Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = high-redshift galaxies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2190 KB  
Article
Evolution of Size, Mass, and Density of Galaxies Since Cosmic Dawn
by Rajendra P. Gupta
Galaxies 2025, 13(5), 115; https://doi.org/10.3390/galaxies13050115 - 10 Oct 2025
Viewed by 518
Abstract
The formation and evolution of galaxies and other astrophysical objects have become of great interest, especially since the launch of the James Webb Space Telescope in 2021. The mass, size, and density of objects in the early universe appear to be drastically different [...] Read more.
The formation and evolution of galaxies and other astrophysical objects have become of great interest, especially since the launch of the James Webb Space Telescope in 2021. The mass, size, and density of objects in the early universe appear to be drastically different from those predicted by the standard cosmology—the ΛCDM model. This work shows that the mass–size–density evolution is not surprising when we use the CCC+TL cosmology, which is based on the concepts of covarying coupling constants in an expanding universe and the tired light effect contributing to the observed redshift. This model is consistent with supernovae Pantheon+ data, the angular size of the cosmic dawn galaxies, BAO, CMB sound horizon, galaxy formation time scales, time dilation, galaxy rotation curves, etc., and does not have the coincidence problem. The effective radii re of the objects are larger in the new model by re1+z0.93. Thus, the object size evolution in different studies, estimated as re1+zs with s=1.0 ± 0.3, is modified to re1+zs+0.93, the dynamical mass by 1+z0.93, and number density by 1+z2.80. The luminosity modification increases slowly with z to 1.8 at z=20. Thus, the stellar mass increase is modest, and the luminosity and stellar density decrease are mainly due to the larger object size in the new model. Since the aging of the universe is stretched in the new model, its temporal evolution is much slower (e.g., at z=10, the age is about a dex longer); stars, black holes, and galaxies do not have to form at unrealistic rates. Full article
Show Figures

Figure 1

17 pages, 2665 KB  
Article
Testing CCC+TL Cosmology with Galaxy Rotation Curves
by Rajendra P. Gupta
Galaxies 2025, 13(5), 108; https://doi.org/10.3390/galaxies13050108 - 12 Sep 2025
Cited by 1 | Viewed by 8270
Abstract
This paper aims to explore whether astrophysical observations, primarily galaxy rotation curves, result from covarying coupling constants (CCC) rather than from dark matter. We have shown in earlier papers that cosmological observations, such as supernovae type 1a (Pantheon+), the small size of galaxies [...] Read more.
This paper aims to explore whether astrophysical observations, primarily galaxy rotation curves, result from covarying coupling constants (CCC) rather than from dark matter. We have shown in earlier papers that cosmological observations, such as supernovae type 1a (Pantheon+), the small size of galaxies at cosmic dawn, baryon acoustic oscillations (BAO), the sound horizon in the cosmic microwave background (CMB), and time dilation effect, can be easily accounted for without requiring dark energy and dark matter when coupling constants are permitted to evolve in an expanding Universe, as predicted by Dirac, and the redshift is considered jointly due to the Universe’s expansion and Zwicky’s tired light (TL) effect. Here, we show that the CCC parameter α is responsible for generating the illusion of dark matter and dark energy, which we call α-matter and α-energy, and is influenced by the baryonic matter density distribution. While cosmologically α is a constant determined for the homogenous and isotropic Universe, e.g., by fitting Pantheon+ data, it can vary locally due to the extreme anisotropy of the matter distribution. Thus, in high baryonic density regions, one expects α-matter and α-energy densities to be relatively low and vice versa. We present its application to a few galaxy rotation curves from the SPARC database and find the results promising. Full article
(This article belongs to the Special Issue Alternative Interpretations of Observed Galactic Behaviors)
Show Figures

