Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (397)

Search Parameters:
Keywords = high torque density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 897 KB  
Article
Application of Sawdust-Derived Activated Carbon as a Bio-Based Filler in Vulcanized Rubber Bushings
by Enasty Pratiwi Wulandari, Popy Marlina, Nasruddin, Lanjar, Heryoki Yohanes, Wahju Eko Widodo, S. Joni Munarso, Astuti, Eko Bhakti Susetyo, Yenni Bakhtiar, Haixin Guo and Wahyu Bahari Setianto
Polymers 2025, 17(22), 2996; https://doi.org/10.3390/polym17222996 - 11 Nov 2025
Abstract
This study investigated sawdust-derived activated carbon (SAC) as a sustainable reinforcing filler for vulcanized rubber bushings (VRBs). Two types SAC200 (75 µm, carbonized at 200 °C) and SAC400 (38 µm, carbonized at 400 °C) were chemically activated and incorporated into natural rubber (NR) [...] Read more.
This study investigated sawdust-derived activated carbon (SAC) as a sustainable reinforcing filler for vulcanized rubber bushings (VRBs). Two types SAC200 (75 µm, carbonized at 200 °C) and SAC400 (38 µm, carbonized at 400 °C) were chemically activated and incorporated into natural rubber (NR) at 25–55 phr loadings, while SAC free VRBs served as controls. Fourier transform infrared (FTIR) analysis revealed that SAC400 exhibited stronger hydroxyl and carbonyl functional groups, indicating higher surface reactivity compared with SAC200. The incorporation of SAC increased cross-linking density, thereby enhancing both curing behavior and mechanical performance. VRBs reinforced with SAC400 demonstrated higher maximum torque (up to 38.07 kg·cm), shorter scorch time (5 min 58 s), and reduced cure time (11 min 05 s) relative to SAC200 and the control. Mechanical properties improved markedly, with hardness and tensile strength rising from 45 Shore A and 5.52 MPa in the control to 70 Shore A and 13.40 MPa in SAC400. Although elongation at break decreased slightly, it remained within the acceptable range for dynamic applications. Swelling resistance also increased, reaching 101.76% at 25 °C and 106.61% at 100 °C. Overall, SAC400 consistently outperformed SAC200 and the control, highlighting its potential as a renewable, biomass-derived filler for high-performance rubber bushings and promising a sustainable alternative to conventional fillers in industrial applications. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Graphical abstract

19 pages, 10873 KB  
Article
RM-Act 2.0: A Modular Harmonic Actuator Towards Improved Torque Density
by Ramesh Krishnan Muttathil Gopanunni, Alok Ranjan, Lorenzo Martignetti, Franco Angelini and Manolo Garabini
Actuators 2025, 14(11), 538; https://doi.org/10.3390/act14110538 - 6 Nov 2025
Viewed by 305
Abstract
In modern robotics, actuator performance is fundamental to achieving efficient and durable motion, with compactness and torque density being especially critical. Compact actuators enable integration in space-constrained systems without compromising functionality, while high torque density ensures powerful output relative to size, enhancing efficiency [...] Read more.
In modern robotics, actuator performance is fundamental to achieving efficient and durable motion, with compactness and torque density being especially critical. Compact actuators enable integration in space-constrained systems without compromising functionality, while high torque density ensures powerful output relative to size, enhancing efficiency and versatility. Harmonic gearboxes embody these qualities, offering lightweight design, zero backlash, and excellent torque density, which have made them a standard choice in robotics. However, their widespread adoption is limited by high manufacturing costs due to the precision machining required. To address this challenge, the authors previously introduced RM-Act, a Radial Modular Actuator employing two synchronous belts as harmonic speed reducers. Building on this concept, RM-Act 2.0 is introduced as an improved version that employs a single synchronous belt. This design reduces transmission slippage, improves torque density, and offers greater modularity with a wider range of reduction ratios. The work details the development and validation of RM-Act 2.0 through a functional prototype and performance model, highlighting its advancements over the original RM-Act in compactness and torque density. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

34 pages, 38009 KB  
Article
Shock Mach Number Effect on Instability Evolution at a Light–Heavy Fluid Interface: A Numerical Investigation
by Salman Saud Alsaeed, Satyvir Singh and Nahar F. Alshammari
Axioms 2025, 14(11), 813; https://doi.org/10.3390/axioms14110813 - 31 Oct 2025
Viewed by 158
Abstract
Shock–accelerated interfaces between fluids of different densities are prone to Richtmyer–Meshkov-type instabilities, whose evolution is strongly influenced by the incident shock Mach number. In this study, we present a systematic numerical investigation of the Mach number effect on the instability growth at a [...] Read more.
Shock–accelerated interfaces between fluids of different densities are prone to Richtmyer–Meshkov-type instabilities, whose evolution is strongly influenced by the incident shock Mach number. In this study, we present a systematic numerical investigation of the Mach number effect on the instability growth at a light–heavy fluid layer. The governing dynamics are modeled using the compressible multi-species Euler equations, and the simulations are performed with a high-order modal discontinuous Galerkin method. This approach provides accurate resolution of sharp interfaces, shock waves, and small-scale vortical structures. A series of two-dimensional simulations is carried out for a range of shock Mach numbers impinging on a sinusoidally perturbed light–heavy fluid interface. The results highlight the distinct stages of instability evolution, from shock–interface interaction and baroclinic vorticity deposition to nonlinear roll-up and interface deformation. Quantitative diagnostics—including circulation, enstrophy, vorticity extrema, and mixing width—are employed to characterize the instability dynamics and to isolate the role of Mach number in enhancing or suppressing growth. Particular attention is given to the mechanisms of vorticity generation through baroclinic torque and compressibility effects. Moreover, the analysis of controlling parameters, including Atwood number, layer thickness, and initial perturbation amplitude, broadens the parametric understanding of shock-driven instabilities. The results reveal that increasing shock Mach number markedly enhances vorticity generation and accelerates interface growth, while the resulting nonlinear morphology remains strongly sensitive to variations in Atwood number and perturbation amplitude. Full article
(This article belongs to the Special Issue Applied Mathematics and Mathematical Modeling)
Show Figures

Figure 1

17 pages, 4221 KB  
Article
Flame-Retardant Properties of a Styrene-Vinyl Tetrazole Copolymer Additive in an LDPE/EVA Blend
by Karla Fabiola Rodríguez Ramírez, Jesús Francisco Lara Sánchez, Orlando Castro Reyna, Pedro Espinoza Martínez, Jesús Alejandro Espinosa Muñoz, José David Zuluaga Parra, Rachel Faverzani Magnago, Saul Sanchez Valdés and Luciano da Silva
Polymers 2025, 17(21), 2933; https://doi.org/10.3390/polym17212933 - 31 Oct 2025
Viewed by 535
Abstract
In this work, we report the effect of combining styrene-vinyl tetrazole copolymer (StVTz) and ammonium polyphosphate (APP) on the thermal degradation, mechanical properties, flame retardancy, and char formation of low-density polyethylene with ethyl vinyl acetate (LDPE/EVA) composites. The tetrazole heterocycle exhibits high thermal [...] Read more.
In this work, we report the effect of combining styrene-vinyl tetrazole copolymer (StVTz) and ammonium polyphosphate (APP) on the thermal degradation, mechanical properties, flame retardancy, and char formation of low-density polyethylene with ethyl vinyl acetate (LDPE/EVA) composites. The tetrazole heterocycle exhibits high thermal stability (>200 °C), and during its thermal decomposition, it releases non-toxic nitrogen gas. Its degradation generates reactive species capable of cross-linking the polymer chains, thereby promoting the formation of a protective char layer. To evaluate the influence of composition on the intumescent flame-retardant (IFR) properties of LDPE/EVA blends, different concentrations of APP and StVTz additives were incorporated. The composites were prepared in an internal mixer (Brabender Intelli-Torque Plasti-Corder). Test specimens were obtained by compression molding and subsequently cut into appropriate shapes for each analysis. Thermal stability was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Mechanical properties were evaluated by tensile testing. Morphology of cone calorimetry (CC) residues was examined using SEM. Flammability properties, studied using CC, revealed a 70% reduction in the peak heat release rate (pHRR) and a 48% reduction in the total heat release (THR) compared to the neat LDPE/EVA blend. These results indicate that StVTz and APP act synergistically to improve the flame-retardant properties of LDPE/EVA. Full article
(This article belongs to the Special Issue Advances in Flame-Retardant and Heat-Resistant Polymeric Materials)
Show Figures

Figure 1

25 pages, 20193 KB  
Article
Effect of a Montmorillonite Modification on the Rheology and Mechanical Properties of a Clay/Natural Rubber Nanocomposite
by Christiano Gianesi Bastos Andrade, Gabriel Akio Mori dos Santos, Michael Cezar Camargo, Abel Cardoso Gonzaga Neto, Ticiane Sanches Valera and Samuel Marcio Toffoli
Minerals 2025, 15(11), 1151; https://doi.org/10.3390/min15111151 - 31 Oct 2025
Viewed by 280
Abstract
Clay/natural rubber (Clay–NR) nanocomposites are a sustainable material class with a wide range of applications. The type and amount of the filler added to the rubber matrix promote significant changes in the matrix properties. Montmorillonitic clays (MMT) are mineral, natural fillers. This study [...] Read more.
Clay/natural rubber (Clay–NR) nanocomposites are a sustainable material class with a wide range of applications. The type and amount of the filler added to the rubber matrix promote significant changes in the matrix properties. Montmorillonitic clays (MMT) are mineral, natural fillers. This study investigates the effect of a modified Brazilian polycationic MMT on the nanocomposite rheology and mechanical properties. The MMT was incorporated into a NR matrix in its natural state, and after modification by cation exchange (MMTNa) and organophilization (MMTORG), at concentrations of 2.5 and 5 phr (parts per hundred parts of rubber). The natural and modified clays were characterized by XRD, FTIR, BET, and SEM/EDS. Mechanical tests (tensile strength, elongation at break, and modulus at 100%) indicated that the use of MMTNa led to increased strength and modulus, whereas a minor decrease in the elongation was observed. However, the use of MMTORG yielded the most significant improvements in the mechanical properties. The rheology tests indicated that the Payne effect was not observed, and the strain-dependent behavior arises from matrix-dominated mechanisms, rather than disruption of a filler network. Vulcanization curves showed that the NR-MMTORG composites exhibited higher torque values, corroborated by higher crosslink densities. These findings highlight the critical role of cation exchange modification in optimizing MMT dispersion and interfacial interactions within NR matrices, providing design principles for high-performance sustainable nanocomposites. Full article
(This article belongs to the Special Issue Organo-Clays: Preparation, Characterization and Applications)
Show Figures

Figure 1

15 pages, 11436 KB  
Article
Design of a Six-Phase Surface Permanent-Magnet Synchronous Motor with Chamfer-Shaped Magnet to Reduce Cogging Torque and Torque Ripple for Large-Ship Propulsion
by Do-Hyeon Choi, Chaewon Jo, Hyung-Sub Han, Hyo-Gu Kim, Won-Ho Kim and Hyunwoo Kim
Appl. Sci. 2025, 15(21), 11400; https://doi.org/10.3390/app152111400 - 24 Oct 2025
Viewed by 252
Abstract
Surface permanent-magnet synchronous motors (SPMSMs) have been widely adopted for ship propulsion due to their high power density and efficiency. However, conventional three-phase open-slot SPMSMs struggle to balance high efficiency with reductions in cogging torque and torque ripple. This paper proposes a design [...] Read more.
Surface permanent-magnet synchronous motors (SPMSMs) have been widely adopted for ship propulsion due to their high power density and efficiency. However, conventional three-phase open-slot SPMSMs struggle to balance high efficiency with reductions in cogging torque and torque ripple. This paper proposes a design of an SPMSM with a six-phase winding configuration and a chamfer-shaped permanent magnet to reduce cogging torque and torque ripple. Electromagnetic performance is evaluated through finite element analysis (FEA). A reference three-phase interior PMSM and three-phase SPMSMs with different magnet shapes are first compared to identify a suitable basic design. Based on the basic machine, three pole–slot combinations for the six-phase winding are analyzed, and the most efficient configuration is selected. A final model is designed to minimize cogging torque and torque ripple for the chamfer-shaped permanent magnet. Finally, the effectiveness of the final model is validated through FEA by comparing its performance with that of the reference model. Full article
Show Figures

