Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,790)

Search Parameters:
Keywords = habitat monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1408 KB  
Article
Fine-Scale Environmental Drivers Shaping Vegetation Communities in Yongneup Montane Peatland, Korea
by Kyungeun Lee and Jiseon Lee
Diversity 2025, 17(10), 715; https://doi.org/10.3390/d17100715 (registering DOI) - 14 Oct 2025
Abstract
This study investigated the structure of vegetation communities in Yongneup, a representative montane peatland on Mt. Daeamsan, Korea. It also identified key microenvironmental drivers shaping their distribution. We surveyed 200 quadrats, analyzing herbaceous plant composition alongside peat depth, water level, and soil chemical [...] Read more.
This study investigated the structure of vegetation communities in Yongneup, a representative montane peatland on Mt. Daeamsan, Korea. It also identified key microenvironmental drivers shaping their distribution. We surveyed 200 quadrats, analyzing herbaceous plant composition alongside peat depth, water level, and soil chemical properties. Multivariate analyses, including cluster analysis and classification tree analysis (CHAID), identified nine distinct vegetation communities. Each community was correlated with specific environmental gradients. Dominant species included Sanguisorba tenuifolia and Carex thunbergii var. appendiculata, with rare species such as Carex chordorrhiza and Drosera rotundifolia present in localized habitats. Peat depth emerged as the primary determinant of vegetation distribution, followed by hydrology and nutrient levels, including phosphorus and cations (Mg2+, Na+, K+). Our results underscored continuous ecological gradients rather than discrete zonation, aligning with ecological continuum theory. These findings provide a robust scientific framework for ecological monitoring and restoration. They also support Korea’s national wetland conservation policies and international commitments such as the Ramsar Convention. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

9 pages, 216 KB  
Systematic Review
Mangrove Ecosystems as Reservoirs of Antibiotic Resistance Genes: A Narrative Review
by Monthon Lertcanawanichakul, Phuangthip Bhoopong and Phusit Horpet
Antibiotics 2025, 14(10), 1022; https://doi.org/10.3390/antibiotics14101022 - 14 Oct 2025
Abstract
Background: Mangrove ecosystems are critical coastal environments providing ecological services and acting as buffers between terrestrial and marine systems. Rising antibiotic use in aquaculture and coastal agriculture has led to the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in [...] Read more.
Background: Mangrove ecosystems are critical coastal environments providing ecological services and acting as buffers between terrestrial and marine systems. Rising antibiotic use in aquaculture and coastal agriculture has led to the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in these habitats. Aim: This narrative review aims to synthesize current knowledge on the prevalence, diversity, and environmental drivers of ARGs in mangrove ecosystems, highlighting their role as reservoirs and the potential for horizontal gene transfer. Methods: Studies published up to September 2024 were identified through PubMed, Scopus, Web of Science, and Google Scholar. Inclusion criteria focused on ARGs and ARB in mangrove sediments, water, and associated biota. Data on ARG prevalence, microbial community composition, detection methods, and environmental factors were extracted and narratively synthesized. Results: Seventeen studies from Asia, South America, and Africa were included. ARGs conferring resistance to tetracyclines, sulfonamides, β-lactams, and multidrug resistance were found to be widespread, particularly near aquaculture and urban-influenced areas. Metagenomic analyses revealed diverse resistomes with frequent mobile genetic elements, indicating high potential for horizontal gene transfer. Environmental factors, including sediment type, organic matter, and salinity, influenced ARG abundance and distribution. Conclusions: Mangrove ecosystems act as both reservoirs and natural buffers for ARGs. Sustainable aquaculture practices, continuous environmental monitoring, and integrated One Health approaches are essential to mitigate ARG dissemination in these sensitive coastal habitats. Full article
25 pages, 3342 KB  
Article
Modelling Urban Plant Diversity Along Environmental, Edaphic, and Climatic Gradients
by Tuba Gül Doğan, Engin Eroğlu, Ecir Uğur Küçüksille, Mustafa İsa Doğan and Tarık Gedik
Diversity 2025, 17(10), 706; https://doi.org/10.3390/d17100706 (registering DOI) - 13 Oct 2025
Abstract
Urbanization imposes complex environmental gradients that threaten plant diversity and urban ecosystem integrity. Understanding the multifactorial drivers that govern species distribution in urban contexts is essential for biodiversity conservation and sustainable landscape planning. This study addresses this challenge by examining the environmental determinants [...] Read more.
Urbanization imposes complex environmental gradients that threaten plant diversity and urban ecosystem integrity. Understanding the multifactorial drivers that govern species distribution in urban contexts is essential for biodiversity conservation and sustainable landscape planning. This study addresses this challenge by examining the environmental determinants of urban flora in a rapidly developing city. We integrated data from 397 floristic sampling sites and 13 environmental monitoring locations across Düzce, Türkiye. A multidimensional suite of environmental predictors—including microclimatic variables (soil temperature, moisture, light), edaphic properties (pH, EC (Electrical Conductivity), texture, carbonate content), precipitation chemistry (pH and major ions), macroclimatic parameters (CHELSA bioclimatic variables), and spatial metrics (elevation, proximity to urban and natural features)—was analyzed using nonlinear regression models and machine learning algorithms (RF (Random Forest), XGBoost, and SVR (Support Vector Regression)). Shannon diversity exhibited strong variation across land cover types, with the highest values in broad-leaved forests and pastures (>3.0) and lowest in construction and mining zones (<2.3). Species richness and evenness followed similar spatial trends. Evenness peaked in semi-natural habitats such as agricultural and riparian areas (~0.85). Random Forest outperformed other models in predictive accuracy. Elevation was the most influential predictor of Shannon diversity, while proximity to riparian zones best explained richness and evenness. Chloride concentrations in rainfall were also linked to species composition. When the models were recalibrated using only native species, they exhibited consistent patterns and maintained high predictive performance (Shannon R2 ≈ 0.937474; Richness R2 ≈ 0.855305; Evenness R2 ≈ 0.631796). Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Graphical abstract