Figure 1

17 pages, 749 KB  
Article
Probing the Cosmic Distance Duality Relation via Non-Parametric Reconstruction for High Redshifts
by Felipe Avila, Fernanda Oliveira, Camila Franco, Maria Lopes, Rodrigo Holanda, Rafael C. Nunes and Armando Bernui
Universe 2025, 11(9), 307; https://doi.org/10.3390/universe11090307 - 9 Sep 2025
Viewed by 666
Abstract
We test the validity of the cosmic distance duality relation (CDDR) by combining angular diameter distance and luminosity distance measurements from recent cosmological observations. For the angular diameter distance, we use data from transverse baryon acoustic oscillations and galaxy clusters. On the other [...] Read more.
We test the validity of the cosmic distance duality relation (CDDR) by combining angular diameter distance and luminosity distance measurements from recent cosmological observations. For the angular diameter distance, we use data from transverse baryon acoustic oscillations and galaxy clusters. On the other hand, the luminosity distance is obtained from Type Ia supernovae in the Pantheon+ sample and from quasar catalogs. To reduce the large dispersion in quasar luminosity distances, we apply a selection criterion based on their deviation from the ΛCDM model and implement a binning procedure to suppress statistical noise. We reconstruct the CDDR using Gaussian Processes, a non-parametric supervised machine learning method. Our results show no significant deviation from the CDDR within the 2σ confidence level across the redshift range explored, supporting its validity even at high redshifts. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024—'Cosmology')
Show Figures

Figure 1

11 pages, 711 KB  
Communication
What Do Radio Emission Constraints Tell Us About Little Red Dots as Tidal Disruption Events?
by Krisztina Perger, Judit Fogasy and Sándor Frey
Universe 2025, 11(9), 294; https://doi.org/10.3390/universe11090294 - 1 Sep 2025
Viewed by 569
Abstract
The real nature of little red dots (LRDs), a class of very compact galaxies in the early Universe recently discovered by the James Webb Space Telescope, is still poorly understood. The most popular theories competing to interpret the phenomena include active galactic nuclei [...] Read more.
The real nature of little red dots (LRDs), a class of very compact galaxies in the early Universe recently discovered by the James Webb Space Telescope, is still poorly understood. The most popular theories competing to interpret the phenomena include active galactic nuclei and enhanced star formation in dusty galaxies. To date, however, neither model gives a completely satisfactory explanation to the population as a whole; thus, alternative theories have arisen, including tidal disruption events (TDEs). By considering observational constraints on the radio emission of LRDs, we discuss whether TDEs are adequate alternatives solving these high-redshift enigmas. We utilise radio flux density upper limits from LRD stacking analyses, TDE peak radio luminosities, and volumetric density estimates. We find that the characteristic values of flux densities and luminosities allow radio-quiet TDEs as the underlying process of LRDs in any case, while the less common radio-loud TDEs are compatible with the model under special constraints only. Considering other factors, such as volumetric density estimates, delayed and long-term radio flares of TDEs, and cosmological time dilation, TDEs appear to be a plausible explanation for LRDs from the radio point of view. Full article
(This article belongs to the Special Issue Advances in Studies of Galaxies at High Redshift)
Show Figures

Figure 1

21 pages, 795 KB  
Review
Cosmic Magnification of High-Redshift Submillimeter Galaxies
by Marcos M. Cueli, Joaquín González-Nuevo, Laura Bonavera and Andrea Lapi
Galaxies 2025, 13(4), 89; https://doi.org/10.3390/galaxies13040089 - 11 Aug 2025
Viewed by 564
Abstract
Weak lensing magnification probes the correlation between galaxies and the underlying matter field in a similar fashion to galaxy–galaxy lensing shear. Although it has long been sidelined in favor of the latter on the grounds of poorer performance in terms of statistical significance, [...] Read more.
Weak lensing magnification probes the correlation between galaxies and the underlying matter field in a similar fashion to galaxy–galaxy lensing shear. Although it has long been sidelined in favor of the latter on the grounds of poorer performance in terms of statistical significance, the provision of a large sample of high-redshift submillimeter galaxies by the Herschel observatory has transformed the landscape of cosmic magnification due to their optimal physical properties for magnification analyses. This review aims to summarize the core principles and unique advantages of the cosmic magnification of high-redshift submillimeter galaxies and discuss recent results applied to cosmological inference. The outlook and challenges of this observable are also outlined, with a focus on the ample scope for exploration and its potential to emerge as a competitive independent cosmological probe. Full article
(This article belongs to the Special Issue The Observation and Detection of Dusty Star-Forming Galaxies)
Show Figures

