Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = high-voltage DC (HVDC) aircraft power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5425 KB  
Article
Designing a Capacitive Sensor to Detect Series Arcs in Aircraft HVDC Electrical Systems
by Gema Salinero and Guillermo Robles
Sensors 2025, 25(16), 4886; https://doi.org/10.3390/s25164886 - 8 Aug 2025
Viewed by 486
Abstract
The transition toward more electric aircraft (MEA) and all-electric aircraft (AEA) has driven the adoption of high-voltage DC (HVDC) electrical architectures to meet increasing power demands while reducing weight and enhancing overall efficiency. However, HVDC systems introduce new challenges, particularly concerning insulation reliability [...] Read more.
The transition toward more electric aircraft (MEA) and all-electric aircraft (AEA) has driven the adoption of high-voltage DC (HVDC) electrical architectures to meet increasing power demands while reducing weight and enhancing overall efficiency. However, HVDC systems introduce new challenges, particularly concerning insulation reliability and the detection of in-flight series arc faults. This paper presents the design and evaluation of a capacitive sensor specifically developed to detect series arc faults in HVDC electrical systems for aerospace applications. A model of the sensor is proposed and validated through both simulations and experimental measurements using a step response test. The results show excellent agreement between the model and the physical setup. After validating the capacitive coupling value and its response to high-frequency signals, series arcs were generated in the laboratory to evaluate the sensor’s performance under realistic operating conditions, which involve different signal dynamics. The results are highly satisfactory and confirm the feasibility of using capacitive sensing for early arc detection, particularly aligned with the stringent requirements of more electric aircraft (MEA) and all-electric aircraft (AEA). The proposed sensor thus enables non-intrusive detection of series arc faults in compact, lightweight, and safety-critical environments. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

26 pages, 5366 KB  
Article
Concepts and Experiments on More Electric Aircraft Power Systems
by Andrzej Gębura, Andrzej Szelmanowski, Ilona Jacyna-Gołda, Paweł Gołda, Magdalena Kalbarczyk and Justyna Tomaszewska
Energies 2025, 18(7), 1653; https://doi.org/10.3390/en18071653 - 26 Mar 2025
Cited by 1 | Viewed by 1993
Abstract
The evolution of aircraft power systems has been driven by increasing electrical demands and advancements in aviation technology. Background: This study provides a comprehensive review and experimental validation of on-board electrical network development, analyzing power management strategies in both conventional and modern aircraft, [...] Read more.
The evolution of aircraft power systems has been driven by increasing electrical demands and advancements in aviation technology. Background: This study provides a comprehensive review and experimental validation of on-board electrical network development, analyzing power management strategies in both conventional and modern aircraft, including the Mi-24 helicopter, F-22 multirole aircraft, and Boeing 787 passenger airplane. Methods: The research categorizes aircraft electrical systems into three historical phases: pre-1960s with 28.5 V DC networks, up to 2000 with three-phase AC networks (3 × 115 V/200 V, 400 Hz), and post-2000 with 270 V DC networks derived from AC generators via transformer–rectifier units. Beyond theoretical analysis, this work introduces experimental findings on hybrid-electric aircraft power solutions, particularly evaluating the performance of the Modular Power System for Aircraft (MPSZE). The More Electric Aircraft (MEA) concept is analyzed as a key innovation, with a focus on energy efficiency, frequency stability, and ground power applications. The study investigates the integration of alternative energy sources, including photovoltaic-assisted power supplies and fuel-cell-based auxiliary systems, assessing their feasibility for aircraft system checks, engine startups, field navigation, communications, and radar operations. Results: Experimental results demonstrate that hybrid energy storage systems, incorporating lithium-ion batteries, fuel cells, and photovoltaic modules, can enhance MEA efficiency and operational resilience under real-world conditions. Conclusions: The findings underscore the importance of MEA technology in the future of sustainable aviation power solutions, highlighting both global and Polish research contributions, particularly from the Air Force Institute of Technology (ITWL). Full article
(This article belongs to the Special Issue Energy-Efficient Advances in More Electric Aircraft)
Show Figures