Figure 1

28 pages, 7597 KB  
Article
Analysis of Torque Characteristics in Dual Three-Phase PMSMs with Asymmetric IPM Rotors
by Shensheng Wang, Zi-Qiang Zhu, Yang Xiao and Dawei Liang
Energies 2025, 18(20), 5477; https://doi.org/10.3390/en18205477 - 17 Oct 2025
Viewed by 342
Abstract
In this paper, the effects of asymmetric interior permanent magnet (AIPM) rotors on the torque characteristics in dual three-phase (DTP) permanent magnet synchronous machines (PMSMs) are investigated. The electromagnetic performances of DTP PMSMs with symmetrical and asymmetric IPM rotors are compared, including air-gap [...] Read more.
In this paper, the effects of asymmetric interior permanent magnet (AIPM) rotors on the torque characteristics in dual three-phase (DTP) permanent magnet synchronous machines (PMSMs) are investigated. The electromagnetic performances of DTP PMSMs with symmetrical and asymmetric IPM rotors are compared, including air-gap flux density, back EMF, cogging torque, torque, loss, and efficiency. It is found that in DTP PMSMs, the AIPM rotor can achieve significant torque improvement under both healthy and single three-phase open-circuit conditions. It is also found that performance enhancement in AIPM DTP machines is more remarkable across the constant torque region, particularly at high-load conditions, than in the constant power region, compared with the symmetrical IPM counterpart. A prototype is fabricated and tested to verify theoretical analyses. Full article
Show Figures

Figure 1

19 pages, 4145 KB  
Article
RM-Act: A Novel Modular Harmonic Actuator
by Ramesh Krishnan Muttathil Gopanunni, Alok Ranjan, Lorenzo Martignetti, Franco Angelini and Manolo Garabini
Actuators 2025, 14(10), 492; https://doi.org/10.3390/act14100492 - 11 Oct 2025
Cited by 1 | Viewed by 525
Abstract
In modern robotics, actuators are crucial for achieving effective movement and ensuring robustness. Although different applications demand specific actuator qualities, an actuator with built-in compliance and high torque density is generally preferred. Recently, harmonic gearboxes have become widely used in robotics for actuation [...] Read more.
In modern robotics, actuators are crucial for achieving effective movement and ensuring robustness. Although different applications demand specific actuator qualities, an actuator with built-in compliance and high torque density is generally preferred. Recently, harmonic gearboxes have become widely used in robotics for actuation due to their zero-backlash, lightweight design, flexibility, and high torque density. However, the intricate and precise machining required for these gearboxes makes them economically unviable in some cases. This work presents the RM-Act, a novel Radial Modular Actuator that employs synchronous belts as a harmonic speed reducer. The RM-Act retains the advantages of the harmonic principle, making it a promising candidate for robotic actuation. This paper describes the novel actuation principle and its validation through a prototype, along with a model identification to define its characteristics. The actuator demonstrates a nominal torque density of 10.08 N·m/kg, indicating its potential for efficient robotic applications. Full article
(This article belongs to the Special Issue Actuation and Sensing of Intelligent Soft Robots)
Show Figures

Figure 1

21 pages, 3120 KB  
Article
Modelling Dynamic Parameter Effects in Designing Robust Stability Control Systems for Self-Balancing Electric Segway on Irregular Stochastic Terrains
by Desejo Filipeson Sozinando, Bernard Xavier Tchomeni and Alfayo Anyika Alugongo
Physics 2025, 7(4), 46; https://doi.org/10.3390/physics7040046 - 10 Oct 2025
Viewed by 565
Abstract
In this study, a nonlinear dynamic model is developed to examine the stability and vibration behavior of a self-balancing electric Segway operating over irregular stochastic terrains. The Segway is treated as a three-degrees-of-freedom cart–inverted pendulum system, incorporating elastic and damping effects at the [...] Read more.
In this study, a nonlinear dynamic model is developed to examine the stability and vibration behavior of a self-balancing electric Segway operating over irregular stochastic terrains. The Segway is treated as a three-degrees-of-freedom cart–inverted pendulum system, incorporating elastic and damping effects at the wheel–ground interface. Road irregularities are generated in accordance with international standard using high-order filtered noise, allowing for representation of surface classes from smooth to highly degraded. The governing equations, formulated via Lagrange’s method, are transformed into a Lorenz-like state-space form for nonlinear analysis. Numerical simulations employ the fourth-order Runge–Kutta scheme to compute translational and angular responses under varying speeds and terrain conditions. Frequency-domain analysis using Fast Fourier Transform (FFT) identifies resonant excitation bands linked to road spectral content, while Kernel Density Estimation (KDE) maps the probability distribution of displacement states to distinguish stable from variable regimes. The Lyapunov stability assessment and bifurcation analysis reveal critical velocity thresholds and parameter regions marking transitions from stable operation to chaotic motion. The study quantifies the influence of the gravity–damping ratio, mass–damping coupling, control torque ratio, and vertical excitation on dynamic stability. The results provide a methodology for designing stability control systems that ensure safe and comfortable Segway operation across diverse terrains. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