Figure 1

44 pages, 8269 KB  
Article
Contribution of AGN to the Morphological Parameters of Their Host Galaxies up to Intermediate Redshifts of z ∼ 2
by Tilahun Getachew-Woreta, Mirjana Pović, Jaime Perea, Isabel Marquez, Josefa Masegosa, Antoine Mahoro and Shimeles Terefe Mengistue
Galaxies 2025, 13(4), 84; https://doi.org/10.3390/galaxies13040084 - 1 Aug 2025
Viewed by 899
Abstract
The presence of Active Galaxy Nuclei (AGN) can affect the morphological classification of galaxies. This work aims to determine how the contribution of AGN affects the most-used morphological parameters down to the redshift of z ∼ 2 in COSMOS-like conditions. We use a [...] Read more.
The presence of Active Galaxy Nuclei (AGN) can affect the morphological classification of galaxies. This work aims to determine how the contribution of AGN affects the most-used morphological parameters down to the redshift of z ∼ 2 in COSMOS-like conditions. We use a sample of >2000 local non-active galaxies, with a well-known visual morphological classification, and add an AGN as an unresolved component that contributes to the total galaxy flux with 5–75%. We moved all the galaxies to lower magnitudes (higher redshifts) to map the conditions in the COSMOS field, and we measured six morphological parameters. The greatest impact on morphology occurs when considering the combined effect of magnitude, redshift, and AGN, with spiral galaxies being the most affected. In general, all the concentration parameters change significantly if the AGN contribution is >25% and the magnitude > 23. We find that the GINI coefficient is the most stable in terms of AGN and magnitude/redshift, followed by the moment of light (M20), Conselice–Bershady (CCON), and finally the Abraham (CABR) concentration indexes. We find that, when using morphological parameters, the combination of CABR, CCON, and asymmetry is the most effective in classifying active galaxies at high-redshift, followed by a combination of CABR and GINI. Full article
Show Figures

Figure 1

30 pages, 25151 KB  
Article
Prospects for Multimessenger Observations of the Shapley Supercluster
by Valentyna Babur, Olexandr Gugnin and Bohdan Hnatyk
Universe 2025, 11(7), 239; https://doi.org/10.3390/universe11070239 - 21 Jul 2025
Cited by 1 | Viewed by 698
Abstract
The Shapley Supercluster, one of the largest and most massive structures in the nearby (redshift z0.1) Universe, located approximately 200 Mpc away, is a unique laboratory for high-energy astrophysics. Galaxy clusters that comprise it are promising targets for multimessenger study [...] Read more.
The Shapley Supercluster, one of the largest and most massive structures in the nearby (redshift z0.1) Universe, located approximately 200 Mpc away, is a unique laboratory for high-energy astrophysics. Galaxy clusters that comprise it are promising targets for multimessenger study due to the presence in the intracluster medium of the necessary conditions for the acceleration of cosmic rays up to ultra-high energies and the generation by them of non-thermal electromagnetic and neutrino emission. Using the Shapley Supercluster’s observational data from the recent eROSITA-DE Data Release, we recover the physical parameters of 45 X-ray luminous galaxy clusters and calculate the expected multiwavelength—from radio to very-high-energy γ-ray as well as neutrino emission, with a particular focus on hadronic interactions of accelerated cosmic ray nuclei with the nuclei of the intracluster medium. The results obtained allow verification of cluster models based on multimessenger observations of clusters, especially in γ-ray (Fermi-LAT, H.E.S.S., CTAO-South for the Shapley Supercluster case), and neutrino (Ice Cube, KM3NeT). We also estimate the ability of the Shapley Supercluster to manifest as cosmic Zevatrons and show that it can contribute to the PAO Hot Spot in the Cen A region at UHECR energies over 50 EeV. Full article
(This article belongs to the Special Issue Ultra-High-Energy Cosmic Rays)
Show Figures

