Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = harmonic balance method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8623 KB  
Article
Voltage Fluctuation Enhancement of Grid-Connected Power System Using PV and Battery-Based Dynamic Voltage Restorer
by Tao Zhang, Yao Zhang, Zhiwei Wang, Zhonghua Yao and Zhicheng Zhang
Electronics 2025, 14(17), 3413; https://doi.org/10.3390/electronics14173413 - 27 Aug 2025
Abstract
The Dynamic Voltage Restorer (DVR), which is connected in series between the power grid and the load, can rapidly compensate for voltage disturbances to maintain stable voltage at the load end. To enhance the energy supply capacity of the DVR and utilize its [...] Read more.
The Dynamic Voltage Restorer (DVR), which is connected in series between the power grid and the load, can rapidly compensate for voltage disturbances to maintain stable voltage at the load end. To enhance the energy supply capacity of the DVR and utilize its shared circuit topology with photovoltaic (PV) inverters—which enables the dual functions of voltage compensation and PV-storage power generation—this study integrates PV and energy storage as a coordinated energy unit into the DVR, forming a PV-storage-integrated DVR system. The core innovation of this system lies in extending the voltage disturbance detection capability of the DVR to include harmonics. By incorporating a Butterworth filtering module and voltage fluctuation tracking technology, high-precision disturbance identification is achieved, thereby supporting power balance control and functional coordination. Furthermore, a multi-mode-power coordinated regulation method is proposed, enabling dynamic switching between operating modes based on PV output. Simulation and experimental results demonstrate that the proposed system and strategy enable smooth mode transitions. This approach not only ensures reliable voltage compensation for sensitive loads but also enhances the grid-support capability of PV systems, offering an innovative technical solution for the integration of renewable energy and power quality management. Full article
Show Figures

Figure 1

21 pages, 1247 KB  
Article
ERLD-HC: Entropy-Regularized Latent Diffusion for Harmony-Constrained Symbolic Music Generation
by Yang Li
Entropy 2025, 27(9), 901; https://doi.org/10.3390/e27090901 - 25 Aug 2025
Viewed by 146
Abstract
Recently, music generation models based on deep learning have made remarkable progress in the field of symbolic music generation. However, the existing methods often have problems of violating musical rules, especially since the control of harmonic structure is relatively weak. To address these [...] Read more.
Recently, music generation models based on deep learning have made remarkable progress in the field of symbolic music generation. However, the existing methods often have problems of violating musical rules, especially since the control of harmonic structure is relatively weak. To address these limitations, this paper proposes a novel framework, the Entropy-Regularized Latent Diffusion for Harmony-Constrained (ERLD-HC), which combines a variational autoencoder (VAE) and latent diffusion models with an entropy-regularized conditional random field (CRF). Our model first encodes symbolic music into latent representations through VAE, and then introduces the entropy-based CRF module into the cross-attention layer of UNet during the diffusion process, achieving harmonic conditioning. The proposed model balances two key limitations in symbolic music generation: the lack of theoretical correctness of pure algorithm-driven methods and the lack of flexibility of rule-based methods. In particular, the CRF module learns classic harmony rules through learnable feature functions, significantly improving the harmony quality of the generated Musical Instrument Digital Interface (MIDI). Experiments on the Lakh MIDI dataset show that compared with the baseline VAE+Diffusion, the violation rates of harmony rules of the ERLD-HC model under self-generated and controlled inputs have decreased by 2.35% and 1.4% respectively. Meanwhile, the MIDI generated by the model maintains a high degree of melodic naturalness. Importantly, the harmonic guidance in ERLD-HC is derived from an internal CRF inference module, which enforces consistency with music-theoretic priors. While this does not yet provide direct external chord conditioning, it introduces a form of learned harmonic controllability that balances flexibility and theoretical rigor. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