Figure 1

18 pages, 7712 KB  
Article
Development of a Multi-Channel Ultra-Wideband Electromagnetic Transient Measurement System
by Shaoyin He, Xiangyu Chen, Bohao Zhang and Liang Song
Sensors 2025, 25(4), 1159; https://doi.org/10.3390/s25041159 - 14 Feb 2025
Viewed by 993
Abstract
In complex electromagnetic environments, such as substations, converter stations in power systems, and the compartments of aircraft, trains, and automobiles, electromagnetic immunity testing is crucial. It requires that the electric field sensor has features such as a large dynamic measurement range (amplitude from [...] Read more.
In complex electromagnetic environments, such as substations, converter stations in power systems, and the compartments of aircraft, trains, and automobiles, electromagnetic immunity testing is crucial. It requires that the electric field sensor has features such as a large dynamic measurement range (amplitude from hundreds of V/m to tens of kV/m), a fast response speed (response time in the order of nanoseconds or sub-nanoseconds), a wide test bandwidth (DC to 1 GHz even above), miniaturization, and robustness to strong electromagnetic interference. This paper introduces a multi-channel, ultra-wideband transient electric field measurement system. The system’s analog bandwidth covers the spectrum from DC and a power frequency of 50 Hz to partial discharge signals, from DC to 1.65 GHz, with a storage depth of 2 GB (expandable). It overcomes issues related to the instability, insufficient bandwidth, and lack of accuracy of optical fibers in analog signal transmission by using front-end digital sampling based on field-programmable gate array (FPGA) technology and transmitting digital signals via optical fibers. This approach is effectively applicable to measurements in strong electromagnetic environments. Additionally, the system can simultaneously access four channels of signals, with synchronization timing reaching 300 picoseconds, can be connected to voltage and current sensors simultaneously, and the front-end sensor can be flexibly replaced. The performance of the system is verified by means of a disconnect switch operation and steady state test in an HVDC converter station. It is effectively applicable in scenarios such as the online monitoring of transient electromagnetic environments in high-voltage power equipment, fault diagnosis, and the precise localization of radiation sources such as partial discharge or intentional electromagnetic interference (IEMI). Full article
(This article belongs to the Special Issue Magnetoelectric Sensors and Their Applications)
Show Figures

