Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,469)

Search Parameters:
Keywords = high light stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10889 KB  
Article
Genome-Wide Identification of the YABBY Gene Family in Maize and Its Expression Analysis Under Low Phosphorus and High Nitrogen Stress
by Feiyan Li, Shuang Li, Litao Yi, Pu Zhao, Chunhong Ma, Xianting Huang, Jiuguang Wang, Chaoxian Liu, Bo Jiao, Xiupeng Mei and Chaofeng Li
Plants 2025, 14(17), 2763; https://doi.org/10.3390/plants14172763 - 4 Sep 2025
Abstract
YABBY transcription factors (TFs) are key regulators involved in diverse aspects of plant growth, organogenesis, and adaptation to environmental stresses. However, the functional characteristics of YABBY TFs in maize remain largely unexplored. In this study, we systematically identified 12 YABBY genes in the [...] Read more.
YABBY transcription factors (TFs) are key regulators involved in diverse aspects of plant growth, organogenesis, and adaptation to environmental stresses. However, the functional characteristics of YABBY TFs in maize remain largely unexplored. In this study, we systematically identified 12 YABBY genes in the maize genome and characterized their gene structures, physicochemical properties, chromosome location, and genomic collinearity. Phylogenetic analysis classified these genes into five subfamilies, with members of each subfamily exhibiting highly conserved exon–intron structures and motif compositions, indicative of potential functional conservation within subfamilies. Cis-regulatory element analysis indicated that YABBY genes may be involved in developmental processes, abiotic stress responses, and light-mediated signaling pathways. Moreover, transcriptome sequencing combined with qRT-PCR validation demonstrated that several YABBY genes, including ZmYABBY2, ZmYABBY5, ZmYABBY8, and ZmYABBY9, are responsive to low-phosphorus and high-nitrogen conditions, implying their potential roles in nutrient stress adaptation. It is worth mentioning that this study redefined the composition of the maize YABBY gene family by excluding a previously annotated member and, for the first time, established a link between YABBY transcription factors and nutrient stress responses. Meanwhile, this is also the first time that protein structure analysis, cis-regulatory element analysis, interspecific collinearity analysis and subcellular localization have been performed on maize ZmYABBY gene family. In summary, our study provides valuable gene resources for maize molecular breeding and offers new insights into the functions of YABBY TFs. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

21 pages, 679 KB  
Review
The Role of Blood-Based Biomarkers in Transforming Alzheimer’s Disease Research and Clinical Management: A Review
by Vera Pacoova Dal Maschio, Fausto Roveta, Lucrezia Bonino, Silvia Boschi, Innocenzo Rainero and Elisa Rubino
Int. J. Mol. Sci. 2025, 26(17), 8564; https://doi.org/10.3390/ijms26178564 - 3 Sep 2025
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative condition representing the most common cause of dementia and currently affects millions of people worldwide. The clinical presentation includes memory impairment, cognitive decline, and neuropsychiatric symptoms, reflecting pathological hallmarks such as β-amyloid (Aβ) plaques, neurofibrillary tangles, [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative condition representing the most common cause of dementia and currently affects millions of people worldwide. The clinical presentation includes memory impairment, cognitive decline, and neuropsychiatric symptoms, reflecting pathological hallmarks such as β-amyloid (Aβ) plaques, neurofibrillary tangles, synaptic dysfunction, and neuroinflammation. Despite being the gold standard for detecting amyloid and tau pathologies in vivo, cerebrospinal fluid (CSF) biomarkers and positron emission tomography (PET) imaging are not widely used in the clinical setting because of invasiveness, high costs, and restricted accessibility. Recent advances in blood-based biomarkers offer a promising and minimally invasive tool for early detection, diagnosis, and monitoring of AD. Ultra-sensitive analytical platforms, including single-molecule arrays (Simoa) and immunoprecipitation-mass spectrometry, now enable reliable quantification of plasma Aβ isoforms, phosphorylated tau variants (p-Tau181, p-Tau217, p-Tau231), neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP). In addition, blood biomarkers reflecting oxidative stress, neuroinflammation, synaptic disruption and metabolic dysfunction are under active investigation. This narrative review synthesizes current evidence on blood-based biomarkers in AD, emphasizing their biological relevance, diagnostic accuracy, and clinical applications. Finally, we highlight forthcoming challenges, such as standardization, and future directions, including the use of artificial intelligence in precision medicine. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

21 pages, 1829 KB  
Article
Construction of Climate Suitability Evaluation Model for Winter Wheat and Analysis of Its Spatiotemporal Characteristics in Beijing-Tianjin-Hebei Region, China
by Chang Liu, Lei Hong, Mingqing Liu, Yanyan Ni, Jie Hu, Ming Li, Yining Zhu, Lianxi Wang, Jing Hua and Lei Wang
Sustainability 2025, 17(17), 7929; https://doi.org/10.3390/su17177929 - 3 Sep 2025
Abstract
Climate change alters climatic factors, which in turn affect the suitability of crops to grow. Winter wheat is a major crop in the Beijing-Tianjin-Heibei region of China. To assess the climate factors on winter wheat production, the meteorological data (temperature, precipitation, sunshine, etc.) [...] Read more.
Climate change alters climatic factors, which in turn affect the suitability of crops to grow. Winter wheat is a major crop in the Beijing-Tianjin-Heibei region of China. To assess the climate factors on winter wheat production, the meteorological data (temperature, precipitation, sunshine, etc.) from 25 stations in the target region the Beijing-Tianjin-Hebei region of China from 1961 to 2010, the winter wheat yield data from 1978 to 2010, and the growth stages were used. A model of the suitability of light, temperature, and water was subsequently developed to quantitatively analyze the spatial and temporal variability of the suitability of the winter wheat to the climate of the region. Temperature suitability was high during the sowing and grouting periods (temperature suitability peaks at 0.941 during grouting) and lowest in the rejuvenation period. In terms of spatial distribution, it is strong in the south and low in the north, and it exhibits a gradual increase in interannual variation. Precipitation suitability fluctuates steadily, with a peak in the tillering stage and a trough in the jointing stage. In terms of spatial distribution, it is highest in the northeast and decreases in the west; in inter-annual changes, it fluctuates strongly with weak overall growth. Sunshine suitability is stable at 0.9 or above. In spatial distribution, it is high in the northwest and low in the southeast, and it decreases slowly in the interannual variations. The trend of climatic suitability is consistent with temperature and precipitation, showing a pattern of falling first and then rising. In terms of spatial distribution, the overall climate suitability is high in the south and low in the north. In inter-annual changes, climate suitability generally increases slowly. Temperature and precipitation are key factors. Moisture stress became the most important factor for winter wheat cultivation in the region. Sunshine conditions are typically sufficient. This study provides a theoretical basis for a rational layout of winter wheat growing areas in the Beijing-Tianjin-Hebei region and the full utilization of climatic resources. Full article
Show Figures

Figure 1

15 pages, 2419 KB  
Article
Regulation of Light Absorption and Energy Dissipation in Sweet Sorghum Under Climate-Relevant CO2 and Temperature Conditions
by Jin-Jing Li, Li-Hua Liu, Zi-Piao Ye, Chao-Wei Zhang and Xiao-Long Yang
Biology 2025, 14(9), 1185; https://doi.org/10.3390/biology14091185 - 3 Sep 2025
Abstract
Understanding how environmental factors regulate photosynthetic energy partitioning is crucial for enhancing crop resilience in future climates. This study investigated the light-response dynamics of sweet sorghum (Sorghum bicolor L. Moench) leaves under combinations of CO2 concentrations (250, 410, and 550 μmol [...] Read more.
Understanding how environmental factors regulate photosynthetic energy partitioning is crucial for enhancing crop resilience in future climates. This study investigated the light-response dynamics of sweet sorghum (Sorghum bicolor L. Moench) leaves under combinations of CO2 concentrations (250, 410, and 550 μmol mol−1) and temperatures (30 °C and 35 °C), using integrated chlorophyll fluorescence measurements and mechanistic photosynthesis modeling. Our results revealed that elevating CO2 from 250 to 550 μmol mol−1 significantly increased the maximum electron transport rate (Jmax) by up to 57%, and enhanced the effective light absorption cross-section (σ′ik) by 64% under high light and elevated temperature (35 °C), indicating improved photochemical efficiency and light-harvesting capability. Concurrently, these adjustments reduced PSII down-regulation. Increased temperature stimulated thermal dissipation, reflected in a rise in non-photochemical quenching (NPQ) by 0.13–0.26 units, accompanied by a reduction in the number of excited-state pigment molecules (Nk) by 20–33%. The strongly coordinated responses between quantum yield (ΦPSII) and σ′ik highlight a dynamic balance among photochemistry, heat dissipation, and fluorescence. These findings elucidate the synergistic photoprotective and energy-partitioning strategies that sweet sorghum employs under combined CO2 enrichment and heat stress, providing mechanistic insights for optimizing photosynthetic performance in C4 crops in a changing climate. Full article
(This article belongs to the Special Issue Plant Stress Physiology: A Trait Perspective)
Show Figures

