Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,858)

Search Parameters:
Keywords = high pressure characterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 437 KB  
Article
Effects of a Hypocaloric Diet and Physical Training on Ventilatory Efficiency in Women with Metabolic Syndrome: A Prospective Interventional Study
by Caroline Simões Teixeira, Débora Dias Ferraretto Moura Rocco, Raphael de Souza Pinto, Alexandre Galvão da Silva and Alessandra Medeiros
Int. J. Environ. Res. Public Health 2025, 22(10), 1520; https://doi.org/10.3390/ijerph22101520 - 3 Oct 2025
Abstract
Metabolic syndrome (MetS) is a multifactorial clinical condition characterized by the co-occurrence of abdominal obesity, impaired glucose metabolism, high blood pressure, and dyslipidemia. Non-pharmacological strategies, such as hypocaloric diets (HD) and structured physical training (PT), have shown promise in improving metabolic and functional [...] Read more.
Metabolic syndrome (MetS) is a multifactorial clinical condition characterized by the co-occurrence of abdominal obesity, impaired glucose metabolism, high blood pressure, and dyslipidemia. Non-pharmacological strategies, such as hypocaloric diets (HD) and structured physical training (PT), have shown promise in improving metabolic and functional outcomes in this population. The aim of this prospective interventional study was to evaluate the effects of a 16-week program combining HD with PT on ventilatory efficiency and cardiometabolic risk markers in women with MetS. Forty-one sedentary women (aged 45–55 years) with clinically diagnosed MetS underwent anthropometric, metabolic, nutritional, and cardiopulmonary assessments before and after the intervention. Participants engaged in 60 min exercise sessions three times per week and followed a personalized hypocaloric diet targeting 5–10% weight loss. Post-intervention analyses revealed significant reductions (p ≤ 0.05) in body weight (from 86.6 kg ± 3.3 kg to 78.2 kg ± 3.3 kg), body fat percentage (40.1% ± 0.6% to 33.4% ± 1.6%), and waist circumference (105.1 cm ± 1.2 cm to 95.7 cm ± 1.9 cm). Improvements were also observed in fasting glucose (from 117.1 mg/dL to 95.1 mg/dL) and triglycerides (158.8 mg/dL ± 9.1 mg/dL to 111.8 mg/dL ± 9.1 mg/dL), and in lean mass percentage (59.9% ± 6.5% to 66.6% ± 1.7%). Cardiopulmonary variables showed enhanced ventilatory function, with increased VO2peak (1.59 L/min ± 0.1 L/min to 1.74 ± 0.1 L/min), improved oxygen uptake efficiency slope (OUES), and a steeper VO2/workload relationship. Resting heart rate and blood pressure declined significantly (69.9 bpm ± 2.0 bpm to 64.9 ± 1.8 bpm; 145.4 mmHg ± 3.9/80.2 ± 3.0 mmHg to 140.1 mmHg ± 2.7/75.2 ± 1.6 mmHg). In conclusion, the 16-week intervention combining HD with PT proved effective for reducing cardiometabolic risk factors and enhancing ventilatory efficiency, suggesting improved integration of oxygen uptake, transport, and utilization in the women with MetS assessed. Full article
(This article belongs to the Special Issue The Healthcare of Metabolic Diseases and Chronic Diseases)
46 pages, 1826 KB  
Review
CO2 Capture and Sequestration by Gas Hydrates: An Overview of the Influence and Chemical Characterization of Natural Compounds and Sediments in Marine Environments
by Lorenzo Remia, Andrea Tombolini, Rita Giovannetti and Marco Zannotti
J. Mar. Sci. Eng. 2025, 13(10), 1908; https://doi.org/10.3390/jmse13101908 - 3 Oct 2025
Abstract
Due to the rising atmospheric carbon dioxide levels driven by human activity, extensive scientific efforts have been dedicated to developing methods aimed at reducing its concentration in the atmosphere. A novel approach involves using hydrates as a long-lasting reservoir of CO2 sequestration. [...] Read more.