24 pages, 4004 KB  
Article
Genetic Monitoring of the Endangered Acipenser dabryanus Using a High-Resolution MNP System
by Lu Cai, Wei Jiang, Zhiwei Fang, Hai Peng, Hao Chen, Renjing Wan, Lifen Gao, Baolong Zhang, Zilan Xiao, Sha Li, Lun Li, Lihong Chen, Huiyin Song, Tiantian Li and Junfei Zhou
Diversity 2025, 17(10), 704; https://doi.org/10.3390/d17100704 (registering DOI) - 11 Oct 2025
Viewed by 181
Abstract
Acipenser dabryanus, once abundant in China’s freshwater ecosystems, is now extinct in the wild. Effective genetic tools are urgently needed to support conservation efforts under the Yangtze River Protection Law and the 10-year fishing ban. Traditional molecular markers (e.g., COI, SSR, [...] Read more.
Acipenser dabryanus, once abundant in China’s freshwater ecosystems, is now extinct in the wild. Effective genetic tools are urgently needed to support conservation efforts under the Yangtze River Protection Law and the 10-year fishing ban. Traditional molecular markers (e.g., COI, SSR, SNP) often lack sufficient resolution for fine-scale population assessment. Here, we developed a high-resolution Multiple-Nucleotide Polymorphism (MNP) system for A. dabryanus, comprising 424 newly developed, highly polymorphic markers optimized for multiplex PCR and high-throughput sequencing. The MNP system demonstrated excellent performance in individual fin tissue samples, successfully distinguishing Acipenser sinensis and Acipenser ruthenus individuals from the A. dabryanus population. In addition, 41 characteristic alleles specific to A. dabryanus were further identified. Across samples, it achieved >90% MNP locus detection rate, with an average of 7.48 alleles per locus, 66.5% heterozygosity, >98% reproducibility, and 99% accuracy. A strong correlation was observed between DNA concentration and spike-in-based copy numbers (R2 > 0.99), and sensitivity analysis confirmed reliable detection at ~1 copy/reaction. Application of the system across 97 samples, including 51 A. dabryanus tissue samples and 46 water environmental samples, revealed clear population structure with an average genetic differentiation of 70.45%, highlighting substantial genetic diversity within the sampled populations. Based on the above experimental results, the high-resolution MNP system has the potential to enable construction of population-specific allelic genotypes to distinguish wild individuals from released ones and, when applied to tissue and eDNA samples, to facilitate monitoring of migration pathways and habitat connectivity. Such applications could provide essential genetic information to evaluate release programs, guide conservation strategies, and inform habitat restoration for the recovery of A. dabryanus. Full article
Show Figures