Figure 1

19 pages, 2230 KB  
Article
Modelling Inductive Sensors for Arc Fault Detection in Aviation
by Gabriel Barroso-de-María, Guillermo Robles, Juan Manuel Martínez-Tarifa and Alexander Cuadrado
Sensors 2024, 24(8), 2639; https://doi.org/10.3390/s24082639 - 20 Apr 2024
Cited by 4 | Viewed by 2019
Abstract
Modern aircraft are being equipped with high-voltage and direct current (HVDC) architectures to address the increase in electrical power. Unfortunately, the rise of voltage in low pressure environments brings about a problem with unexpected ionisation phenomena such as arcing. Series arcs in HVDC [...] Read more.
Modern aircraft are being equipped with high-voltage and direct current (HVDC) architectures to address the increase in electrical power. Unfortunately, the rise of voltage in low pressure environments brings about a problem with unexpected ionisation phenomena such as arcing. Series arcs in HVDC cannot be detected with conventional means, and finding methods to avoid the potentially catastrophic hazards of these events becomes critical to assure further development of more electric and all electric aviation. Inductive sensors are one of the most promising detectors in terms of sensitivity, cost, weight and adaptability to the circuit wiring in aircraft electric systems. In particular, the solutions based on the detection of the high-frequency (HF) pulses created by the arc have been found to be good candidates in practical applications. This paper proposes a method for designing series arc fault inductive sensors able to capture the aforementioned HF pulses. The methodology relies on modelling the parameters of the sensor based on the physics that intervenes in the HF pulses interaction with the sensor itself. To this end, a comparative analysis with different topologies is carried out. For every approach, the key parameters influencing the HF pulses detection are studied theoretically, modelled with a finite elements method and tested in the laboratory in terms of frequency response. The final validation tests were conducted using the prototypes in real cases of detection of DC series arcs. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 7916 KB  
Article
Power Scalable Bi-Directional DC-DC Conversion Solutions for Future Aircraft Applications
by Antonio Lamantia, Francesco Giuliani and Alberto Castellazzi
Energies 2020, 13(20), 5470; https://doi.org/10.3390/en13205470 - 19 Oct 2020
Cited by 7 | Viewed by 2947
Abstract
With the introduction of the more electric aircraft, there is growing emphasis on improving overall efficiency and thus gravimetric and volumetric power density, as well as smart functionalities and safety of an aircraft. In future on-board power distribution networks, so-called high voltage DC [...] Read more.
With the introduction of the more electric aircraft, there is growing emphasis on improving overall efficiency and thus gravimetric and volumetric power density, as well as smart functionalities and safety of an aircraft. In future on-board power distribution networks, so-called high voltage DC (HVDC, typically +/−270VDC) supplies will be introduced to facilitate distribution and reduce the associated mass and volume, including harness. Future aircraft power distribution systems will also very likely include energy storage devices (probably, batteries) for emergency back up and engine starting. Correspondingly, novel DC-DC conversion solutions are required, which can interface the traditional low voltage (28 V) DC bus with the new 270 V one. Such solutions presently need to cater for a significant degree of flexibility in their power ratings, power transfer capability and number of inputs/outputs. Specifically, multi-port power-scalable bi-directional converters are required. This paper presents the design and testing of such a solution, addressing the use of leading edge wide-band-gap (WBG) solid state technology, especially silicon carbide (SiC), for use as high-frequency switches within the bi-directional converter on the high-voltage side. Full article
(This article belongs to the Special Issue Advanced DC-DC Power Converters and Switching Converters)
Show Figures

Figure 1

21 pages, 10906 KB  
Article
Multi-Objective Optimization Control for the Aerospace Dual-Active Bridge Power Converter
by Tao Lei, Cenying Wu and Xiaofei Liu
Energies 2018, 11(5), 1168; https://doi.org/10.3390/en11051168 - 7 May 2018
Cited by 14 | Viewed by 4306
Abstract
With the development of More Electrical Aircraft (MEA), the electrification of secondary power systems in aircraft is becoming more and more common. As the key power conversion device, the dual active bridge (DAB) converter is the power interface for the energy storage system [...] Read more.
With the development of More Electrical Aircraft (MEA), the electrification of secondary power systems in aircraft is becoming more and more common. As the key power conversion device, the dual active bridge (DAB) converter is the power interface for the energy storage system with the high voltage direct current (HVDC) bus in aircraft electrical power systems. In this paper, a DAB DC-DC converter is designed to meet aviation requirements. The extended dual phase shifted control strategy is adopted, and a multi-objective genetic algorithm is applied to optimize its operating performance. Considering the three indicators of inductance current root mean square root (RMS) value, negative reverse power and direct current (DC) bias component of the current for the high frequency transformer as the optimization objectives, the DAB converter’s optimization model is derived to achieve soft switching as the main constraint condition. Optimized methods of controlling quantity for the DAB based on the evolution and genetic algorithm is used to solve the model, and a number of optimal control parameters are obtained under different load conditions. The results of digital, hard-in-loop simulation and hardware prototype experiments show that the three performance indexes are all suppressed greatly, and the optimization method proposed in this paper is reasonable. The work of this paper provides a theoretical basis and researching method for the multi-objective optimization of the power converter in the aircraft electrical power system. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop