi Bian, Xuyang Jiang, Yingjia Cao, Changjiang Li and Ruihao Cui
Sustainability 2025, 17(20), 9010; https://doi.org/10.3390/su17209010 (registering DOI) - 11 Oct 2025
Abstract
Coal mining in the aeolian sandy regions of western China has caused extensive land degradation. Traditional single-component soil amendments have proven inadequate for ecological restoration, underscoring the need for integrated and sustainable strategies to restore soil fertility and vegetation. A pot experiment using [...] Read more.
Coal mining in the aeolian sandy regions of western China has caused extensive land degradation. Traditional single-component soil amendments have proven inadequate for ecological restoration, underscoring the need for integrated and sustainable strategies to restore soil fertility and vegetation. A pot experiment using alfalfa (Medicago sativa L.) evaluated the effects of weathered coal, cow manure, and potassium polyacrylate combined in a three-factor three-level orthogonal design on plant growth, nutrient uptake, and soil properties. Results showed that compared with the control (C0O0P0), amendment treatments significantly increased alfalfa fresh weight (+47.57~107.38%), dry weight (+43.46~104.93%), plant height (+43.46~104.93%), and stem diameter (+12.62~31.52%), along with improved plant phosphorus and potassium concentrations (+15.41~46.65%). Soil fertility was also notably enhanced, with increases in soil organic matter, total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), and available potassium (AK) ranging from 4.25% to 777.78%. In contrast, soil pH and bulk density were significantly reduced. The optimal amendment combination was identified as 10 g·kg−1 weathered coal, 5 g·kg−1 cow manure, and 0.6 g·kg−1 potassium polyacrylate. Structural equation modeling revealed that the amendments promoted plant growth both directly by improving soil conditions and indirectly by enhancing nutrient uptake. However, high doses (30 g·kg−1) of weathered coal may inhibit plant growth, and the co-application of high-dose weathered coal or manure with potassium polyacrylate may lead to antagonistic effects. This study provides fundamental insights into soil–plant interactions and proposes a sustainable amendment strategy for improving aeolian sandy soils, which could support future ecological reclamation efforts in coal mining area. Full article
18 pages, 1007 KB  
Review
From Carcinogenesis to Drug Resistance: The Multifaceted Role of Oxidative Stress in Head and Neck Cancer
by Enas Bani-Ahmad, Joshua Dass and Crispin R Dass
Cancers 2025, 17(20), 3295; https://doi.org/10.3390/cancers17203295 (registering DOI) - 11 Oct 2025
Abstract
Objectives: This review examines the role of oxidative stress in the survival, apoptosis, and therapy resistance of head and neck squamous cell carcinoma (HNSCC) cells, with a focus on how redox imbalance influences tumour progression and treatment outcomes. Methods: A literature search was [...] Read more.
Objectives: This review examines the role of oxidative stress in the survival, apoptosis, and therapy resistance of head and neck squamous cell carcinoma (HNSCC) cells, with a focus on how redox imbalance influences tumour progression and treatment outcomes. Methods: A literature search was conducted in Scopus using the keywords head and neck squamous cell carcinoma, oxidative stress, reactive oxygen species (ROS), and antioxidant systems. Articles published in English were included, without restrictions on publication year. Reviews, clinical studies, and experimental research addressing oxidative stress mechanisms in HNSCC were considered, while non-English papers and studies unrelated to HNSCC were excluded. Key Findings: ROS exhibit dual effects in HNSCC, promoting tumour growth and DNA damage while also inducing apoptosis through molecular interactions. Elevated ROS contribute to drug resistance by inhibiting apoptosis, altering autophagy, and enhancing proliferation. Cancer cells counteract this via adaptive antioxidant responses involving transcriptional regulation and upregulation of enzymatic defences. Major risk factors for HNSCC—alcohol, tobacco, and high-risk HPV infection—disrupt redox homeostasis, underscoring the central role of oxidative stress in both carcinogenesis and therapy response. Conclusions: Oxidative stress plays a context-dependent role in HNSCC progression and treatment resistance. Targeting redox-regulatory pathways may provide therapeutic benefit. This review synthesizes recent insights on ROS-mediated mechanisms, highlighting potential strategies for improving HNSCC management beyond existing literature. Full article
(This article belongs to the Section Cancer Drug Development)
Back to TopTop