Due to the rising atmospheric carbon dioxide levels driven by human activity, extensive scientific efforts have been dedicated to developing methods aimed at reducing its concentration in the atmosphere. A novel approach involves using hydrates as a long-lasting reservoir of CO2 sequestration. This review provides an initial overview of hydrate characteristics, their formation mechanisms, and the experimental techniques commonly employed for their characterization, including X-ray, Raman spectroscopy, cryoSEM, DSC, and molecular dynamic simulation. One of the main challenges in CO2 sequestration via hydrates is the requirement of high pressures and low temperatures to stabilize CO2 molecules within the hydrate crystalline cavities. However, deviations from classical temperature-pressure phase diagrams observed in natural and engineered environments can be explained by considering that hydrate stability and formation are primarily governed by chemical potentials, not just temperature and pressure. Activity, which reflects concentration and non-ideal interactions, greatly influences chemical potentials, emphasizing the importance of solution composition, salinity, and additives. In this context the role of promoters and inhibitors in facilitating or hindering hydrate formation is discussed. Furthermore, the review presents an overview of the impact of marine sediments and naturally occurring compounds on CO2 hydrate formation, along with the sampling methodologies used in sediments to determine the composition of these natural compounds. Special attention is given to the effect and chemical characterization of dissolved organic matter (DOM) in marine aquatic environments. The focus is placed on the key roles of various natural occurring molecules, such as amino acids, protein derivatives, and humic substances, along with the analytical techniques employed for their chemical characterization, highlighting their central importance in the CO2 gas hydrates formation. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrates)
26 pages, 1050 KB  
Review
Pathophysiology of Pulmonary Arterial Hypertension: Focus on Vascular Endothelium as a Potential Therapeutic Target
by Michele Correale, Valentina Mercurio, Ester Maria Lucia Bevere, Beatrice Pezzuto, Lucia Tricarico, Umberto Attanasio, Angela Raucci, Anne Lise Ferrara, Stefania Loffredo, Claudio Puteo, Massimo Iacoviello, Maurizio Margaglione, Natale Daniele Brunetti, Carlo Gabriele Tocchetti, Piergiuseppe Agostoni, Claudio Mussolino and Maria Cristina Vinci
Int. J. Mol. Sci. 2025, 26(19), 9631; https://doi.org/10.3390/ijms26199631 - 2 Oct 2025
Abstract
Pulmonary arterial hypertension (PAH) is a rare condition characterized by high pulmonary artery pressure leading to right ventricular dysfunction and potential life-threatening consequences. It primarily affects the pre-capillary pulmonary vascular system. The exact pathophysiological mechanisms underlying PAH are not entirely known. Environmental factors; [...] Read more.
Pulmonary arterial hypertension (PAH) is a rare condition characterized by high pulmonary artery pressure leading to right ventricular dysfunction and potential life-threatening consequences. It primarily affects the pre-capillary pulmonary vascular system. The exact pathophysiological mechanisms underlying PAH are not entirely known. Environmental factors; genetic predisposition; mitochondrial and microRNA dysfunction; and inflammatory, metabolic, and hormonal mechanisms may be involved. A central role is played by the dysfunction of the pulmonary vascular endothelium. This alteration is characterized by a reduction in vasodilatory and antiproliferative factors such as prostacyclin and nitric oxide and an increase in vasoconstrictive and mitogenic substances such as endothelin and thromboxane A2. Such imbalance leads to a progressive increase in pulmonary vascular resistance. The aim of the present review is to focus on the vascular endothelium and its role as a potential therapeutic target in PAH. Full article
Show Figures