Figure 1

18 pages, 2030 KB  
Article
Evaluation of Photosynthetic Performance and Adaptability of Grape Varieties in Arid Regions
by Runze Wang, Haixia Zhong, Fuchun Zhang, Xiaoming Zhou, Meijuan Cheng, Hengde Liu, Shuping Lin, Liping Wang, Xinyu Wu and Liqiang Liu
Horticulturae 2025, 11(9), 1041; https://doi.org/10.3390/horticulturae11091041 - 2 Sep 2025
Viewed by 34
Abstract
Photosynthetic characteristics are critical for grape growth and development. Drought conditions in arid regions significantly affect these characteristics. To identify grape varieties better suited for cultivation in arid environments, this study evaluated the leaf phenotypes and photosynthetic characteristics of 27 table grape varieties [...] Read more.
Photosynthetic characteristics are critical for grape growth and development. Drought conditions in arid regions significantly affect these characteristics. To identify grape varieties better suited for cultivation in arid environments, this study evaluated the leaf phenotypes and photosynthetic characteristics of 27 table grape varieties in Hotan Prefecture, China. Results revealed significant variations in leaf phenotypes and chlorophyll content (SPAD) among varieties under Hotan’s drought conditions. ‘Kyoho’ exhibited the largest leaf area (254.34 cm2), while ‘Munage’ had the smallest (112.43 cm2), and ‘Manaizi’ showed the highest chlorophyll content (SPAD = 44.21). ‘Munage’ and ‘Flame Seedless’ recorded the highest net photosynthetic rates (PNmax = 16.24 and 16.23 μmol·m−2·s−1, respectively), while ‘Thompson Seedless’ had the lowest respiratory loss (RD = 1.15 μmol·m−2·s−1) and light compensation point (Ic = 22.41 μmol·m−2·s−1), with a highly significant positive correlation between RD and Ic. ‘Crimson Seedless’ exhibited the highest light saturation point (Isat = 2745.15 μmol·m−2·s−1). Chlorophyll fluorescence analysis indicated that ‘Autumn Black’ had the highest PSII photochemical yield (Fv/Fm = 0.84), while ‘Zicuiwuhe’ showed high energy transfer indices (PIabs = 1.78, PItotal = 1.66) and electron transfer efficiency (φEo = 0.39). PIabs was significantly correlated with Fv/Fm, Fv/Fo, and energy flux parameters. ‘Molixiang’ demonstrated superior energy utilization, with the highest light absorption (ABS/CSm = 2440.8) and electron transfer flux (ETo/CSm = 874) and the lowest energy dissipation (DIo/CSm = 455.8), supported by a negative correlation between energy dissipation (DIo/CSm) and photochemical efficiency (φEo). Principal component analysis revealed that ‘Molixiang’ had the highest comprehensive photosynthetic adaptability score (0.97), followed by ‘Zicuiwuhe’ (0.79) and ‘Hetianhong’ (0.73), under Hotan’s drought stress conditions. These findings provide valuable insights for selecting and breeding grape varieties adapted to arid environments and climate change. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Figure 1