13 pages, 2155 KB  
Article
Analysis of Stator Material Influence on BLDC Motor Performance
by Daniel Ziemiański, Gabriela Chwalik-Pilszyk and Grzegorz Dudzik
Materials 2025, 18(19), 4630; https://doi.org/10.3390/ma18194630 - 7 Oct 2025
Viewed by 471
Abstract
Brushless DC (BLDC) motors are increasingly used in industrial applications due to their high efficiency, reliability, and low weight. However, their performance strongly depends on the electromagnetic properties of stator and rotor core materials. This study evaluates six BLDC motor configurations, employing materials [...] Read more.
Brushless DC (BLDC) motors are increasingly used in industrial applications due to their high efficiency, reliability, and low weight. However, their performance strongly depends on the electromagnetic properties of stator and rotor core materials. This study evaluates six BLDC motor configurations, employing materials such as M19 electrical steel, 1010 low-carbon steel, magnetic PLA, and ABS, and analyzes their impact using FEMM 4.2 finite element simulations. Key electromagnetic characteristics—including flux linkage, Back-EMF, torque, and torque ripple—were compared across configurations. The reference motor with M19 steel stator and 1010 steel rotor achieved ~7 mWb flux linkage, ~39 V pk–pk Back-EMF, and 1.44 Nm torque with ~49% ripple, confirming the suitability of laminated steels for high-power-density designs. Substituting M19 with 1010 steel in the stator reduced torque by less than 10%, indicating material interchangeability with minimal performance loss. By contrast, polymer-based designs exhibited drastic degradation: magnetic PLA yielded only 3.5% of the baseline torque with sixfold ripple increase, while ABS delivered nearly zero torque and >700% ripple. Hybrid configurations improved PLA-based results by 15–20%, though they remained far below ferromagnetic cores. Overall, results demonstrate a nearly linear relationship between material permeability and both flux linkage and Back-EMF, alongside a sharp rise in torque ripple at low permeability. The findings highlight the advantages of ferromagnetic and laminated steel cores for efficiency and stability, while polymer and hybrid cores are limited to lightweight demonstrator applications. Full article
Show Figures

Figure 1

18 pages, 8209 KB  
Article
A Direct-Drive Rotary Actuator Based on Modular FSPM Topology for Large-Inertia Payload Transfer
by Jianlong Zhu, Zhe Wang, Minghao Tong, Longmiao Chen and Linfang Qian
Energies 2025, 18(19), 5272; https://doi.org/10.3390/en18195272 - 4 Oct 2025
Viewed by 461
Abstract
This paper proposes a novel direct-drive rotary actuator based on a modular five-phase outer-rotor flux-switching permanent magnet (FSPM) machine to overcome the limitations of conventional actuators with gear reducers, such as mechanical complexity and low reliability. The research focused on a synergistic design [...] Read more.
This paper proposes a novel direct-drive rotary actuator based on a modular five-phase outer-rotor flux-switching permanent magnet (FSPM) machine to overcome the limitations of conventional actuators with gear reducers, such as mechanical complexity and low reliability. The research focused on a synergistic design of a lightweight, high-torque-density motor and a precise control strategy. The methodology involved a structured topology evolution to create a modular stator architecture, followed by finite element analysis-based electromagnetic optimization. To achieve precision control, a multi-vector model predictive current control (MPCC) scheme was developed. This optimization process contributed to a significant performance improvement, increasing the average torque to 13.33 Nm, reducing torque ripple from 9.81% to 2.36% and obtaining a maximum position error under 1 mil. The key result was experimentally validated using an 8 kg inertial load, confirming the actuator’s feasibility for industrial deployment. Full article
Show Figures