Figure 1

16 pages, 3568 KB  
Article
Delineation and Application of Gas Geological Units for Optimized Large-Scale Gas Drainage in the Baode Mine
by Shuaiyin He, Xinjiang Luo, Jinbo Zhang, Zenghui Zhang, Peng Li and Huazhou Huang
Energies 2025, 18(19), 5237; https://doi.org/10.3390/en18195237 - 2 Oct 2025
Abstract
Addressing the challenge of efficient gas control in high-gas coal mines with ultra-long panels, this study focuses on the No. 8 coal seam in the Baode Mine. A multi-parameter integrated methodology was developed to establish a hierarchical classification system of Gas Geological Units [...] Read more.
Addressing the challenge of efficient gas control in high-gas coal mines with ultra-long panels, this study focuses on the No. 8 coal seam in the Baode Mine. A multi-parameter integrated methodology was developed to establish a hierarchical classification system of Gas Geological Units (GGUs), aiming to identify regions suitable for large-scale gas extraction. The results indicate that the overall structure of the No. 8 coal seam is a simple monocline. Both gas content (ranging from 2.0 to 7.0 m3/t) and gas pressure (ranging from 0.2 to 0.65 MPa) generally increase with burial depth. However, local anomalies in these parameters, caused by geological structures and hydrogeological conditions, significantly limit the effectiveness of large-scale drainage using ultra-long boreholes. Based on key criteria, the seam was classified into three Grade I and ten Grade II GGUs, distinguishing anomalous zones from homogeneous units. Among the Grade II units, eight (II-i to II-viii) were identified as anomalous zones with distinct geological constraints, while two (II-ix and II-x) exhibited homogeneous gas geological parameters. Practical implementation of large-scale gas extraction strategies—including underground ultra-long boreholes and a U-shaped surface well—within the homogeneous Unit II-x demonstrated significantly improved gas drainage performance, characterized by higher methane concentration, greater flow rate, enhanced temporal stability, and more favorable decay characteristics compared to conventional boreholes. These findings confirm the critical role of GGU delineation in guiding efficient regional gas control and ensuring safe production in similar high-gas coal mines. Full article
Show Figures