16 pages, 7825 KB  
Article
Genome-Wide Characterization and Identification of Auxin Response Factor (ARF) Gene Family Reveals the Regulation of RrARF5 in AsA Metabolism in Rosa roxburghii Tratt. Fruits
by Tu Feng, Zhengliang Sun, Mingchun Liu, Hong Zhao, Yizhong Zhang, Pedro Garcia-Caparros, Bin Yang and Yingdie Yang
Biology 2025, 14(9), 1156; https://doi.org/10.3390/biology14091156 - 1 Sep 2025
Viewed by 153
Abstract
Rosa roxburghii Tratt., a fruit crop known for its high Vitamin C content and other nutritional compounds, has not yet been studied for its auxin response factor (ARF) family members. ARFs are important proteins in auxin-mediated pathways, playing a vital role [...] Read more.
Rosa roxburghii Tratt., a fruit crop known for its high Vitamin C content and other nutritional compounds, has not yet been studied for its auxin response factor (ARF) family members. ARFs are important proteins in auxin-mediated pathways, playing a vital role in plant physiological and biochemical processes such as plant development, and flower and fruit maturation. In the present study, we identified 14 ARF genes (designated as RrARFs) in R. roxburghii, which are distributed across seven chromosomes and grouped into four subfamilies. An analysis of cis-acting elements revealed that these genes might be involved in various biological processes, including plant development, flower development, light responses, cell cycle regulation, phytohormone responses, and responses to abiotic and biotic stresses. A gene expression analysis demonstrated differential expression of RrARF genes across different tissues and stages of fruit development, with four members showing higher expression during the fruit ripening stages. Furthermore, a coexpression analysis identified that RrARF5 was highly coexpressed with RrMDHAR1, a key enzyme involved in Vitamin C biosynthesis. Moreover, transactivation assays and transient overexpression experiments confirmed that RrARF5 activates the transcription of RrMDHAR1. The findings of this study suggest a potential role of the ARF gene family in Vitamin C accumulation in R. roxburghii and enhance our understanding of the diverse regulatory function of the ARF gene family in plants. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

29 pages, 12480 KB  
Review
Advances of Welding Technology of Glass for Electrical Applications
by Dejun Yan, Lili Ma, Jiaqi Lu, Dasen Wang and Xiaopeng Li
Materials 2025, 18(17), 4096; https://doi.org/10.3390/ma18174096 - 1 Sep 2025
Viewed by 203
Abstract
Glass, as an amorphous material with excellent optical transparency and chemical stability, plays an irreplaceable role in modern engineering and technology fields such as semiconductor manufacturing and micro-electro-mechanical systems (MEMS). For example, borosilicate glass, with a coefficient of thermal expansion (CTE) that is [...] Read more.
Glass, as an amorphous material with excellent optical transparency and chemical stability, plays an irreplaceable role in modern engineering and technology fields such as semiconductor manufacturing and micro-electro-mechanical systems (MEMS). For example, borosilicate glass, with a coefficient of thermal expansion (CTE) that is close to having good thermal shock resistance and chemical stability, can be applied to MEMS packaging and aerospace fields. SiO2 glass exhibits excellent thermal stability, extremely low optical absorption, and high light transmittance, while also possessing strong chemical stability and extremely low dielectric loss. It is widely used in semiconductors, photolithography, and micro-optical devices. However, the stress sensitivity of traditional mechanical joints and the poor weather resistance of adhesive bonding make conventional methods unsuitable for glass joining. Welding technology, with its advantages of high joint strength, structural integrity, and scalability for mass production, has emerged as a key approach for precision glass joining. In the field of glass welding, technologies such as glass brazing, ultrasonic welding, anodic bonding, and laser welding are being widely studied and applied. With the advancement of laser technology, laser welding has emerged as a key solution to overcoming the bottlenecks of conventional processes. This paper, along with the application cases for these technologies, includes an in-depth study of common issues in glass welding, such as residual stress management and interface compatibility design, as well as prospects for the future development of glass welding technology. Full article
Show Figures

Figure 1

22 pages, 4475 KB  
Article
Genome-Wide Identification and Expression Analysis of the Ginkgo biloba B-Box Gene Family in Response to Hormone Treatments, Flavonoid Levels, and Water Stress
by Meiling Ming, Mulin Yi, Kexin Sun, Anning Zu, Juan Zhang, Fangfang Fu, Fuliang Cao and Xiaoming Yang
Int. J. Mol. Sci. 2025, 26(17), 8427; https://doi.org/10.3390/ijms26178427 - 29 Aug 2025
Viewed by 221
Abstract
B-box (BBX) transcription factors, which are specific to the plant kingdom, play a crucial role in regulating light-dependent growth, development, secondary metabolite biosynthesis, and the response to biotic and abiotic stresses. Despite their significance, there has been a lack of systematic investigation into [...] Read more.
B-box (BBX) transcription factors, which are specific to the plant kingdom, play a crucial role in regulating light-dependent growth, development, secondary metabolite biosynthesis, and the response to biotic and abiotic stresses. Despite their significance, there has been a lack of systematic investigation into the BBX gene family in Ginkgo biloba. In the present study, we identified nine BBX genes within the G. biloba reference genome, distributed across seven chromosomes, and classified them into four groups based on their phylogenetic relationships with the BBX gene families of Arabidopsis thaliana. Our analysis of gene structure, conserved domains, and motifs suggests that GbBBXs exhibit a high degree of conservation throughout evolutionary history. Additionally, synteny analysis revealed that dispersed duplication events have contributed to the expansion of the BBX gene family in G. biloba. An examination of cis-regulatory elements indicated that numerous GbBBX genes contain motifs associated with light, hormones, and stress, suggesting their potential roles in responding to these signals and environmental adaptation. Expression profiles obtained from RNA-Seq data and quantitative Real-Time PCR (qRT-PCR) analyses of GbBBX genes across various organs, hormone treatments, and leaves with differing flavonoid content, as well as during both short-term and long-term water stress, demonstrated their potential roles in flavonoid regulation and responses to hormones and water stress. Subcellular localization studies indicated that the proteins GbBBX5, GbBBX7, GbBBX8, and GbBBX9 are localized within the nucleus. This study is the first thorough analysis of the BBX gene family in G. biloba, providing a valuable foundation for further understanding their evolutionary context and functional roles in flavonoid regulation and responses to water stress. Full article
(This article belongs to the Special Issue Advances in Plant Metabolite Research)
Show Figures

Figure 1

18 pages, 5537 KB  
Article
Effect of Singlet Oxygen on the Stomatal and Cell Wall of Rice Seedling Under Different Stresses
by Yao Xiao, Zhong-Wei Zhang, Xin-Yue Yang, Lin-Bei Xie, Li-Ping Chen, Yang-Er Chen, Ming Yuan, Guang-Deng Chen and Shu Yuan
Int. J. Mol. Sci. 2025, 26(17), 8382; https://doi.org/10.3390/ijms26178382 - 28 Aug 2025
Viewed by 207
Abstract
Singlet oxygen (1O2), a reactive oxygen species, can oxidize lipids, proteins, and DNA at high concentrations, leading to cell death. Despite its extremely short half-life (10−5 s), 1O2 acts as a critical signaling molecule, triggering a [...] Read more.
Singlet oxygen (1O2), a reactive oxygen species, can oxidize lipids, proteins, and DNA at high concentrations, leading to cell death. Despite its extremely short half-life (10−5 s), 1O2 acts as a critical signaling molecule, triggering a retrograde pathway from chloroplasts to the nucleus to regulate nuclear gene expression. In this study, rice seeds were treated with 0, 5, 20 and 80 μM Rose Bengal (RB, a photosensitizer) under moderate light for 3 days to induce 1O2 generation. Treatment with 20 μM RB reduced stomatal density by approximately 25% in three-leaf-stage rice seedlings, while increasing the contents of pectin, hemicellulose, and cellulose in root cell walls by 30–40%. Under drought, salinity, or shading stress, 20 μM RB treatment significantly improved rice tolerance, as evidenced by higher relative water contents (49–58%) and chlorophyll contents (60–76%) and lower malondialdehyde (37–43%) and electrolyte leakage (29–37%) compared to the control. Moreover, RT-qPCR analysis revealed that the significant up-regulation of stomatal development genes (OsTMM and OsβCA1) and cell wall biosynthesis genes (OsF8H and OsLRX2) was associated with RB-induced 1O2 production. Thus, under controlled environmental conditions, 1O2 may regulate stomatal development and cell wall remodeling to enhance rice tolerance to multiple abiotic stresses. These results provide new perspectives for the improvement of rice stress tolerance. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition: 2nd Edition)
Show Figures

Figure 1

39 pages, 27477 KB  
Review
Three-Dimensional Printing and Bioprinting Strategies for Cardiovascular Constructs: From Printing Inks to Vascularization
by Min Suk Kim, Yuri Choi and Keel Yong Lee
Polymers 2025, 17(17), 2337; https://doi.org/10.3390/polym17172337 - 28 Aug 2025
Viewed by 427
Abstract
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that [...] Read more.
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that support surgical planning and biomedical applications. In contrast, 3D bioprinting has emerged as a transformative biofabrication technology that allows for the spatially controlled deposition of living cells and biomaterials to construct functional tissues in vitro. Bioinks—derived from natural biomaterials such as collagen and decellularized matrix, synthetic polymers such as polyethylene glycol (PEG) and polycaprolactone (PCL), or hybrid combinations—have been engineered to replicate extracellular environments while offering tunable mechanical properties. These formulations ensure biocompatibility, appropriate mechanical strength, and high printing fidelity, thereby maintaining cell viability, structural integrity, and precise architectural resolution in the printed constructs. Advanced bioprinting modalities, including extrusion-based bioprinting (such as the FRESH technique), droplet/inkjet bioprinting, digital light processing (DLP), two-photon polymerization (TPP), and melt electrowriting (MEW), enable the fabrication of complex cardiovascular structures such as vascular patches, ventricle-like heart pumps, and perfusable vascular networks, demonstrating the feasibility of constructing functional cardiac tissues in vitro. This review highlights the respective strengths of these technologies—for example, extrusion’s ability to print high-cell-density bioinks and MEW’s ultrafine fiber resolution—as well as their limitations, including shear-induced cell stress in extrusion and limited throughput in TPP. The integration of optimized bioink formulations with appropriate printing and bioprinting platforms has significantly enhanced the replication of native cardiac and vascular architectures, thereby advancing the functional maturation of engineered cardiovascular constructs. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Graphical abstract

18 pages, 2194 KB  
Article
The Age-Dependent Response of Carbon Coordination in the Organs of Pinus yunnanensis Seedlings Under Shade Stress
by Juncheng Han, Yuanxi Liu, Wenhao Zhang, Guihe Duan, Jialan Chen, Weisong Zhu and Junwen Wu
Plants 2025, 14(17), 2679; https://doi.org/10.3390/plants14172679 - 27 Aug 2025
Viewed by 242
Abstract
To elucidate shade adaptation mechanisms in Pinus yunnanensis seedlings across different ages, this study established five light gradients (100% full sunlight as control or CK, 80% as L1, 45% as L2, 30% as L3, and 5% as L4) for experimental treatments on one- [...] Read more.
To elucidate shade adaptation mechanisms in Pinus yunnanensis seedlings across different ages, this study established five light gradients (100% full sunlight as control or CK, 80% as L1, 45% as L2, 30% as L3, and 5% as L4) for experimental treatments on one- and three-year-old seedlings. By analyzing dynamic changes in non-structural carbohydrates (NSCs) and their components within needles, stems, and roots—combined with a phenotypic plasticity assessment, a correlation analysis, and a principal component analysis—we explored the carbon metabolic adaptations under shade stress. The key results demonstrate the following: (1) Increasing shade intensity significantly reduced the NSCs in the needles and roots of both age groups. The stem NSCs markedly decreased under L1 and L2, indicating “carbon limitation.” However, under severe shade (L3 and L4), the stem NSCs stabilized while the stem soluble sugars gradually increased. In three-year-old Pinus yunnanensis seedlings under the L3 treatment, the ratio of soluble sugars to starch in the stems reached as high as 5.772 g·kg−1, yet the stem NSC content showed no significant change. This pattern exhibited “growth stagnation-carbon enrichment” characteristics. This reveals a physiological strategy for maintaining stem carbon homeostasis through a “structure–metabolism” trade-off under carbon limitation. (2) Shade adaptations diverged by age: one-year-old seedlings employed a short-term “needle–root source–sink reallocation” strategy, whereas three-year-old seedlings developed a “root–stem–needle closed-loop homeostasis regulation” mechanism. (3) Age-specific shade thresholds were identified: one-year-old seedlings required >80% full light to maintain a carbon balance, while three-year-old seedlings exhibited enhanced root carbon storage under moderate shade (45–80% full light). This study clarifies the physiological mechanisms by which P. yunnanensis seedlings of varying ages optimize shade adaptation through organ-specific carbon allocation, providing a theoretical foundation for shade management in artificial forests and understory seedling conservation. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants—Second Edition)
Show Figures

