Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = hesperidin methylchalcone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 8972 KB  
Review
Skin Photoaging and the Biological Mechanism of the Protective Effects of Hesperidin and Derived Molecules
by Paolo Bellavite and Alice Imbriano
Antioxidants 2025, 14(7), 788; https://doi.org/10.3390/antiox14070788 - 26 Jun 2025
Viewed by 2899
Abstract
The ultraviolet (UV) component of solar radiation is a major risk factor for the development of skin ailments, ranging from erythema in acute cases to premature skin aging and skin cancer in chronic reactions. While skin cells show a remarkable protective capacity against [...] Read more.
The ultraviolet (UV) component of solar radiation is a major risk factor for the development of skin ailments, ranging from erythema in acute cases to premature skin aging and skin cancer in chronic reactions. While skin cells show a remarkable protective capacity against solar radiation, there is a growing interest in the use of natural substances for photoprotection purposes. This article describes the molecular and cellular mechanisms underlying UV radiation-induced skin aging, with a particular focus on the potential beneficial effects of hesperidin and its derivatives: hesperetin, hesperidin glucoside, and hesperidin methylchalcone. A review of the literature from the last 20 years reveals a substantial body of experimental evidence supporting the role of hesperidin in protecting the skin against UV radiation, and its effects on skin cells and tissue, including oxidative stress and aging processes. Moreover, flavonoids have other beneficial effects on skin cell vitality by modulating the immune system, metalloproteinases, and angiogenesis. The key mechanisms for the action of hesperidin and its derivatives involve the activation of the Nrf-2/ARE system, the expression of longevity genes CISD2, and interference with the MAP kinase and PI3PK/Akt signal transduction pathways. In murine experimental models, these derivative molecules have a protective role both systemically after dietary intake and through the topical application of dermocosmetic creams. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

18 pages, 4002 KB  
Article
The Flavonoid Hesperidin Methyl Chalcone Targets Cytokines and Oxidative Stress to Reduce Diclofenac-Induced Acute Renal Injury: Contribution of the Nrf2 Redox-Sensitive Pathway
by Allan J. C. Bussmann, Tiago H. Zaninelli, Telma Saraiva-Santos, Victor Fattori, Carla F. S. Guazelli, Mariana M. Bertozzi, Ketlem C. Andrade, Camila R. Ferraz, Doumit Camilios-Neto, Antônio M. B. Casella, Rubia Casagrande, Sergio M. Borghi and Waldiceu A. Verri
Antioxidants 2022, 11(7), 1261; https://doi.org/10.3390/antiox11071261 - 27 Jun 2022
Cited by 24 | Viewed by 5360
Abstract
Hesperidin is derived from citrus fruits among other plants. Hesperidin was methylated to increase its solubility, generating hesperidin methyl chalcone (HMC), an emerging flavonoid that possess anti-inflammatory and antioxidant properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a powerful regulator of [...] Read more.
Hesperidin is derived from citrus fruits among other plants. Hesperidin was methylated to increase its solubility, generating hesperidin methyl chalcone (HMC), an emerging flavonoid that possess anti-inflammatory and antioxidant properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a powerful regulator of cellular resistance to oxidant products. Previous data evidenced HMC can activate Nrf2 signaling, providing antioxidant protection against diverse pathological conditions. However, its effects on kidney damage caused by non-steroidal anti-inflammatory drugs (NSAIDs) have not been evaluated so far. Mice received a nephrotoxic dose of diclofenac (200 mg/kg) orally followed by intra-peritoneal (i.p.) administration of HMC (0.03–3 mg/kg) or vehicle. Plasmatic levels of urea, creatinine, oxidative stress, and cytokines were assessed. Regarding the kidneys, oxidative parameters, cytokine production, kidney swelling, urine NGAL, histopathology, and Nrf2 mRNA expression and downstream targets were evaluated. HMC dose-dependently targeted diclofenac systemic alterations by decreasing urea and creatinine levels, and lipid peroxidation, as well as IL-6, IFN-γ, and IL-33 production, and restored antioxidant properties in plasma samples. In kidney samples, HMC re-established antioxidant defenses, inhibited lipid peroxidation and pro-inflammatory cytokines and upregulated IL-10, reduced kidney swelling, urine NGAL, and histopathological alterations. Additionally, HMC induced mRNA expression of Nrf2 and its downstream effectors HO-1 and Nqo1, as well as reduced the levels of Keap1 protein detected in renal tissue. The present data demonstrate HMC is a potential compound for the treatment of acute renal damage caused by diclofenac, a routinely prescribed non-steroidal anti-inflammatory drug. Full article
(This article belongs to the Special Issue Antioxidant Compounds and Health Benefits of Citrus Fruits)
Show Figures

Figure 1

Back to TopTop