Figure 1

24 pages, 4355 KB  
Article
Experimental and Numerical Investigation of Suction-Side Fences for Turbine NGVs
by Virginia Bologna, Daniele Petronio, Francesca Satta, Luca De Vincentiis, Matteo Giovannini, Gabriele Cattoli, Monica Gily and Andrea Notaristefano
Int. J. Turbomach. Propuls. Power 2025, 10(4), 31; https://doi.org/10.3390/ijtpp10040031 - 1 Oct 2025
Abstract
This work presents an extensive experimental and numerical analysis, aimed at investigating the impact of shelf-like fences applied on the suction side of a turbine nozzle guide vane. The cascade is constituted of vanes characterized by long chord and low aspect ratio, which [...] Read more.
This work presents an extensive experimental and numerical analysis, aimed at investigating the impact of shelf-like fences applied on the suction side of a turbine nozzle guide vane. The cascade is constituted of vanes characterized by long chord and low aspect ratio, which are typical features of some LPT first stages directly downstream of an HPT, hence presenting high channel diffusion, especially near the tip. In particular, the present study complements existing literature by highlighting how blade fences positioned on the suction side can reduce the penetration of the large passage vortex. This is particularly effective in applications where flow turning is limited, the blades are lightly loaded at the front, and the horseshoe vortex is weak. The benefits of the present fence design in terms of losses and flow uniformity at the cascade exit plane have been demonstrated by means of a detailed experimental campaign carried out on a large-scale linear cascade in the low-speed wind tunnel installed in the Aerodynamics and Turbomachinery Laboratory of the University of Genova. Measurements mainly focused on the characterization of the flow field upstream and downstream of straight and fenced vane cascades using a five-hole pressure probe, to evaluate the impact of the device in reducing secondary flows. Furthermore, experiments were also adopted to validate both low-fidelity (RANS) and high-fidelity (LES) simulations and revealed the capability of both simulation approaches to accurately predict losses and flow deviation. Moreover, the accuracy in high-fidelity simulations has enabled an in-depth investigation of how fences act mitigating the effects of the passage vortex along the blade channel. By comparing the flow fields of the configurations with and without fences, it is possible to highlight the mitigation of secondary flows within the channel. Full article
25 pages, 2657 KB  
Article
Hydro-Functional Strategies of Sixteen Tree Species in a Mexican Karstic Seasonally Dry Tropical Forest
by Jorge Palomo-Kumul, Mirna Valdez-Hernández, Gerald A. Islebe, Edith Osorio-de-la-Rosa, Gabriela Cruz-Piñon, Francisco López-Huerta and Raúl Juárez-Aguirre
Forests 2025, 16(10), 1535; https://doi.org/10.3390/f16101535 - 1 Oct 2025
Abstract
Seasonally dry tropical forests (SDTFs) are shaped by strong climatic and edaphic constraints, including pronounced rainfall seasonality, extended dry periods, and shallow karst soils with limited water retention. Understanding how tree species respond to these pressures is crucial for predicting ecosystem resilience under [...] Read more.
Seasonally dry tropical forests (SDTFs) are shaped by strong climatic and edaphic constraints, including pronounced rainfall seasonality, extended dry periods, and shallow karst soils with limited water retention. Understanding how tree species respond to these pressures is crucial for predicting ecosystem resilience under climate change. In the Yucatán Peninsula, we characterized sixteen tree species along a spatial and seasonal precipitation gradient, quantifying wood density, predawn and midday water potential, saturated and relative water content, and specific leaf area. Across sites, diameter classes, and seasons, we measured ≈4 individuals per species (n = 319), ensuring replication despite natural heterogeneity. Using a principal component analysis (PCA) based on individual-level data collected during the dry season, we identified five functional groups spanning a continuum from conservative hard-wood species, with high hydraulic safety and access to deep water sources, to acquisitive light-wood species that rely on stem water storage and drought avoidance. Intermediate-density species diverged into subgroups that employed contrasting strategies such as anisohydric tolerance, high leaf area efficiency, or strict stomatal regulation to maintain performance during the dry season. Functional traits were strongly associated with precipitation regimes, with wood density emerging as a key predictor of water storage capacity and specific leaf area responding plastically to spatial and seasonal variability. These findings refine functional group classifications in heterogeneous karst landscapes and highlight the value of trait-based approaches for predicting drought resilience and informing restoration strategies under climate change. Full article
20 pages, 3574 KB  
Article
Role of Nanobubble Cavitation in Triggering Drug Release from Boron-Nitride and Carbon Nanocapsules and Their Diffusion for Drug Delivery Applications: A Molecular Dynamics Study
by Farshad Heydarian, Sahar Rajabi Moghadam, Maryam Ghasemi, Elham Saniei, Sasan Rezaee, Ebrahim Kadivar and Ould el Moctar
Int. J. Mol. Sci. 2025, 26(19), 9582; https://doi.org/10.3390/ijms26199582 - 1 Oct 2025
Abstract
Drug delivery is a well-established method for transporting anticancer drugs to cancerous tumors while minimizing damage to surrounding healthy tissues. Carbon nanocapsules (CNs) and boron nitride nanocapsules (BNNs) are promising nanocarriers capable of delivering drugs to tumor sites following their release. In this [...] Read more.
Drug delivery is a well-established method for transporting anticancer drugs to cancerous tumors while minimizing damage to surrounding healthy tissues. Carbon nanocapsules (CNs) and boron nitride nanocapsules (BNNs) are promising nanocarriers capable of delivering drugs to tumor sites following their release. In this context, their diffusivity characteristics and drug release behavior need to be thoroughly addressed. This study examines the diffusion mechanisms of CNs and BNNs, as well as the impact of nanobubble cavitation on their performance as drug-releasing agents, utilizing molecular dynamics (MD) simulation methods. The results revealed that BNNs exhibit a higher diffusion coefficient compared to CNs in pure water. Moreover, temperature cannot be employed as a navigation mechanism for either CNs or BNNs. In terms of drug release, the collapse of nanobubbles at 298 K and 1 atm generates a high-energy water nanohammer, characterized by a temperature of approximately 1000 K and a pressure of 25 GPa, which impacts the nanocapsules. The impulse from the water nanohammer crushes the CN nanocapsule, whereas it leads to wall breakage in the BNN nanocapsule. Although both crushing and breakage can enable drug release, the crushing of CNs presents a higher risk of damage to the encapsulated drug. In summary, BNNs demonstrate better diffusivity and more favorable drug release behavior under nanobubble cavitation. However, further investigation is required to address targeting mechanisms and safer release strategies, involving the use of metallic functional groups and beam radiation, respectively. Full article
Show Figures