Figure 1

18 pages, 10559 KB  
Article
Functional Trait Variation and Reverse Phenology in the Tropical Dry Forest Species Bonellia nervosa
by Ciara Duff, Bridget McBride and Gerardo Avalos
Plants 2025, 14(17), 2659; https://doi.org/10.3390/plants14172659 - 26 Aug 2025
Viewed by 399
Abstract
Bonellia nervosa is an understory tree with reverse phenology in tropical dry forests (TDFs), where seasonal water and temperature stress typically shape plant phenology and trait expression. This species is heliophytic and phreatophytic, relying on high light availability and deep-water access during the [...] Read more.
Bonellia nervosa is an understory tree with reverse phenology in tropical dry forests (TDFs), where seasonal water and temperature stress typically shape plant phenology and trait expression. This species is heliophytic and phreatophytic, relying on high light availability and deep-water access during the dry season. However, the role of dry-season light variation in influencing leaf traits of species with inverted phenology remains poorly understood. We examined how plant size, reproductive stage, and canopy structure influence trait variation in B. nervosa during the dry season. We measured plant height and diameter, reproductive status, and canopy structure using hemispherical photographs to estimate canopy openness, leaf area index, and transmitted light. Leaf structural traits included specific leaf area (SLA), thickness, water content, and stomatal density, while photochemical performance was assessed via chlorophyll fluorescence and rapid light curves. Principal component analysis and linear regression were used to examine trait–environment relationships. Photosynthetic efficiency was not affected by plant size or reproductive status. No strong trait correlations were observed for leaf water content and stomatal density. A negative relationship between canopy openness, transmitted light, and SLA indicates structural leaf adaptation to light conditions, with lower SLA values occurring under reduced light. In B. nervosa, leaf traits are driven more by light than by water availability during the dry season. This suggests that reverse phenology in phreatophytic species is functionally decoupled from seasonal water stress. Full article
Show Figures

Graphical abstract

20 pages, 5379 KB  
Article
Comprehensive Evaluation of Leaf Structure, Photosynthetic Characteristics, and Drought Resistance in Six Jackfruit (Artocarpus heterophyllus) Cultivars
by Weihao Wu, Chongcheng Yang, Shiting Lin, Wei Li, Suhui Ou, Jinson Guo, Xiaojia Huang, Xuemin Liu and Feng Feng
Life 2025, 15(9), 1346; https://doi.org/10.3390/life15091346 - 26 Aug 2025
Viewed by 360
Abstract
Drought stress is one of the key abiotic stress factors limiting the growth and development, yield formation, and improvement in the quality of jackfruit (Artocarpus heterophyllus). However, systematic evaluations of drought tolerance in jackfruit germplasm resources remain limited. In this study, [...] Read more.
Drought stress is one of the key abiotic stress factors limiting the growth and development, yield formation, and improvement in the quality of jackfruit (Artocarpus heterophyllus). However, systematic evaluations of drought tolerance in jackfruit germplasm resources remain limited. In this study, six jackfruit cultivars were used as materials. By systematically comparing 26 indicators, including leaf structural characteristics, chlorophyll concentration, and photosynthetic parameters, the primary evaluation indicators for jackfruit drought tolerance were identified, and clear microscopic structural images of leaves from different jackfruit cultivars were obtained. In this study, significant differences were observed among different jackfruit germplasm resources in terms of leaf structure, chlorophyll concentration, and photosynthetic characteristics. Comprehensive analysis identified A. ‘Changyou’ as the jackfruit cultivar with the highest drought tolerance score and A. ‘Siji’ as the variety with the lowest drought tolerance score. By establishing a systematic evaluation system for jackfruit drought tolerance, it was found that jackfruit cultivars with high drought tolerance had significantly thicker palisade parenchyma than other cultivars, a rougher leaf epidermis, and more densely distributed stomata on the leaves, while their chlorophyll concentration was significantly lower than that of cultivars with lower drought tolerance scores. Jackfruit cultivars with the lowest drought resistance scores had significantly lower net photosynthetic rates, transpiration rates, stomatal conductance, and light saturation points than other cultivars. This study’s results established a drought resistance evaluation system for jackfruit germplasm resources, providing theoretical support for the selection and breeding of high-drought-resistant superior jackfruit cultivars. Full article
(This article belongs to the Special Issue Advances in Dryland Agriculture Science)
Show Figures