Figure 1

12 pages, 2508 KB  
Article
Osseodensification Versus Subtractive Drilling in Cortical Bone: An Evaluation of Implant Surface Characteristics and Their Effects on Osseointegration
by Sara E. Munkwitz, Albert Ting, Hana Shah, Nicholas J. Iglesias, Vasudev Vivekanand Nayak, Arthur Castellano, Lukasz Witek and Paulo G. Coelho
Biomimetics 2025, 10(10), 662; https://doi.org/10.3390/biomimetics10100662 - 1 Oct 2025
Viewed by 569
Abstract
Osseodensification (OD) has emerged as a favorable osteotomy preparation technique that preserves and compacts autogenous bone along the osteotomy walls during site preparation, enhancing primary stability and implant osseointegration. While OD has demonstrated promising results in low-density trabecular bone, especially when used in [...] Read more.
Osseodensification (OD) has emerged as a favorable osteotomy preparation technique that preserves and compacts autogenous bone along the osteotomy walls during site preparation, enhancing primary stability and implant osseointegration. While OD has demonstrated promising results in low-density trabecular bone, especially when used in conjunction with acid-etched (AE) implant surfaces, its efficacy in high-density cortical bone remains unclear—particularly in the context of varying implant surface characteristics. In this study, Grade V titanium alloy implants (Ti-6Al-4V, 4 mm × 10 mm) with deep threads, designated bone chambers and either as-machined (Mach) or AE surfaces were placed in 3.8 mm diameter osteotomies in the submandibular region of 16 adult sheep using either OD or conventional (Reg) drilling protocols. Insertion torque values (N·cm) were measured at the time of implant placement to evaluate primary stability. Mandibles were harvested at 3-, 6-, 12-, or 24-weeks post-implantation (n = 4 sheep/time point), and histologic sections were analyzed to quantify bone-to-implant contact (BIC) and bone area fractional occupancy (BAFO). Qualitative histological analysis confirmed successful osseointegration among all groups at each of the healing time points. No statistically significant differences were observed between OD and conventional drilling techniques in insertion torque (p > 0.628), BIC (p > 0.135), or BAFO (p > 0.060) values, regardless of implant surface type or healing interval. The findings indicate that neither drilling technique nor implant surface treatment significantly influences osseointegration in high density cortical bone. Furthermore, as the osteotomy was not considerably undersized, the use of OD instrumentation showed no signs of necrosis, inflammation, microfractures, or impaired osseointegration in dense cortical bone. Both OD and Reg techniques appear to be suitable for implant placement in dense bone, allowing flexibility based on surgeon preference and clinical circumstances. Full article
Show Figures

Figure 1

20 pages, 6990 KB  
Article
Investigation on the Effects of Operating Parameters on the Transient Thermal Behavior of the Wet Clutch in Helicopters
by Xiaokang Li, Dahuan Wei, Hao Wang, Yixiong Yan, Hongzhi Yan, Mei Yin and Yexin Xiao
Appl. Sci. 2025, 15(19), 10412; https://doi.org/10.3390/app151910412 - 25 Sep 2025
Viewed by 247
Abstract
The aviation wet clutch, as an indispensable component in helicopters, is particularly vulnerable to performance deterioration due to temperature rises, especially in high-power-density and high-torque conditions. Consequently, a comprehensive thermal-fluid-dynamic model, coupled with a dynamic model considering the spline friction and split spring [...] Read more.
The aviation wet clutch, as an indispensable component in helicopters, is particularly vulnerable to performance deterioration due to temperature rises, especially in high-power-density and high-torque conditions. Consequently, a comprehensive thermal-fluid-dynamic model, coupled with a dynamic model considering the spline friction and split spring and a thermal model considering the heat transfer parameters in friction pair gaps, was proposed in this work. The effects of operating parameters on the transient thermal behaviors of friction discs were investigated. A rise in rotation speed from 2000 rpm to 2400 rpm facilitates a 10.1% increase in the maximum temperature of the friction discs. An increase in control oil pressure from 1.5 MPa to 1.9 MPa rises the maximum temperature of the friction disc by 19.4%. Moreover, increased lubrication oil flow not only depresses the maximum temperature of the friction disc by 14.5% but also significantly narrows the temperature gradient by 16.7% and improves the temperature field uniformity. Therefore, reasonably increasing lubricant oil flow and decreasing control oil pressure can effectively reduce temperature rises and improve the temperature field uniformity. These results contribute to designing and developing optimal control strategies to enhance the comprehensive performance of helicopter transmission. Full article
Show Figures