Figure 1

17 pages, 11223 KB  
Article
Hydrocarbon-Bearing Hydrothermal Fluid Migration Adjacent to the Top of the Overpressure Zone in the Qiongdongnan Basin, South China Sea
by Dongfeng Zhang, Ren Wang, Hongping Liu, Heting Huang, Xiangsheng Huang and Lei Zheng
Appl. Sci. 2025, 15(19), 10587; https://doi.org/10.3390/app151910587 - 30 Sep 2025
Abstract
The Qiongdongnan Basin constitutes a sedimentary basin characterized by elevated temperatures, significant overpressures, and abundant hydrocarbons. Investigations within this basin have identified hydrothermal fluid movements linked to overpressure conditions, comprising two vertically separated overpressured intervals. The shallow overpressure compartment is principally caused by [...] Read more.
The Qiongdongnan Basin constitutes a sedimentary basin characterized by elevated temperatures, significant overpressures, and abundant hydrocarbons. Investigations within this basin have identified hydrothermal fluid movements linked to overpressure conditions, comprising two vertically separated overpressured intervals. The shallow overpressure compartment is principally caused by a combination of undercompaction and clay diagenesis. In contrast, the deeper high-pressure compartment results from hydrocarbon gas generation. Numerical pressure modeling indicates late-stage (post-5 Ma) development of significant overpressure within the deep compartment. It is proposed that accelerated subsidence in the Pliocene-Quaternary initiated substantial gas generation, thereby promoting the formation of the deep overpressured system. Multiple organic maturation parameters, combined with fluid inclusion microthermometry, reveal a thermal anomaly adjacent to the upper boundary of the deep overpressured zone. This anomaly indicates vertical transport of hydrothermal fluids ascending from the underlying high-pressure zone. Laser Raman spectroscopy confirms the presence of both hydrocarbons and carbon dioxide within these migrating fluids. Integration of fluid inclusion thermometry with burial history modeling constrains the timing of hydrocarbon-carrying fluid charge to the interval from 4.2 Ma onward, synchronous with modeled peak gas generation and a phase of pronounced overpressure buildup. We propose that upon exceeding the fracture gradient threshold, fluid pressure triggered upward migration of deeply sourced, hydrocarbon-enriched fluids through hydrofracturing pathways. This process led to localized dissolution and fracturing near the top of the deep overpressured system, while simultaneously facilitating significant hydrocarbon accumulation and forming preferential accumulation zones. These findings provide critical insights into petroleum exploration in overpressured sedimentary basins. Full article
(This article belongs to the Special Issue Advances in Petroleum Exploration and Application)
Show Figures

Figure 1

18 pages, 4624 KB  
Article
Synthesis of Linear Modified Siloxane-Based Thickeners and Study of Their Phase Behavior and Thickening Mechanism in Supercritical Carbon Dioxide
by Pengfei Chen, Ying Xiong, Daijun Du, Rui Jiang and Jintao Li
Polymers 2025, 17(19), 2640; https://doi.org/10.3390/polym17192640 - 30 Sep 2025
Abstract
To address critical limitations of ultra-low viscosity supercritical CO2 fracturing fluids, including excessive fluid loss and inadequate proppant transport capacity, a series of thickeners designed to significantly enhance CO2 viscosity were synthesized. Initially, FT-IR and 1H NMR characterization confirmed successful [...] Read more.
To address critical limitations of ultra-low viscosity supercritical CO2 fracturing fluids, including excessive fluid loss and inadequate proppant transport capacity, a series of thickeners designed to significantly enhance CO2 viscosity were synthesized. Initially, FT-IR and 1H NMR characterization confirmed successful chemical reactions and incorporation of both solvation-enhancing and -thickening functional groups. Subsequently, dissolution and thickening performance were evaluated using a custom-designed high-pressure vessel featuring visual observation capability, in-line viscosity monitoring, and high-temperature operation. All thickener systems exhibited excellent solubility, with 5 wt% loading elevating CO2 viscosity to 3.68 mPa·s. Ultimately, molecular simulations performed in Materials Studio elucidated the mechanistic basis, electrostatic potential (ESP) mapping, cohesive energy density analysis, intermolecular interaction energy, and radial distribution function comparisons. These computational approaches revealed dissolution and thickening mechanisms of polymeric thickeners in CO2. Full article
(This article belongs to the Special Issue Application of Polymers in Enhanced Oil Recovery)
Show Figures