Figure 1

18 pages, 3622 KB  
Article
Haplotype-Phased Chromosome-Level Genome Assembly of Floccularia luteovirens Provides Insights into Its Taxonomy, Adaptive Evolution, and Biosynthetic Potential
by Jianzhao Qi, Xiu-Zhang Li, Ming Zhang, Yuying Liu, Zhen-xin Wang, Chuyu Tang, Rui Xing, Khassanov Vadim, Minglei Li and Yuling Li
J. Fungi 2025, 11(9), 621; https://doi.org/10.3390/jof11090621 - 25 Aug 2025
Viewed by 446
Abstract
Floccularia luteovirens is a valuable medicinal and edible ectomycorrhizal fungus that is endemic to alpine meadows on the Qinghai–Tibet Plateau. It is of significant ecological and pharmacological importance. To overcome the genomic limitations of previous fragmented assemblies, we present the first haplotype-phased, chromosome-scale [...] Read more.
Floccularia luteovirens is a valuable medicinal and edible ectomycorrhizal fungus that is endemic to alpine meadows on the Qinghai–Tibet Plateau. It is of significant ecological and pharmacological importance. To overcome the genomic limitations of previous fragmented assemblies, we present the first haplotype-phased, chromosome-scale genome of the Qinghai-derived QHU-1 strain using an integrated approach of PacBio HiFi, Hi-C, and Illumina sequencing. The high-contiguity assembly spans 13 chromosomes with 97.6% BUSCO completeness. Phylogenomic analysis of 31 basidiomycetes clarified a historical misclassification by placing F. luteovirens closest to Mycocalia denudata/Crucibulum laeve, thus confirming its distinct lineage from Armillaria spp. through low synteny and divergent gene family dynamics. Analyses of adaptive evolution revealed strong purifying selection and stable transposable elements, suggesting genomic adaptations to extreme UV/cold stress. AntiSMASH identified 15 biosynthetic gene clusters (BGCs), which encode diverse terpenoids (7), NRPS-like enzymes (4), PKSs (2), and a hybrid synthase with unique KS-AT-PT-A domains, which have the potential to generate novel metabolites. This chromosome-level resource sheds light on the genetic basis of F. luteovirens’ taxonomy, alpine survival, and symbiotic functions while also unlocking its potential for bioprospecting bioactive compounds. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

16 pages, 2127 KB  
Article
Estimation of Cone Maturity and Effect of Temperature, Light, and Stress Conditions on Seed Germination of Cedrus deodara in Garhwal Himalaya
by Geetanjali Pokhariyal, Vinod Prasad Khanduri, Bhupendra Singh, Rajander Singh Bali, Indra Singh, Deepa Rawat and Manoj Kumar Riyal
Forests 2025, 16(9), 1365; https://doi.org/10.3390/f16091365 - 23 Aug 2025
Viewed by 389
Abstract
Maturity estimation before seed collection is necessary in reducing the costs of seed collection; it allows vigorous seeds to be collected, ensuring that maximum germination will be reached and producing quality planting stock. In addition to this, appropriate temperature, seed size, pH, light, [...] Read more.
Maturity estimation before seed collection is necessary in reducing the costs of seed collection; it allows vigorous seeds to be collected, ensuring that maximum germination will be reached and producing quality planting stock. In addition to this, appropriate temperature, seed size, pH, light, and stress conditions also influence germination. Cones of Cedrus deodara were collected at different intervals to estimate the maturity of the cones. A seed germination test was conducted in the laboratory under constant temperature, seed size, pH, light conditions, and water and salinity stress conditions. Significant (p < 0.05) variations in cones, such as seed morphological characteristics, germination, and related parameters, of C. deodara at different maturity periods were observed. The morphological traits of cones, such as seed weight, seed length, seed width, and seed germination, increased with increasing maturity, while the cone weight, moisture contents, specific gravity, and seed moisture decreased with increasing maturity. A constant temperature of 15 °C to 20 °C (98.0% to 92.0%) and the use of large-sized seeds (99.0%) led to maximum germination. Lower concentrations of Polyethylene glycol (98.0%) and NaCl (78.0%) contributed to maximum seed germination. The germination of C. deodara is temperature-dependent and seed size, light, and high water and salinity stress significantly influence seed germination. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

Back to TopTop