Figure 1

22 pages, 4943 KB  
Article
Novel Wall Reef Identification Method Using Landsat 8: A Case Study of Microcontinent Areas in Wangiwangi Island, Indonesia
by Wikanti Asriningrum, Azura Ulfa, Edy Trihatmoko, Nugraheni Setyaningrum, Joko Widodo, Ahmad Sutanto, Suwarsono, Gathot Winarso, Bachtiar Wahyu Mutaqin and Eko Siswanto
Geosciences 2025, 15(10), 391; https://doi.org/10.3390/geosciences15100391 - 10 Oct 2025
Viewed by 95
Abstract
This study develops a geomorphological identification methodology for wall reefs in the microcontinental environment of Wangiwangi Island, Indonesia, using medium-resolution Landsat 8 satellite imagery and morphological analysis based on Maxwell’s geomorphological framework. The uniqueness of the wall reef landform lies in the fact [...] Read more.
This study develops a geomorphological identification methodology for wall reefs in the microcontinental environment of Wangiwangi Island, Indonesia, using medium-resolution Landsat 8 satellite imagery and morphological analysis based on Maxwell’s geomorphological framework. The uniqueness of the wall reef landform lies in the fact that the lagoon elongates on limestone, resulting in a habitat and ecosystem that develops differently from those of other shelf reefs, namely, platform reefs and plug reefs. Using Optimum Index Factor (OIF) optimization and RGB image composites, four reef types were successfully identified: cuspate reefs, open ring reefs, closed ring reefs, and resorbed reefs. A field check was conducted at fifteen observation sites, which included measurements of depth, turbidity, and water quality parameters, as well as an in situ benthic habitat inventory. The analysis results showed a strong correlation between image composites, geomorphological reef classes, and ecological conditions, confirming the successful adaptation of Maxwell’s classification to the Indonesian reef system. This hybrid integrated approach successfully maps the distribution of reefs on a complex continental shelf, providing an essential database for shallow-water spatial planning, ecosystem-based conservation, and sustainable management in the Coral Triangle region. Policy recommendations include zoning schemes for protected areas based on reef landform morphology, strengthening integrative monitoring systems, and utilizing high-resolution imagery and machine learning algorithms in further research. Full article
Show Figures

Figure 1

22 pages, 7879 KB  
Review
Effectiveness of Small Hydropower Plants Dismantling in the Chishui River Watershed and Recommendations for Follow-Up Studies
by Wenzhuo Gao, Zhigang Wang, Ke Wang, Xianxun Wang, Xiao Li and Qunli Jiang
Water 2025, 17(19), 2909; https://doi.org/10.3390/w17192909 - 9 Oct 2025
Viewed by 236
Abstract
With the characteristic of “decentralized distribution and local power supply”, small hydropower (SHP) in China has become a core means of solving the problem of insufficient power supply in rural and remote mountainous areas, effectively promoting the improvement of local livelihoods. However, for [...] Read more.
With the characteristic of “decentralized distribution and local power supply”, small hydropower (SHP) in China has become a core means of solving the problem of insufficient power supply in rural and remote mountainous areas, effectively promoting the improvement of local livelihoods. However, for a long time, SHP has had many problems, such as irrational development, old equipment, and poor economic efficiency, resulting in some rivers with connectivity loss and reduced biodiversity, etc. The Chishui River Watershed is an ecologically valuable river in the upper reaches of the Yangtze River. As an important habitat for rare fish in the upper reaches of the Yangtze River and the only large-scale tributary that maintains a natural flow pattern, the SHP plants’ dismantling and ecological restoration practices in the Chishui River Watershed can set a model for regional sustainable development. This paper adopts the methods of literature review, field research, and case study analysis, combined with the comparison of ecological conditions before and after the dismantling, to systematically analyze the effectiveness and challenges of SHP rectification in the Chishui River Watershed. The study found that after dismantling 88.2% of SHP plants in ecologically sensitive areas, the number of fish species upstream and downstream of the original dam site increased by about 6.67% and 70%, respectively; the natural hydrological connectivity has been restored to the downstream of the Tongzi River, the Gulin River and other rivers, but there are short-term problems such as sediment underflow, increased economic pressure, and the gap of alternative energy sources; the retained power stations have achieved the success and challenges of power generation and ecological management ecological flow control and comprehensive utilization, achieving a balance between power generation and ecological protection. Based on the above findings, the author proposes dynamic monitoring and interdisciplinary tracking research to fill the gap of systematic data support and long-term effect research in the SHP exit mechanism, and the results can provide a reference for the green transition of SHP. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

14 pages, 2204 KB  
Article
Birdfoot Violet (Viola pedata) in a Minnesota USA Dry Bluff Prairie: Population Assessment of a Preferred Host Plant of the Threatened Western Regal Fritillary Butterfly (Argynnis idalia occidentalis)
by Chloe Peterson, James Duffrin and Neal D. Mundahl
Conservation 2025, 5(4), 58; https://doi.org/10.3390/conservation5040058 - 9 Oct 2025
Viewed by 124
Abstract
A self-sustaining population of birdfoot violet (Viola pedata), a host plant for the threatened western subspecies of regal fritillary butterfly (Argynnis idalia occidentalis) caterpillar, was examined during a single year from April to June 2021 on a small, 3.1 [...] Read more.
A self-sustaining population of birdfoot violet (Viola pedata), a host plant for the threatened western subspecies of regal fritillary butterfly (Argynnis idalia occidentalis) caterpillar, was examined during a single year from April to June 2021 on a small, 3.1 ha dry bluff prairie hillslope within the Whitewater Wildlife Management Area in southeastern Minnesota USA. Assessments were conducted to determine if violet populations on small prairie remnants could support seed collecting to establish new populations nearby. Ten transects and five random plots were used to assess violet density and monitor violet growth, reproductive phenology, and seed production. Violet densities were high (>5 plants/m2), with greatest densities at middle elevations on the hillside in the middle of the prairie rather than near the edges. The total population of birdfoot violets on the hillside was extrapolated from density estimates based on 200, 1-m2 plots to be >62,000 plants. Seed set was low (less than one pod per plant) but nearly 400,000 total seeds were produced during the 2021 growing season. More than 3000 seeds (<1% of estimated seed production on the study hillslope) were collected for out-planting to establish a new violet population in nearby Whitewater State Park. Some small bluff prairies in southeastern Minnesota and elsewhere under certain conditions may sustain violet populations large enough to permit seed collecting to establish additional populations during restoration of native prairie communities. These ultimately should provide much needed habitat for regal fritillary butterflies to partially compensate for ongoing habitat losses. Full article
Show Figures

Figure 1

41 pages, 4070 KB  
Article
Feed Values for Grassland Species and Method for Assessing the Quantitative and Qualitative Characteristics of Grasslands
by Szilárd Szentes, Ildikó Turcsányi-Járdi, László Sipos, Károly Penksza, Zoltán Kende, Eszter Saláta-Falusi, Tünde Szabó-Szöllösi, Andrea Kevi, Dániel Balogh, Márta Bajnok and Zsombor Wagenhoffer
Earth 2025, 6(4), 119; https://doi.org/10.3390/earth6040119 - 8 Oct 2025
Viewed by 125
Abstract
The tasks and objectives of grassland management have changed significantly in recent decades. One of the key elements of adapting to climatic and economic challenges is the optimal use and future sustainability of grasslands. Ferenc Balázs’s plant stand assessment method is a fast, [...] Read more.
The tasks and objectives of grassland management have changed significantly in recent decades. One of the key elements of adapting to climatic and economic challenges is the optimal use and future sustainability of grasslands. Ferenc Balázs’s plant stand assessment method is a fast, efficient and widely applicable method for evaluating the quantitative and qualitative characteristics of forage in grasslands, as well as the economic value of pastures. This study is based on a three-dimensional coenological survey which is low-cost, does not require technical infrastructure, and empirically considers the species’ preference by livestock. As a result of our extended criteria approach, we assigned modified forage value (k-value) categories to 2310 vascular plant species. Based on our investigations in the presented case study, the Balázs method was proven to be well suited for estimating the yield of grasslands and determining the relative forage value of grasslands with a high degree of confidence in practice. As this method is non-destructive and involves little trampling, it is particularly suitable for monitoring grassland habitats with a high density of protected plant and animal species. Full article
Show Figures

Figure 1

23 pages, 16639 KB  
Article
Restoring High Mountain Sphagnum Communities in the Central Pyrenees
by Eulàlia Pladevall-Izard, Aaron Pérez-Haase, Empar Carrillo, Nil Escolà and Josep M. Ninot
Ecologies 2025, 6(4), 67; https://doi.org/10.3390/ecologies6040067 - 7 Oct 2025
Viewed by 293
Abstract
A handful of Sphagnum species and their ecosystems find their southernmost occurrence in the Pyrenees, and these small, relict units are endangered through anthropic activities and climatic change. A number of hydropower reservoirs covered former mire systems with water or let them ashore. [...] Read more.
A handful of Sphagnum species and their ecosystems find their southernmost occurrence in the Pyrenees, and these small, relict units are endangered through anthropic activities and climatic change. A number of hydropower reservoirs covered former mire systems with water or let them ashore. These infrastructures will eventually become useless and abandoned, and the mires could possibly be restored, but there have been no known experiments in the Pyrenees in this field. The removal of the dam of a small reservoir in the Central Pyrenees in 2012 uncovered bare ground that was appropriate for testing mire restoration. In 2017, we started the restoration of two Habitats of Community Interest (HCIs), i.e., transition mires and quaking bogs (HCI 7140) and active raised bogs (HCI 7110*). To restore HCI 7140, we set a Carex rostrata population by planting cuttings and then small tufts of two Sphagnum species within the sedge sward. In parallel, we set small clumps of two other Sphagnum species intended to grow into hummocks (HCI 7110*). After seven growing seasons, HCI 7140 reached a good progression level, with a prosperous C. rostrata sward and progressive expansion of the Sphagnum populations. HCI 7110* turfs had varying performance, exhibiting moderate survivorship and positive expansion of the remaining turfs. The varying performance of the restored populations illustrates the possibilities of restoring mire communities in suboptimal environments. Interestingly, such restorative actions are appropriate for enhancing populations of species under threat, such as Sphagnum divinum. Full article
Show Figures

Figure 1

17 pages, 5330 KB  
Article
Global Potential Distribution of Carpomya vesuviana Costa Under Climate Change and Potential Economic Impacts on Chinese Jujube Industries
by Jingxuan Ning, Ming Li, Yuhan Qi, Haoxiang Zhao, Xiaoqing Xian, Jianyang Guo, Nianwan Yang, Hongxu Zhou and Wanxue Liu
Agriculture 2025, 15(19), 2081; https://doi.org/10.3390/agriculture15192081 - 6 Oct 2025
Viewed by 262
Abstract
Carpomya vesuviana (Diptera: Tephritidae), a significant invasive forestry pest of Zizyphus crops worldwide, has spread globally across jujube-growing regions, causing substantial yield losses and economic damage. In China, it is classified as both an imported and forestry quarantine pest. Existing risk assessments have [...] Read more.
Carpomya vesuviana (Diptera: Tephritidae), a significant invasive forestry pest of Zizyphus crops worldwide, has spread globally across jujube-growing regions, causing substantial yield losses and economic damage. In China, it is classified as both an imported and forestry quarantine pest. Existing risk assessments have primarily focused on the potential geographical distributions (PGDs) of C. vesuviana, but its economic impact on host plants is unknown. Therefore, we used an optimised MaxEnt model based on species distribution records and relevant environmental variables to predict the PGDs of C. vesuviana under current and future climate scenarios. Meanwhile, we used the @RISK stochastic model to assess the economic impact of this pest on the Chinese jujube industry under various scenarios. The results showed that the human influence index (HII), mean temperature of the wettest quarter (Bio8), temperature seasonality (Bio4), and precipitation during the driest month (Bio14) were the significant environmental variables affecting species distribution. Under the current climatic scenario, the total suitable area of C. vesuviana reached 2171.39 × 104 km2, which is mainly distributed in southern and western Asia, southern Europe, central North America, western Africa, and eastern South America. Potentially suitable habitats will increase and shift to the middle and high latitudes of the Northern Hemisphere under future climatic scenarios. Under the no-control scenario, C. vesuviana could cause losses of 15,687 million CNY to the jujube industry in China. However, control measures could have saved losses of 5047 million CNY. This study provides a theoretical basis for preventive monitoring and integrated management of C. vesuviana globally and helps reduce its economic impact on the jujube industry in China. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