Graphical abstract

36 pages, 13124 KB  
Article
Numerical Investigation of Hydrogen Leakage Quantification and Dispersion Characteristics in Buried Pipelines
by Yangyang Tian, Jiaxin Zhang, Gaofei Ren and Bo Deng
Materials 2025, 18(19), 4535; https://doi.org/10.3390/ma18194535 - 29 Sep 2025
Abstract
As a clean energy carrier, hydrogen is essential for global low-carbon energy transitions due to its unique combination of safe transport properties and energy density. This investigation employs computational fluid dynamics (ANSYS Fluent) to systematically characterize hydrogen dispersion through soil media from buried [...] Read more.
As a clean energy carrier, hydrogen is essential for global low-carbon energy transitions due to its unique combination of safe transport properties and energy density. This investigation employs computational fluid dynamics (ANSYS Fluent) to systematically characterize hydrogen dispersion through soil media from buried pipelines. The research reveals three fundamental insights: First, leakage orifices smaller than 2 mm demonstrate restricted hydrogen migration regardless of directional orientation. Second, dispersion patterns remain stable under both low-pressure conditions (below 1 MPa) and minimal thermal gradients, with pipeline temperature variations limited to 63 K and soil fluctuations under 40 K. Third, dispersion intensity increases proportionally with higher leakage pressures (exceeding 1 MPa), greater soil porosity, and larger particle sizes, while inversely correlating with burial depth. The study develops a predictive model through Sequential Quadratic Programming (SQP) optimization, demonstrating exceptional accuracy (mean absolute error below 10%) for modeling continuous hydrogen flow through moderate-porosity soils under medium-to-high pressure conditions with weak inertial effects. These findings provide critical scientific foundations for designing safer hydrogen transmission infrastructure, establishing robust risk quantification frameworks, and developing effective early-warning systems, thereby facilitating the practical implementation of hydrogen energy systems. Full article
Show Figures

Figure 1

22 pages, 5267 KB  
Article
On Ballooning and Burst Behavior of Nuclear Fuel Clad Considering Heating Rate Effect: Development of a Damage Model, a Burst Correlation and Experimental Validation
by Ather Syed and Mahendra Kumar Samal
Solids 2025, 6(4), 56; https://doi.org/10.3390/solids6040056 - 28 Sep 2025
Abstract
Nuclear fuel cladding serves as the primary barrier to the release of radioactive fission products and is subjected to high-temperature and high-pressure environments during both normal reactor operation and accident scenarios such as loss of coolant accidents (LOCAs). Predicting the burst behavior of [...] Read more.
Nuclear fuel cladding serves as the primary barrier to the release of radioactive fission products and is subjected to high-temperature and high-pressure environments during both normal reactor operation and accident scenarios such as loss of coolant accidents (LOCAs). Predicting the burst behavior of cladding is essential for ensuring structural integrity, especially under varying heating rates—an aspect inadequately addressed in existing empirical models. In this study, a finite element-based damage model is developed to simulate the ballooning and burst behavior of Zircaloy-4 cladding. The model incorporates creep deformation, stress triaxiality, and time-dependent damage accumulation. Material behavior is characterized using experimentally determined creep constants and the model is calibrated against burst test data from the literature. A new heating-rate-dependent burst correlation is proposed based on model outputs. The results indicate that increasing the heating rate raises the burst temperature due to reduced exposure time in the temperature regime where creep damage accumulates significantly. The model accurately reproduces burst behavior across a wide range of internal pressures (1–10 MPa) and heating rates (5–100 °C/s). The newly developed correlation improves predictive capability in accident analysis tools and can be directly implemented into safety analysis codes for Indian pressurized heavy water reactors (PHWRs), contributing to enhanced reactor safety evaluations. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Graphical abstract