22 pages, 5990 KB  
Article
An Integrated Quasi-Zero-Stiffness Mechanism with Arrayed Piezoelectric Cantilevers for Low-Frequency Vibration Isolation and Broadband Energy Harvesting
by Kangkang Guo, Anjie Sun and Junhai He
Sensors 2025, 25(16), 5180; https://doi.org/10.3390/s25165180 - 20 Aug 2025
Viewed by 361
Abstract
To address the collaborative demand for low-frequency vibration control and energy recovery, this paper proposes a dual-functional structure integrating low-frequency vibration isolation and broadband energy harvesting. The structure consists of two core components: one is a quasi-zero stiffness (QZS) vibration isolation module composed [...] Read more.
To address the collaborative demand for low-frequency vibration control and energy recovery, this paper proposes a dual-functional structure integrating low-frequency vibration isolation and broadband energy harvesting. The structure consists of two core components: one is a quasi-zero stiffness (QZS) vibration isolation module composed of a linkage-horizontal spring (negative stiffness) and a vertical spring; the other is an energy-harvesting component with an array of parameter-differentiated piezoelectric cantilever beams. Aiming at the conflict between the structural dynamic stiffness approaching zero and broadening the effective working range, this paper establishes a dual-objective optimization function based on the Pareto principle on the basis of static analysis and uses the grid search method combined with actual working conditions to determine the optimal parameter combination. By establishing a multi-degree-of-freedom electromechanical coupling model, the harmonic balance method is used to derive analytical solutions, which are then verified by numerical simulations. The influence laws of external excitations and system parameters on vibration isolation and energy-harvesting performance are quantitatively analyzed. The results show that the optimized structure has an initial vibration isolation frequency below 2 Hz, with a vibration isolation rate exceeding 60% in the 3 to 5 Hz ultra-low frequency range and a minimum transmissibility of the order of 10−2 (vibration isolation rate > 98%). The parameter-differentiated piezoelectric array effectively broadens the energy-harvesting frequency band, which coincides with the vibration isolation range. Synergistic optimization of both performances can be achieved by adjusting system damping, parameters of piezoelectric vibrators, and load resistance. This study provides a theoretical reference for the integrated design of low-frequency vibration control and energy recovery, and its engineering implementation requires further experimental verification. Full article
(This article belongs to the Special Issue Wireless Sensor Networks with Energy Harvesting)
Show Figures

Figure 1

20 pages, 3116 KB  
Article
A Residential Droop-Controlled AC Nanogrid with Power Quality Enhancement
by Ayesha Wajiha Aslam, Víctor Minambres-Marcos and Carlos Roncero-Clemente
Electronics 2025, 14(16), 3306; https://doi.org/10.3390/electronics14163306 - 20 Aug 2025
Viewed by 334
Abstract
Harmonic distortion from non-linear loads poses a significant challenge to power quality in residential nanogrids, often requiring complex control strategies and communication between distributed resources. This paper presents a parallel hybrid inverter system for an AC nanogrid that enhances power quality using only [...] Read more.
Harmonic distortion from non-linear loads poses a significant challenge to power quality in residential nanogrids, often requiring complex control strategies and communication between distributed resources. This paper presents a parallel hybrid inverter system for an AC nanogrid that enhances power quality using only decentralized droop-based primary control, without the need for secondary control or communication links. The system features two inverters with strategic placement: one maintains voltage stability at the point of common coupling, while the other directly supplies the harmonic and reactive current demanded by non-linear loads. A compensation mechanism allows the second inverter to dynamically switch from supplying sinusoidal current to injecting targeted harmonic components, effectively isolating distortion from the main grid. Simulation results confirm that this approach significantly reduces voltage distortion at the PCC and ensures balanced power sharing, all while simplifying the control architecture. The proposed method offers a scalable, cost-effective solution for residential nanogrids seeking to integrate diverse loads and distributed energy resources while maintaining high power quality. Full article
(This article belongs to the Special Issue Recent Advances in Control and Optimization in Microgrids)
Show Figures

Figure 1

30 pages, 3968 KB  
Article
Non-Linear Forced Response of Vibrating Mechanical Systems: The Impact of Computational Parameters
by Enio Colonna, Teresa Berruti, Daniele Botto and Andrea Bessone
Appl. Sci. 2025, 15(16), 9112; https://doi.org/10.3390/app15169112 - 19 Aug 2025
Viewed by 159
Abstract
The harmonic balance method (HBM) is a widely used method for determining the forced response of non-linear systems such as bladed disks. This paper focuses on analyzing the sensitivity of this method to key computational parameters and its robustness. HBM and HBM coupled [...] Read more.
The harmonic balance method (HBM) is a widely used method for determining the forced response of non-linear systems such as bladed disks. This paper focuses on analyzing the sensitivity of this method to key computational parameters and its robustness. HBM and HBM coupled with pseudo arc length continuation are used in this paper to solve the equation of motion of a test case. The pseudo arc length continuation is necessary because when intermittent contact occurs, natural continuation cannot guarantee solver convergence. Intermittent contact, in addition to turning points, introduces further problems, which are caused by an infinite sequence of decaying, but not zero, Fourier coefficients. This results in the need to oversample the non-linear force time signal to avoid convergence problems. The computational parameters investigated in this paper are the samples per period, which determine the number of points in which the time signal is discretized, and the harmonic truncation order. In addition, the connection of contact parameters, such as friction and contact stiffness, with computational parameters is analyzed. This study shows that the number of time samples per period is the most limiting parameter when intermittent contact occurs; whereas, in the absence of intermittent contact convergence, problems can be avoided with a reasonable number of time points. Poor discretization of the signal leads to a bad computation of Fourier coefficients and thus a lack of convergence. Sensitivity analysis shows that the samples per period depend on the contact parameters, especially normal stiffness. To ensure the solver robustness, it is important to set the computation parameters appropriately to ensure the convergence of the solver while avoiding unnecessary computation effort. Full article
(This article belongs to the Special Issue Advances in Structural Design for Turbomachinery Applications)
Show Figures

Figure 1

15 pages, 8766 KB  
Article
Strong-Field Interaction of Molecules with Linearly Polarized Light: Pathway to Circularly Polarized Harmonic Generation
by Shushan Zhou, Hao Wang, Nan Xu, Dan Wu and Muhong Hu
Symmetry 2025, 17(8), 1329; https://doi.org/10.3390/sym17081329 - 15 Aug 2025
Viewed by 313
Abstract
In recent years, the generation of circularly polarized attosecond pulses has garnered significant attention due to their potential applications in ultrafast spectroscopy and, notably, in chiral-sensitive molecular detection. The traditional methods for generating such pulses often involve complex laser configurations or specially engineered [...] Read more.
In recent years, the generation of circularly polarized attosecond pulses has garnered significant attention due to their potential applications in ultrafast spectroscopy and, notably, in chiral-sensitive molecular detection. The traditional methods for generating such pulses often involve complex laser configurations or specially engineered targets, limiting their experimental feasibility. In this study, we present a streamlined and effective approach to producing circularly polarized attosecond pulses by employing a linearly polarized laser field in conjunction with a stereosymmetric linear molecule, 1-butyne (C4H6). The generation of high-order harmonics by this molecular system reveals a distinct plateau in the perpendicular polarization component, which facilitates the generation of isolated attosecond pulses with circular polarization. Through a detailed analysis of the time-dependent charge density dynamics across atomic sites, we identify the atoms primarily responsible for the emission of circularly polarized harmonics in the plane orthogonal to the driving field. Moreover, we explore the role of multi-orbital contributions in shaping the polarization properties of the harmonic spectra. Our findings underscore the importance of molecular symmetry and the electronic structure in tailoring the harmonic polarization, and they demonstrate a viable pathway for using circularly polarized attosecond pulses to probe molecular chirality. This method offers a balance between simplicity and performance, opening new avenues for practical applications in chiral recognition and ultrafast stereochemical analysis. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

22 pages, 19394 KB  
Article
Modelling of Spatial Harmonic Interactions in a Modular PM Generator
by Tomasz Węgiel and Dariusz Borkowski
Energies 2025, 18(16), 4297; https://doi.org/10.3390/en18164297 - 12 Aug 2025
Viewed by 205
Abstract
This study analyses the spatial harmonic interactions of the magnetic field with winding currents for a modular PM generator (MPMG) in steady-state operation. We created MPMG mathematical model in which we applied the harmonic balance method (HBM) to an unusual stator winding connection [...] Read more.
This study analyses the spatial harmonic interactions of the magnetic field with winding currents for a modular PM generator (MPMG) in steady-state operation. We created MPMG mathematical model in which we applied the harmonic balance method (HBM) to an unusual stator winding connection involving parallel path configurations. A star or delta stator winding configuration with two winding paths connected in parallel or in series was introduced. In this way, we obtained four different winding diagrams. However, this approach required some systematization of the analytical model. Using transformations to symmetrical components helped us to make some simplifications of the model, especially for the symmetry of load. We used the proposed model to verify the numerical calculations by performing measurements on a laboratory test stand for a single segment. We performed comparative analyses of the measurement results of the generator-phase currents for four characteristic cases of the stator winding reconfiguration, and the calculations verified the ideal qualitative convergences and satisfactory quantitative convergences. Full article
(This article belongs to the Special Issue Advances in Permanent Magnet Synchronous Generator)
Show Figures

Figure 1

31 pages, 7697 KB  
Article
YConvFormer: A Lightweight and Robust Transformer for Gearbox Fault Diagnosis with Time–Frequency Fusion
by Yihang Peng, Jianjie Zhang, Songpeng Liu, Mingyang Zhang and Yichen Guo
Sensors 2025, 25(15), 4862; https://doi.org/10.3390/s25154862 - 7 Aug 2025
Viewed by 451
Abstract
This paper addresses the core contradiction in fault diagnosis of gearboxes in heavy-duty equipment, where it is challenging to achieve both lightweight and robustness in dynamic industrial environments. Current diagnostic algorithms often struggle with balancing computational efficiency and diagnostic accuracy, particularly in noisy [...] Read more.
This paper addresses the core contradiction in fault diagnosis of gearboxes in heavy-duty equipment, where it is challenging to achieve both lightweight and robustness in dynamic industrial environments. Current diagnostic algorithms often struggle with balancing computational efficiency and diagnostic accuracy, particularly in noisy and variable operating conditions. Many existing methods either rely on complex architectures that are computationally expensive or oversimplified models that lack robustness to environmental interference. A novel, lightweight, and robust diagnostic network, YConvFormer, is proposed. Firstly, a time–frequency joint input channel is introduced, which integrates time-domain waveforms and frequency-domain spectrums at the input layer. It incorporates an Efficient Channel Attention mechanism with dynamic weighting to filter noise in specific frequency bands, suppressing high-frequency noise and enhancing the complementary relationship between time–frequency features. Secondly, an axial-enhanced broadcast attention mechanism is proposed. It models long-range temporal dependencies through spatial axial modeling, expanding the receptive field of shock features, while channel axial reinforcement strengthens the interaction of harmonics across frequency bands. This mechanism refines temporal modeling with minimal computation. Finally, the YConvFormer lightweight architecture is proposed, which combines shallow feature processing with global–local modeling, significantly reducing computational load. The experimental results on the XJTU and SEU gearbox datasets show that the proposed method improves the average accuracy by 6.55% and 19.58%, respectively, compared to the best baseline model, LiteFormer. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

25 pages, 8491 KB  
Article
Application of a Novel Pseudo-Spectral Time-Marching Method to Turbomachinery
by Jesús Matesanz-García and Roque Corral
Int. J. Turbomach. Propuls. Power 2025, 10(3), 19; https://doi.org/10.3390/ijtpp10030019 - 6 Aug 2025
Viewed by 342
Abstract
A novel efficient method to evaluate time-periodic flows is applied to turbomachinery configurations in this paper (PSpTM). The technique reduces the overall computational cost of unsteady CFD calculations relative to conventional implicit approaches. The method is based on a pseudo-spectral definition of the [...] Read more.
A novel efficient method to evaluate time-periodic flows is applied to turbomachinery configurations in this paper (PSpTM). The technique reduces the overall computational cost of unsteady CFD calculations relative to conventional implicit approaches. The method is based on a pseudo-spectral definition of the time derivative rearranged in a time-marching fashion. The key advantage of this novel formulation compared with classical harmonic methods is that it requires minor modifications in the CFD solver structure. The method was implemented into an existing unstructured edge-based, second-order, compressible RANS solver. To benchmark the method, a well-established implicit time scheme based on a second-order backward implicit approach (BDF2) is used. Sample unsteady turbomachinery configurations are used to determine the accuracy and efficiency of the method. The accuracy of the solution is highly linked to the number of harmonics prescribed for the solution. An adequate level of accuracy was obtained while retaining a reduced number of harmonics, with approximately twice the number of harmonics of the unsteady perturbation. Notable savings in computational cost were observed when the PSpTM method was used with speed-up factors of between 2 and 10 with respect to the BDF2, depending on the case. However, the PSpTM method exhibits a poor periodic convergence rate, leaving room for further improvements in efficiency. However, even in its current form and with the current understanding, the method has a remarkable performance. Full article
Show Figures

Figure 1

29 pages, 540 KB  
Systematic Review
Digital Transformation in International Trade: Opportunities, Challenges, and Policy Implications
by Sina Mirzaye and Muhammad Mohiuddin
J. Risk Financial Manag. 2025, 18(8), 421; https://doi.org/10.3390/jrfm18080421 - 1 Aug 2025
Viewed by 1187
Abstract
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) [...] Read more.
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) How do these effects vary by countries’ development level and firm size?—we conducted a PRISMA-compliant systematic literature review covering 2010–2024. Searches across eight major databases yielded 1857 records; after duplicate removal, title/abstract screening, full-text assessment, and Mixed Methods Appraisal Tool (MMAT 2018) quality checks, 86 peer-reviewed English-language studies were retained. Findings reveal three dominant technology clusters: (1) e-commerce platforms and cloud services, (2) IoT-enabled supply chain solutions, and (3) emerging AI analytics. E-commerce and cloud adoption consistently raise export intensity—doubling it for digitally mature SMEs—while AI applications are the fastest-growing research strand, particularly in East Asia and Northern Europe. However, benefits are uneven: firms in low-infrastructure settings face higher fixed digital costs, and cybersecurity and regulatory fragmentation remain pervasive obstacles. By integrating trade economics with development and SME internationalization studies, this review offers the first holistic framework that links national digital infrastructure and policy support to firm-level export performance. It shows that the trade-enhancing effects of digitalization are contingent on robust broadband penetration, affordable cloud access, and harmonized data-governance regimes. Policymakers should, therefore, prioritize inclusive digital-readiness programs, while business leaders should invest in complementary capabilities—data analytics, cyber-risk management, and cross-border e-logistics—to fully capture digital trade gains. This balanced perspective advances theory and practice on building resilient, equitable digital trade ecosystems. Full article
(This article belongs to the Special Issue Modern Enterprises/E-Commerce Logistics and Supply Chain Management)
Show Figures

Figure 1

20 pages, 8538 KB  
Article
Compressor Diffuser Design Impact on a Microjet Working Line—An Experimental and Numerical Case Study
by Valeriu Drăgan, Bogdan Gherman, Oana Dumitrescu, Cornel Mihai Tărăbîc and Cristian Olariu
Aerospace 2025, 12(8), 667; https://doi.org/10.3390/aerospace12080667 - 26 Jul 2025
Viewed by 347
Abstract
This study examines the performance of two diffuser configurations—a trumpet-shaped and a semi-diagonal design—for application in micro gas turbine engines, aiming to assess their suitability in terms of efficiency and operational flexibility. Both diffusers were initially evaluated using steady-state CFD simulations with the [...] Read more.
This study examines the performance of two diffuser configurations—a trumpet-shaped and a semi-diagonal design—for application in micro gas turbine engines, aiming to assess their suitability in terms of efficiency and operational flexibility. Both diffusers were initially evaluated using steady-state CFD simulations with the k-omega SST turbulence model, followed by experimental testing on an actual engine across the start-up sequence from idle to 70% of nominal speed. Performance was mapped over four constant-speed lines for each configuration. Results showed that the trumpet-shaped diffuser offered a greater choke margin but suffered from increased aerodynamic losses, whereas the semi-diagonal diffuser demonstrated higher efficiency but required closer alignment with the target operating point. The k-omega SST model showed strong predictive accuracy, with 5.13% agreement across all instrumented parameters for all investigated speed lines. These findings suggest that while the trumpet diffuser provides better stability, the semi-diagonal design is more efficient when properly targeted. Future work will focus on extending the analysis to higher speed ranges and transient regimes using harmonic balance CFD methods and enhanced data acquisition techniques. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 2089 KB  
Article
Analytical Periodic Solutions for Non-Homogenous Integrable Dispersionless Equations Using a Modified Harmonic Balance Method
by Muhammad Irfan Khan, Yiu-Yin Lee and Muhammad Danish Zia
Mathematics 2025, 13(15), 2386; https://doi.org/10.3390/math13152386 - 24 Jul 2025
Viewed by 328
Abstract
In this study, we outline a modified harmonic balance method for solving non-homogenous integrable dispersionless equations and obtaining the corresponding periodic solutions, a research field which shows limited investigation. This study is the first to solve this nonlinear problem, based on a recently [...] Read more.
In this study, we outline a modified harmonic balance method for solving non-homogenous integrable dispersionless equations and obtaining the corresponding periodic solutions, a research field which shows limited investigation. This study is the first to solve this nonlinear problem, based on a recently developed harmonic balance method combined with Vieta’s substitution technique. A set of analytical formulas are generated from the modified harmonic balance method and used to compute the approximate periodic solutions of the dispersionless equations. The main advantage of this method is that the computation effort required in the solution procedure can be smaller. The results of the modified harmonic balance method show reasonable agreement with those obtained using the classic harmonic balance method. Our proposed solution method can decouple the nonlinear algebraic equations generated in the harmonic balance process. We also investigated the effects of various parameters on nonlinear periodic responses and harmonic convergence. Full article
(This article belongs to the Special Issue Modeling and Control in Vibrational and Structural Dynamics)
Show Figures

Figure 1

18 pages, 6362 KB  
Article
Active Neutral-Point Voltage Balancing Strategy for Single-Phase Three-Level Converters in On-Board V2G Chargers
by Qiubo Chen, Zefu Tan, Boyu Xiang, Le Qin, Zhengyang Zhou and Shukun Gao
World Electr. Veh. J. 2025, 16(7), 406; https://doi.org/10.3390/wevj16070406 - 21 Jul 2025
Viewed by 280
Abstract
Driven by the rapid advancement of Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies, improving power quality and system stability during charging and discharging has become a research focus. To address this, this paper proposes a Model Predictive Control (MPC) strategy for Active Neutral-Point Voltage [...] Read more.
Driven by the rapid advancement of Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies, improving power quality and system stability during charging and discharging has become a research focus. To address this, this paper proposes a Model Predictive Control (MPC) strategy for Active Neutral-Point Voltage Balancing (ANPVB) in a single-phase three-level converter used in on-board V2G chargers. Traditional converters rely on passive balancing using redundant vectors, which cannot ensure neutral-point (NP) voltage stability under sudden load changes or frequent power fluctuations. To solve this issue, an auxiliary leg is introduced into the converter topology to actively regulate the NP voltage. The proposed method avoids complex algorithm design and weighting factor tuning, simplifying control implementation while improving voltage balancing and dynamic response. The results show that the proposed Model Predictive Current Control-based ANPVB (MPCC-ANPVB) and Model Predictive Direct Power Control-based ANPVB (MPDPC-ANPVB) strategies maintain the NP voltage within ±0.7 V, achieve accurate power tracking within 50 ms, and reduce the total harmonic distortion of current (THDi) to below 1.89%. The proposed strategies are tested in both V2G and G2V modes, confirming improved power quality, better voltage balance, and enhanced dynamic response. Full article
Show Figures