Figure 1

16 pages, 10616 KB  
Article
Superluminal Motion and Jet Parameters in the High-Redshift Blazar J1429+5406
by Dávid Koller and Sándor Frey
Universe 2025, 11(5), 157; https://doi.org/10.3390/universe11050157 - 11 May 2025
Viewed by 1839
Abstract
We investigate the relativistic jet of the powerful radio-emitting blazar J1429+5406 at redshift z=3.015. Our understanding of jet kinematics in z3 quasars is still rather limited, based on a sample of less than about 50 objects. The blazar [...] Read more.
We investigate the relativistic jet of the powerful radio-emitting blazar J1429+5406 at redshift z=3.015. Our understanding of jet kinematics in z3 quasars is still rather limited, based on a sample of less than about 50 objects. The blazar J1429+5406 was observed at a high angular resolution using the method of very long baseline interferometry over more than two decades, between 1994 and 2018. These observations were conducted at five radio frequencies, covering a wide range from 1.7 to 15 GHz. The outer jet components at ∼20–40 milliarcsecond (mas) separations from the core do not show discernible apparent motion. On the other hand, three jet components within the central 10 mas region exhibit significant proper motion in the range of (0.045–0.16) mas year−1, including one that is among the fastest-moving jet components at z3 known to date. Based on the proper motion of the innermost jet component and the measured brightness temperature of the core, we estimated the Doppler factor, the bulk Lorentz factor, and the inclination angle of the jet with respect to the line of sight. The core brightness temperature is at least 3.6×1011 K, well exceeding the equipartition limit, indicating Doppler-boosted radio emission. The low jet inclination (≲5.4°) firmly places J1429+5406 into the blazar category. Full article
(This article belongs to the Special Issue Advances in Studies of Galaxies at High Redshift)
Show Figures

Figure 1

20 pages, 1318 KB  
Article
The Galactic Pizza: Flat Rotation Curves in the Context of Cosmological Time-Energy Coupling
by Artur Novais and André L. B. Ribeiro
Galaxies 2025, 13(3), 51; https://doi.org/10.3390/galaxies13030051 - 27 Apr 2025
Viewed by 5514
Abstract
The phenomenon of augmented gravity on the scale of galaxies, conventionally attributed to dark matter halos, is shown to possibly result from the incremental growth of galactic masses and radii over time. This approach elucidates the cosmological origins of the acceleration scale [...] Read more.
The phenomenon of augmented gravity on the scale of galaxies, conventionally attributed to dark matter halos, is shown to possibly result from the incremental growth of galactic masses and radii over time. This approach elucidates the cosmological origins of the acceleration scale a0cH0/2π1010 ms−2 at which galaxy rotation curves deviate from Keplerian behavior, with no need for new particles or modifications to the laws of gravity, i.e., it constitutes a new explanatory path beyond Cold Dark Matter (CDM) and Modified Newtonian Dynamics (MOND). Once one formally equates the energy density of the universe to the critical value (ρ=ρc) and the cosmic age to the reciprocal of the Hubble parameter (t=H1), independently of the epoch of observation, the result is the Zero-Energy condition for the cosmic fluid’s equation of state, with key repercussions for the study of dark energy since the observables can be explained in the absence of a cosmological constant. Furthermore, this mass-energy evolution framework is able to reconcile the success of CDM models in describing structure assembly at z6 with the unexpected discovery of massive objects at z10. Models that feature a strong coupling between cosmic time and energy are favored by this analysis. Full article
(This article belongs to the Special Issue Alternative Interpretations of Observed Galactic Behaviors)
Show Figures

Figure 1

15 pages, 1746 KB  
Article
The Impact of Stellar Initial Mass Function on the Epoch of Reionization: Insights from Semi-Analytic Galaxy Modeling
by Qingbo Ma, Lei Liu and Peiai Liu
Universe 2025, 11(4), 129; https://doi.org/10.3390/universe11040129 - 12 Apr 2025
Viewed by 575
Abstract
The adequate choice of stellar initial mass function (IMF) is crucial when studying high-z galaxy formation and the epoch of reionization (EoR) models. We employ the semi-analytical galaxy model L-Galaxies2020 and the dark matter simulation Millennium-II, in combination with the BPASS [...] Read more.
The adequate choice of stellar initial mass function (IMF) is crucial when studying high-z galaxy formation and the epoch of reionization (EoR) models. We employ the semi-analytical galaxy model L-Galaxies2020 and the dark matter simulation Millennium-II, in combination with the BPASS spectral model, to investigate the effects of different stellar IMFs on the properties of high-z galaxies and their ionizing photon budget during EoR. We find that different stellar IMFs lead to different SED of high-z galaxies, and thus different ultraviolet luminosity functions (UVLF) and budgets of ionizing photons for EoR. Specifically, at z<10, the UVLF with Salpeter and Chabrier IMF models are closer to the observed results, while at z>10, the ones with a Top-Heavy model are more consistent with the JWST observations. The increase in the upper limit of star mass within stellar IMF from 100M to 300M results in the increase in the UVLF and the ionizing photon number density. Full article
Show Figures