38 pages, 6865 KB  
Article
Land Use and Land Cover Change Patterns from Orbital Remote Sensing Products: Spatial Dynamics and Trend Analysis in Northeastern Brazil
by Jhon Lennon Bezerra da Silva, Marcos Vinícius da Silva, Pabrício Marcos Oliveira Lopes, Rodrigo Couto Santos, Ailton Alves de Carvalho, Geber Barbosa de Albuquerque Moura, Thieres George Freire da Silva, Alan Cézar Bezerra, Alexandre Maniçoba da Rosa Ferraz Jardim, Maria Beatriz Ferreira, Patrícia Costa Silva, Josef Augusto Oberdan Souza Silva, Marcio Mesquita, Pedro Henrique Dias Batista, Rodrigo Aparecido Jordan and Henrique Fonseca Elias de Oliveira
Land 2025, 14(10), 1954; https://doi.org/10.3390/land14101954 - 26 Sep 2025
Abstract
Environmental degradation and soil desertification are among the most severe environmental issues of recent decades worldwide. Over time, these processes have led to increasingly extreme and highly dynamic climatic conditions. In Brazil, the Northeast Region is characterized by semi-arid and arid areas that [...] Read more.
Environmental degradation and soil desertification are among the most severe environmental issues of recent decades worldwide. Over time, these processes have led to increasingly extreme and highly dynamic climatic conditions. In Brazil, the Northeast Region is characterized by semi-arid and arid areas that exhibit high climatic variability and are extremely vulnerable to environmental changes and pressures from human activities. The application of geotechnologies and geographic information system (GIS) modeling is essential to mitigate the impacts and pressures on the various ecosystems of Northeastern Brazil (NEB), where the Caatinga biome is predominant and critically threatened by these factors. In this context, the objective was to map and assess the spatiotemporal patterns of land use and land cover (LULC), detecting significant trends of loss and gain, based on surface reflectance data and precipitation data over two decades (2000–2019). Remote sensing datasets were utilized, including Landsat satellite data (LULC data), MODIS sensor data (surface reflectance product) and TRMM data (precipitation data). The Google Earth Engine (GEE) software was used to process orbital images and determine surface albedo and acquisition of the LULC dataset. Satellite data were subjected to multivariate analysis, descriptive statistics, dispersion and variability assessments. The results indicated a significant loss trend over the time series (2000–2019) for forest areas (ZMK = −5.872; Tau = −0.958; p < 0.01) with an annual loss of −3705.853 km2 and a total loss of −74,117.06 km2. Conversely, farming areas (agriculture and pasture) exhibited a significant gain trend (ZMK = 5.807; Tau = 0.947; p < 0.01), with an annual gain of +3978.898 km2 and a total gain of +79,577.96 km2, indicating a substantial expansion of these areas over time. However, it is important to emphasize that deforestation of the region’s native vegetation contributes to reduced water production and availability. The trend analysis identified an increase in environmental degradation due to the rapid expansion of land use. LULC and albedo data confirmed the intensification of deforestation in the Northern, Northwestern, Southern and Southeastern regions of NEB. The Northwestern region was the most directly impacted by this increase due to anthropogenic pressures. Over two decades (2000–2019), forested areas in the NEB lost approximately 80.000 km2. Principal component analysis (PCA) identified a significant cumulative variance of 87.15%. It is concluded, then, that the spatiotemporal relationship between biophysical conditions and regional climate helps us to understand and evaluate the impacts and environmental dynamics, especially of the vegetation cover of the NEB. Full article
Show Figures

Figure 1

18 pages, 3979 KB  
Article
Hemodynamic Alteration in Aortic Valve Stenosis: CFD Insights from Leaflet-Resolved Models
by Mashrur Muntasir Nuhash, Victor K. Lai and Ruihang Zhang
Bioengineering 2025, 12(10), 1029; https://doi.org/10.3390/bioengineering12101029 - 26 Sep 2025
Abstract
Aortic valve stenosis, is a prevalent cardiovascular disease, narrows the valve orifice and restricts blood flow, resulting in abnormal high velocities and shear stresses. The progression of these hemodynamic abnormalities and their link with stenosis severity remain incompletely understood, which are critical for [...] Read more.
Aortic valve stenosis, is a prevalent cardiovascular disease, narrows the valve orifice and restricts blood flow, resulting in abnormal high velocities and shear stresses. The progression of these hemodynamic abnormalities and their link with stenosis severity remain incompletely understood, which are critical for early detection and intervention. Computational Fluid Dynamics (CFD) was employed to characterize aortic hemodynamics across healthy, mild, moderate, and severe stenosis using a 3D steady-state model with idealized leaflet geometries. Key flow parameters, including velocity distribution, wall shear stress (WSS), pressure loss coefficient, and helicity, were evaluated. Results show a non-linear increase in velocity and WSS with stenosis severity, with peak jet velocities of 1.08, 1.82, 2.73, and 4.7 m/s and peak WSS of 11, 35, 80, and 122 Pa at the aortic arch, respectively. Severe stenosis produced a highly eccentric jet along the anterior of aortic arch, accompanied by a narrower jet, increased turbulence intensity and expanded recirculation zones. A significant increase in helicity and pressure loss coefficient was also observed for higher stenosis severities. These findings highlight the influence of valve leaflets on aortic flow dynamics, providing physiologically relevant insights into stenosis-induced mechanical stresses that may drive endothelial dysfunction and support earlier detection of disease progression. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