Figure 1

29 pages, 15556 KB  
Article
Vortex-Induced Vibration Predictions of a Circular Cylinder Using an Efficient Pseudo-Time Code-Coupling Approach
by Hang Li and Kivanc Ekici
Fluids 2025, 10(7), 182; https://doi.org/10.3390/fluids10070182 - 11 Jul 2025
Viewed by 420
Abstract
Presented in this work is a harmonic balance (HB)-based pseudo-time code-coupling approach applied to a one-degree-of-freedom vortex-induced vibration (VIV) problem of a circular cylinder in a low-Reynolds-number laminar flow regime. Unlike physical time coupling used in traditional time-accurate methods, this novel approach updates [...] Read more.
Presented in this work is a harmonic balance (HB)-based pseudo-time code-coupling approach applied to a one-degree-of-freedom vortex-induced vibration (VIV) problem of a circular cylinder in a low-Reynolds-number laminar flow regime. Unlike physical time coupling used in traditional time-accurate methods, this novel approach updates both of the fluid and structure fields by integrating respective HB forms of governing equations in pseudo-time, and then couples the two fields in pseudo-time using a partitioned approach. A separate procedure is adopted to determine the VIV frequency at every code-coupling iteration, which enables the simultaneous convergence of variables of both fields in a single run of the solver. For the cases considered here, lock-in vibrations are predicted over a range of Reynolds numbers, inside and outside the resonant range. The results are verified by a time-accurate method and also validated against earlier experimental data, demonstrating the efficiency and robustness of the pseudo-time code-coupling approach. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

19 pages, 4711 KB  
Article
Dynamical Analysis and Optimization of Combined Vibration Isolator with Time Delay
by Yaowei Wang and Xiangyu Li
Mathematics 2025, 13(13), 2188; https://doi.org/10.3390/math13132188 - 4 Jul 2025
Viewed by 313
Abstract
Vibration control has long been a key concern in engineering, with low-frequency vibration isolation remaining particularly challenging. Traditional linear isolators are limited in their ability to provide high load-bearing capacity and effective low-frequency isolation simultaneously. In contrast, quasi-zero stiffness (QZS) isolators offer low [...] Read more.
Vibration control has long been a key concern in engineering, with low-frequency vibration isolation remaining particularly challenging. Traditional linear isolators are limited in their ability to provide high load-bearing capacity and effective low-frequency isolation simultaneously. In contrast, quasi-zero stiffness (QZS) isolators offer low dynamic stiffness near equilibrium while maintaining high static stiffness, thereby enabling superior isolation performance in the low and ultra-low frequency range. This paper proposes a novel vibration isolation system that combines a grounded dynamic absorber with a QZS isolator, incorporating time-delay feedback control to enhance performance. The dynamic equations of the system are derived using Newton’s second law. The harmonic balance method combined with the arc-length continuation technique is employed to obtain steady-state responses under harmonic force excitation. The influence of feedback gain and time delay on vibration isolation effectiveness and dynamic behavior is analyzed, demonstrating the ability of time-delay feedback to modulate system responses and suppress primary resonance peaks. To further enhance performance, a genetic algorithm is used to optimize the control parameters under harmonic force excitation. The force transmissibility is defined as fitness functions, and the effects of control parameters on these metrics are examined. The results show that the optimized time-delay feedback parameters significantly reduce the transmitted force, improving the overall isolation efficiency. The proposed system provides a promising approach for achieving high-performance vibration isolation in low-frequency environments. Full article
Show Figures

Figure 1

Back to TopTop