34 pages, 2116 KB  
Review
Building Climate Resilient Fisheries and Aquaculture in Bangladesh: A Review of Impacts and Adaptation Strategies
by Mohammad Mahfujul Haque, Md. Naim Mahmud, A. K. Shakur Ahammad, Md. Mehedi Alam, Alif Layla Bablee, Neaz A. Hasan, Abul Bashar and Md. Mahmudul Hasan
Climate 2025, 13(10), 209; https://doi.org/10.3390/cli13100209 - 4 Oct 2025
Viewed by 1064
Abstract
This study examines the impacts of climate change on fisheries and aquaculture in Bangladesh, one of the most climate-vulnerable countries in the world. The fisheries and aquaculture sectors contribute significantly to the national GDP and support the livelihoods of 12% of the total [...] Read more.
This study examines the impacts of climate change on fisheries and aquaculture in Bangladesh, one of the most climate-vulnerable countries in the world. The fisheries and aquaculture sectors contribute significantly to the national GDP and support the livelihoods of 12% of the total population. Using a Critical Literature Review (CLR) approach, peer-reviewed articles, government reports, and official datasets published between 2006 and 2025 were reviewed across databases such as Scopus, Web of Science, FAO, and the Bangladesh Department of Fisheries (DoF). The analysis identifies major climate drivers, including rising temperature, erratic rainfall, salinity intrusion, sea-level rise, floods, droughts, cyclones, and extreme events, and reviews their differentiated impacts on key components of the sector: inland capture fisheries, marine fisheries, and aquaculture systems. For inland capture fisheries, the review highlights habitat degradation, biodiversity loss, and disrupted fish migration and breeding cycles. In aquaculture, particularly in coastal systems, this study reviews the challenges posed by disease outbreaks, water quality deterioration, and disruptions in seed supply, affecting species such as carp, tilapia, pangasius, and shrimp. Coastal aquaculture is also particularly vulnerable to cyclones, tidal surges, and saline water intrusion, with documented economic losses from events such as Cyclones Yaas, Bulbul, Amphan, and Remal. The study synthesizes key findings related to climate-resilient aquaculture practices, monitoring frameworks, ecosystem-based approaches, and community-based adaptation strategies. It underscores the need for targeted interventions, especially in coastal areas facing increasing salinity levels and frequent storms. This study calls for collective action through policy interventions, research and development, and the promotion of climate-smart technologies to enhance resilience and sustain fisheries and aquaculture in the context of a rapidly changing climate. Full article
(This article belongs to the Collection Adaptation and Mitigation Practices and Frameworks)
Show Figures