16 pages, 6501 KB  
Article
Global Psoriasis Burden 1990–2021: Evolving Patterns and Socio-Demographic Correlates in the Global Burden of Disease 2021 Update
by Deng Li, Siqi Fan, Jiayi Song, Haochen Zhao, Linfen Guo, Peiyu Li and Xuewen Xu
Healthcare 2025, 13(19), 2437; https://doi.org/10.3390/healthcare13192437 - 26 Sep 2025
Abstract
Background: Psoriasis is a chronic immune-mediated disease affecting approximately 43 million individuals worldwide. While previous studies provide certain insights, there remains different conclusions and a lack of a comprehensive analysis regarding the burden of psoriasis. In response to ongoing therapeutic advances and a [...] Read more.
Background: Psoriasis is a chronic immune-mediated disease affecting approximately 43 million individuals worldwide. While previous studies provide certain insights, there remains different conclusions and a lack of a comprehensive analysis regarding the burden of psoriasis. In response to ongoing therapeutic advances and a growing patient population, this study utilizes the Global Burden of Disease (GBD) 2021 estimates to characterize the spatiotemporal evolution of the psoriasis burden from 1990 through 2021. By integrating these biological, geographic, and socioeconomic determinants, this study aims to inform more targeted and effective health policy planning. Methods: To track changes over time, the Estimated Annual Percentage Change (EAPC) was determined using a linear regression model. In addition, a frontier analysis was utilized to investigate the link between psoriasis burden and socio-demographic progress. Furthermore, geographically weighted regression was used for the spatial econometric assessment of EAPC, age-standardized rates (ASRs), and Human Development Index (HDI) covariance structures across nation-states. Results: Between 1990 and 2021, the global burden of psoriasis increased consistently, with ASRs exhibiting a positive correlation with the Socio-demographic Index (SDI). High-SDI regions reported the highest burden, while high–middle-SDI regions experienced the steepest rise. Conclusions: This study reveals an increasing global psoriasis burden (1990–2021) through systematic analyses, indicating distinct regional progression patterns. These findings advocate for geographically tailored strategies to alleviate healthcare system pressures. Full article
Show Figures

Figure 1

20 pages, 610 KB  
Systematic Review
The Combined Effect of the Mediterranean Diet and Physical Activity on the Components of Metabolic Syndrome in Adults: A Systematic Review of Randomised Controlled Trials
by Luiza Teixeira, Diogo Monteiro, Rui Matos, Raúl Antunes and Miguel Jacinto
Obesities 2025, 5(4), 68; https://doi.org/10.3390/obesities5040068 - 25 Sep 2025
Abstract
Metabolic syndrome (MetS) is a global public health challenge, characterized by the coexistence of cardiometabolic risk factors such as abdominal obesity, dyslipidaemia, hypertension, and insulin resistance. Non-pharmacological strategies, including the Mediterranean diet (MD) and physical activity (PA), have been widely studied for their [...] Read more.
Metabolic syndrome (MetS) is a global public health challenge, characterized by the coexistence of cardiometabolic risk factors such as abdominal obesity, dyslipidaemia, hypertension, and insulin resistance. Non-pharmacological strategies, including the Mediterranean diet (MD) and physical activity (PA), have been widely studied for their potential to prevent and manage MetS. This systematic review aimed to synthesize the evidence on the combined effect of MD and PA on MetS components in adults, based on randomized controlled trials (RCTs). Twenty-two RCTs published between 2018 and 2024 were included, involving 11,478 participants. The interventions ranged from 8 weeks to 3 years and combined adapted or hypocaloric MDs with moderate-to-high-intensity PA, typically including walking, aerobic exercise, or high-intensity interval training (HIIT), performed 3 to 7 times per week. The combined interventions resulted in reductions in body weight (−2.5 to −7.2 kg), body mass index (−0.7 to −2.2 kg/m2), waist circumference (−5.1 to −7.8 cm), and blood pressure (up to −9.0 mmHg systolic and −6.7 mmHg diastolic). Improvements in HDL cholesterol, triglyceride levels, and insulin sensitivity were also observed. These findings suggest that integrated interventions based on the Mediterranean lifestyle are effective in reducing MetS components and may support future public health strategies. Full article
Show Figures

Figure 1

Back to TopTop