Figure 1

46 pages, 4133 KB  
Review
Flux-Weakening Control Methods for Permanent Magnet Synchronous Machines in Electric Vehicles at High Speed
by Samer Alwaqfi, Mohamad Alzayed and Hicham Chaoui
Electronics 2025, 14(19), 3779; https://doi.org/10.3390/electronics14193779 - 24 Sep 2025
Viewed by 2911
Abstract
Permanent magnet synchronous motors (PMSMs) are widely favored by manufacturers for use in electric vehicles (EVs) because of their many benefits, which include high power density at high speeds, ruggedness, potential for high efficiency, and reduced control complexity. However, since the Back Electromotive [...] Read more.
Permanent magnet synchronous motors (PMSMs) are widely favored by manufacturers for use in electric vehicles (EVs) because of their many benefits, which include high power density at high speeds, ruggedness, potential for high efficiency, and reduced control complexity. However, since the Back Electromotive Force (EMF) increases proportionally with the motor’s rotational speed, it must be carefully controlled at high speeds. Flux-weakening (FW) control is required to avoid excessive electromagnetic flux beyond the power source and inverter’s voltage restrictions. This paper aims to compare various FW control strategies and analyze their effectiveness in maximizing the speed of PMSMs in EV applications while ensuring stable and reliable performance. Various FW approaches, such as voltage-based control, current-based control, and advanced predictive control methods, are examined to determine how each method balances speed enhancement with torque output and efficiency. In addition, other control strategies are crucial for optimizing the performance of PMSMs in electric vehicles. Among the most popular methods for controlling torque and speed in PMSMs are Field-Oriented Control (FOC), Direct Torque Control (DTC), and Vector Current Control (VCC). Each control technique has advantages and is frequently cited in the literature as a crucial instrument for improving EV motor control. This article provides a comprehensive evaluation of FW methods, highlighting their respective advantages and disadvantages by synthesizing the findings of numerous studies. In addition to outlining future research directions in FW control for EV applications, this study provides essential insights and valuable suggestions to help select FW control techniques for various PMSM types and operating conditions. Full article
(This article belongs to the Special Issue Advanced Control and Power Electronics for Electric Vehicles)
Show Figures

Figure 1

26 pages, 43661 KB  
Article
Numerical Investigation of Atwood Number Effects on Shock-Driven Single-Mode Stratified Heavy Fluid Layers
by Salman Saud Alsaeed, Satyvir Singh and Nouf A. Alrubea
Mathematics 2025, 13(18), 3032; https://doi.org/10.3390/math13183032 - 19 Sep 2025
Cited by 2 | Viewed by 397
Abstract
This work presents a numerical investigation of Richtmyer–Meshkov instability (RMI) in shock-driven single-mode stratified heavy fluid layers, with emphasis on the influence of the Atwood number. High-order modal discontinuous Galerkin simulations are carried out for Atwood numbers ranging from A=0.30 to [...] Read more.
This work presents a numerical investigation of Richtmyer–Meshkov instability (RMI) in shock-driven single-mode stratified heavy fluid layers, with emphasis on the influence of the Atwood number. High-order modal discontinuous Galerkin simulations are carried out for Atwood numbers ranging from A=0.30 to 0.72, allowing a systematic study of interface evolution, vorticity dynamics, and mixing. The analysis considers diagnostic quantities such as interface trajectories, normalized interface length and amplitude, vorticity extrema, circulation, enstrophy, and kinetic energy. The results demonstrate that the Atwood number plays a central role in instability development. At low A, interface deformation remains smooth and coherent, with weaker vorticity deposition and delayed nonlinear roll-up. As A increases, baroclinic torque intensifies, leading to rapid perturbation growth, stronger vortex roll-ups, and earlier onset of secondary instabilities such as Kelvin–Helmholtz vortices. Enstrophy, circulation, and interface measures show systematic amplification with increasing density contrast, while the total kinetic energy exhibits relatively weak sensitivity to A. Overall, the study highlights how the Atwood number governs the transition from linear to nonlinear dynamics, controlling both large-scale interface morphology and the formation of small-scale vortical structures. These findings provide physical insight into shock–interface interactions and contribute to predictive modeling of instability-driven mixing in multicomponent flows. Full article
(This article belongs to the Special Issue High-Order Numerical Methods and Computational Fluid Dynamics)
Show Figures

Figure 1

Back to TopTop