Figure 1

12 pages, 1484 KB  
Article
Are There Resource Allocation Constraints to Floral Production in the Endangered Barbarea vulgaris subsp. lepuznica (Southern Carpathians, Romania)?
by Dan Gafta, Emilia Aczel, Rahela Carpa, Claudia Dănău and Irina Goia
Conservation 2025, 5(4), 56; https://doi.org/10.3390/conservation5040056 - 4 Oct 2025
Viewed by 153
Abstract
Given the endangered status and very limited distribution of Barbarea vulgaris R.Br. subsp. lepuznica (Nyár.) Soó in stressful, high-elevation habitats, where these plants must prioritise the resource acquisition and vegetative growth to sustain their survival and persistence, we aimed to reveal possible abiotic/biotic-driven [...] Read more.
Given the endangered status and very limited distribution of Barbarea vulgaris R.Br. subsp. lepuznica (Nyár.) Soó in stressful, high-elevation habitats, where these plants must prioritise the resource acquisition and vegetative growth to sustain their survival and persistence, we aimed to reveal possible abiotic/biotic-driven constraints in biomass allocation for flower production. Three functional traits, i.e., the tallest shoot height, leaf mass area (LMA) and number of inflorescences (racemes), were measured in thirty plants in each of the three studied populations differing in altitude and sheep grazing intensity (P1—1700 m, grazed; P2—1900 m, ungrazed; P3—2100 m, ungrazed). The LMA and dominant shoot height were significantly higher and, respectively, lower in P3 compared with P1. Although the mean number of racemes in P1 was lower than in P2 and P3, the differences were not statistically significant. The tallest shoot height, followed by the LMA, displayed the highest contribution to differentiating the three populations. The raceme count decreased significantly with increasing height of the dominant shoot in P1 and P2, and also with increasing LMA in P3. The observed constraint in raceme production within all populations is very likely one facet of the trade-off between reproductive and vegetative allocation under harsh edapho-climatic conditions. The studied plants have adopted a conservative-tolerant strategy to cope with the abiotic stress at higher elevations, but an acquisitive-tolerant strategy in face of grazing. The subspecies lepuznica seems to be in a favourable conservation status, but a close monitoring in grazed areas is recommended. Full article
Show Figures

Figure 1

21 pages, 1640 KB  
Review
Advances in the Genus Ulva Research: From Structural Diversity to Applied Utility
by Thanh Thuy Duong, Hang Thi Thuy Nguyen, Hoai Thi Nguyen, Quoc Trung Nguyen, Bach Duc Nguyen, Nguyen Nguyen Chuong, Ha Duc Chu and Lam-Son Phan Tran
Plants 2025, 14(19), 3052; https://doi.org/10.3390/plants14193052 - 2 Oct 2025
Viewed by 421
Abstract
The green macroalgae Ulva Linnaeus, 1753, also known as sea lettuce, is one of the most ecologically and economically significant algal genera. Its representatives occur in marine, brackish, and freshwater environments worldwide and show high adaptability, rapid growth, and marked biochemical diversity. These [...] Read more.
The green macroalgae Ulva Linnaeus, 1753, also known as sea lettuce, is one of the most ecologically and economically significant algal genera. Its representatives occur in marine, brackish, and freshwater environments worldwide and show high adaptability, rapid growth, and marked biochemical diversity. These traits support their ecological roles in nutrient cycling, primary productivity, and habitat provision, and they also explain their growing relevance to the blue bioeconomy. This review summarizes current knowledge of Ulva biodiversity, taxonomy, and physiology, and evaluates applications in food, feed, bioremediation, biofuel, pharmaceuticals, and biomaterials. Particular attention is given to molecular approaches that resolve taxonomic difficulties and to biochemical profiles that determine nutritional value and industrial potential. This review also considers risks and limitations. Ulva species can act as hyperaccumulators of heavy metals, microplastics, and organic pollutants, which creates safety concerns for food and feed uses and highlights the necessity of strict monitoring and quality control. Technical and economic barriers restrict large-scale use in energy and material production. By presenting both opportunities and constraints, this review stresses the dual role of Ulva as a promising bioresource and a potential ecological risk. Future research must integrate molecular genetics, physiology, and applied studies to support sustainable utilization and ensure safe contributions of Ulva to biodiversity assessment, environmental management, and bioeconomic development. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