Figure 1

10 pages, 1540 KB  
Article
Why Jet Power and Star Formation Are Uncorrelated in Active Galaxies
by David Garofalo, Brent McDaniel and Max North
Galaxies 2025, 13(2), 35; https://doi.org/10.3390/galaxies13020035 - 3 Apr 2025
Viewed by 1224
Abstract
Jet luminosity from active galaxies and the rate of star formation have recently been found to be uncorrelated observationally. We show how to understand this in the context of a model in which powerful AGN jets enhance star formation for up to hundreds [...] Read more.
Jet luminosity from active galaxies and the rate of star formation have recently been found to be uncorrelated observationally. We show how to understand this in the context of a model in which powerful AGN jets enhance star formation for up to hundreds of millions of years while jet power decreases in time, followed by a longer phase in which star formation is suppressed but coupled to jet power increasing with time. We also highlight characteristic differences, depending on environment richness in a way that is compatible with the observed SEDs of high redshift radio galaxies. While the absence of a direct correlation between jet power and star formation rate emerges naturally, our framework allows us to also predict the environment richness, range of excitation, and redshift values of radio AGN in the jet power-star formation rate plane. Full article
Show Figures

Figure 1

15 pages, 685 KB  
Review
An Updated Repository of Sub-mJy Extragalactic Source-Count Measurements in the Radio Domain
by Vincenzo Galluzzi, Meriem Behiri, Marika Giulietti and Andrea Lapi
Galaxies 2025, 13(2), 34; https://doi.org/10.3390/galaxies13020034 - 2 Apr 2025
Cited by 2 | Viewed by 852
Abstract
We present an updated repository of sub-mJy extragalactic radio source counts between 150 MHz and 10 GHz, incorporating recent advances in radio surveys and observational techniques. By compiling and refining previous datasets, we provide a comprehensive catalog that enhances the understanding of faint [...] Read more.
We present an updated repository of sub-mJy extragalactic radio source counts between 150 MHz and 10 GHz, incorporating recent advances in radio surveys and observational techniques. By compiling and refining previous datasets, we provide a comprehensive catalog that enhances the understanding of faint radio-source populations, including Dusty Star-Forming Galaxies (DSFGs) and Radio-Quiet Active Galactic Nuclei (RQAGNs), from intermediate to high redshifts. Our analysis accounts for observational biases, such as resolution effects and Eddington bias, ensuring improved accuracy in flux-density estimations. We also discuss the implications of new-generation radio telescopes, such as the Square-Kilometer Array Observatory (SKAO) and its precursors and pathfinders, to further resolve these populations. Our collection contributes to constraining evolutionary models of radio sources, highlighting the increasing role of polarization studies in distinguishing different classes. This work serves as a key reference for future deep radio surveys targeting the faintest end of the extragalactic radio sky. Full article
(This article belongs to the Special Issue The Observation and Detection of Dusty Star-Forming Galaxies)
Show Figures