26 pages, 12966 KB  
Article
Dynamic Co-Optimization of Features and Hyperparameters in Object-Oriented Ensemble Methods for Wetland Mapping Using Sentinel-1/2 Data
by Yue Ma, Yongchao Ma, Qiang Zheng and Qiuyue Chen
Water 2025, 17(19), 2877; https://doi.org/10.3390/w17192877 - 2 Oct 2025
Viewed by 332
Abstract
Wetland mapping plays a crucial role in monitoring wetland ecosystems, water resource management, and habitat suitability assessment. Wetland classification remains significantly challenging due to the diverse types, intricate spatial patterns, and highly dynamic nature. This study proposed a dynamic hybrid method that integrated [...] Read more.
Wetland mapping plays a crucial role in monitoring wetland ecosystems, water resource management, and habitat suitability assessment. Wetland classification remains significantly challenging due to the diverse types, intricate spatial patterns, and highly dynamic nature. This study proposed a dynamic hybrid method that integrated feature selection and object-oriented ensemble model construction to improve wetland mapping using Sentinel-1 and Sentinel-2 data. The proposed feature selection approach integrates the ReliefF and recursive feature elimination (RFE) algorithms with a feature evaluation criterion based on Shapley additive explanations (SHAP) values, aiming to optimize the feature set composed of various variables. During the construction of ensemble models (i.e., RF, XGBoost, and LightGBM) with features selected by RFE, hyperparameter tuning is subsequently conducted using Bayesian optimization (BO), ensuring that the selected optimal features and hyperparameters significantly enhance the accuracy and performance of the classifiers. The accuracy assessment demonstrates that the BO-LightGBM model with ReliefF-RFE-SHAP-selected features achieves superior performance to the RF and XGBoost models, achieving the highest overall accuracy of 89.4% and a kappa coefficient of 0.875. The object-oriented classification maps accurately depict the spatial distribution patterns of different wetland types. Furthermore, SHAP values offer global and local interpretations of the model to better understand the contribution of various features to wetland classification. The proposed dynamic hybrid method offers an effective tool for wetland mapping and contributes to wetland environmental monitoring and management. Full article
(This article belongs to the Special Issue Remote Sensing of Spatial-Temporal Variation in Surface Water)
Show Figures

Figure 1

21 pages, 11783 KB  
Article
Spatio-Temporal Pattern Analysis of African Swine Fever Spreading in Northwestern Italy—The Role of Habitat Interfaces
by Samuele De Petris, Tommaso Orusa, Annalisa Viani, Francesco Feliziani, Marco Sordilli, Sabatino Troisi, Simona Zoppi, Marco Ragionieri, Riccardo Orusa and Enrico Borgogno-Mondino
Animals 2025, 15(19), 2886; https://doi.org/10.3390/ani15192886 - 2 Oct 2025
Viewed by 570
Abstract
African swine fever (ASF) is a highly contagious viral disease with significant impacts on domestic pigs and wild boar populations. This study applies GIS-based spatial analysis to monitor ASF outbreaks in northwestern Italy (Piedmont and Liguria) and identify areas at increased risk. Key [...] Read more.
African swine fever (ASF) is a highly contagious viral disease with significant impacts on domestic pigs and wild boar populations. This study applies GIS-based spatial analysis to monitor ASF outbreaks in northwestern Italy (Piedmont and Liguria) and identify areas at increased risk. Key factors considered include pig density, wildlife proximity, and environmental conditions. The spatial analysis revealed that central–western municipalities exhibited higher risk due to favorable environmental conditions and dense wild boar populations, while peripheral areas showed a temporal delay in outbreak emergence. Mapping the spreading rate and habitat interfaces allowed the development of a spatial risk model, which was further analyzed using geostatistical techniques to understand disease dynamics. The results demonstrate the effectiveness of geospatial modeling in identifying high-risk zones, characterizing spatio-temporal patterns, and supporting targeted prevention and surveillance strategies. These findings provide actionable insights for ASF management and resource allocation. Future studies may refine these models by integrating additional datasets and environmental variables, enhancing predictive capacity and applicability across different regions. Full article
Show Figures

Figure 1

Back to TopTop