Figure 1

28 pages, 13572 KB  
Article
High-Redshift Quasars at z ≥ 3—III: Parsec-Scale Jet Properties from Very Long Baseline Interferometry Observations
by Shaoguang Guo, Tao An, Yuanqi Liu, Chuanzeng Liu, Zhijun Xu, Yulia Sotnikova, Timur Mufakharov and Ailing Wang
Universe 2025, 11(3), 91; https://doi.org/10.3390/universe11030091 - 8 Mar 2025
Cited by 1 | Viewed by 1032
Abstract
High-redshift active galactic nuclei (AGN) provide key insights into early supermassive black hole growth and cosmic evolution. This study investigates the parsec-scale properties of 86 radio-loud quasars at z ≥ 3 using very long baseline interferometry (VLBI) observations. Our results show predominantly compact [...] Read more.
High-redshift active galactic nuclei (AGN) provide key insights into early supermassive black hole growth and cosmic evolution. This study investigates the parsec-scale properties of 86 radio-loud quasars at z ≥ 3 using very long baseline interferometry (VLBI) observations. Our results show predominantly compact core and core-jet morphologies, with 35% having unresolved cores, 59% with core–jet structures, and only 6% with core–double jet morphology. Brightness temperatures are generally lower than expected for highly radiative sources. The jets’ proper motions are surprisingly slow compared to those of lower-redshift samples. We observe a high fraction of young and/or confined peak-spectrum sources, providing insights into early AGN evolution in dense environments during early cosmic epochs. The observed trends may reflect genuine evolutionary changes in AGN structure over cosmic time, or selection effects favoring more compact sources at higher redshifts. These results stress the complexity of high-redshift radio-loud AGN populations and emphasize the need for multi-wavelength, high-resolution observations to fully characterize their properties and evolution through cosmic history. Full article
(This article belongs to the Special Issue Advances in Studies of Galaxies at High Redshift)
Show Figures

Figure 1

13 pages, 4528 KB  
Review
Hot Stars in Stellar Populations of Galaxies
by Claus Leitherer
Galaxies 2025, 13(2), 20; https://doi.org/10.3390/galaxies13020020 - 7 Mar 2025
Viewed by 1365
Abstract
Star-forming galaxies are hosts of dominant populations of recently formed, hot, massive stars, which give rise to conspicuous stellar spectral features and provide the ionizing fluxes. Strong outflows of these stars shape their properties. These winds affect the evolution and the output of [...] Read more.
Star-forming galaxies are hosts of dominant populations of recently formed, hot, massive stars, which give rise to conspicuous stellar spectral features and provide the ionizing fluxes. Strong outflows of these stars shape their properties. These winds affect the evolution and the output of ionizing radiation, as well as the energy and momentum input in the interstellar medium and the chemical enrichment. Many properties of massive stars become even more extreme at a low metallicity. Owing to the pioneering observations of young, metal-poor stellar populations, both locally with HST and large ground-based facilities and at high redshift with JWST, we are at a key moment to assess our understanding of hot massive stars in these galaxies. Stellar population synthesis is a key tool. I will demonstrate how population models of hot, massive stars help to address some issues at the forefront of current research. The recent advent of new evolutionary and atmosphere models of massive stars probing new parameter space allows us to characterize the properties of nearby and distant populations. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

15 pages, 532 KB  
Article
What Is Inside the Double–Double Structure of the Radio Galaxy J0028+0035?
by Sándor Frey, Andrzej Marecki, Krisztina Éva Gabányi and Marek Jamrozy
Symmetry 2025, 17(2), 171; https://doi.org/10.3390/sym17020171 - 23 Jan 2025
Viewed by 1121
Abstract
The radio source J0028+0035 is a recently discovered double–double radio galaxy at redshift z=0.398. Its relic outer lobes are separated by about 3 in the sky, corresponding to ∼1 Mpc projected linear size. Inside this large-scale structure, the inner [...] Read more.
The radio source J0028+0035 is a recently discovered double–double radio galaxy at redshift z=0.398. Its relic outer lobes are separated by about 3 in the sky, corresponding to ∼1 Mpc projected linear size. Inside this large-scale structure, the inner pair of collinear lobes span about 100 kpc. In the arcsec-resolution radio images of J0028+0035, there is a central radio feature that offers the intriguing possibility of being resolved into a pc-scale, third pair of innermost lobes. This would make this radio galaxy a rare triple–double source where traces of three distinct episodes of radio activity could be observed. To reveal the compact radio structure of the central component, we conducted observation with the European Very Long Baseline Interferometer Network and the enhanced Multi Element Remotely Linked Interferometer Network. Our 1.66 GHz image with high (∼5 milliarcsec) resolution shows a compact central radio core with no indication of a third, innermost double feature. The observation performed in multi-phase-centre mode also revealed that the physically unrelated but in projection closely separated background source 5BZU J0028+0035 has a single weak, somewhat resolved radio feature, at odds with its blazar classification. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

Back to TopTop