Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = histochemical analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 548 KB  
Systematic Review
A Systematic Review About Postmortem Pink Teeth: Forensic Classification, Diagnostic Value, and Analysis Methods
by Isabella Aquila, Saverio Gualtieri, Aurora Princi and Matteo Antonio Sacco
Diagnostics 2025, 15(16), 2092; https://doi.org/10.3390/diagnostics15162092 - 20 Aug 2025
Viewed by 187
Abstract
Background: The phenomenon of pink teeth represents a notable observation in forensic science, although its interpretation remains complex and not directly attributable to a specific cause of death. Methods: This systematic review provides an updated and comprehensive overview of the morphological and histological [...] Read more.
Background: The phenomenon of pink teeth represents a notable observation in forensic science, although its interpretation remains complex and not directly attributable to a specific cause of death. Methods: This systematic review provides an updated and comprehensive overview of the morphological and histological mechanisms associated with this finding, with a focus on hemoglobin diffusion and pigment accumulation during putrefaction rather than on detailed biochemical pathways. Results: Environmental conditions, especially high humidity and moderate temperatures, are identified as key facilitators. The synthesis of the available evidence, including case reports, observational series, and experimental studies, confirms that pink discoloration is primarily linked to postmortem hemoglobin diffusion following erythrocyte breakdown and release of heme groups into dentinal structures. This process occurs more frequently under conditions that preserve hemoglobin and facilitate its migration into dental tissues. Importantly, pink teeth have been documented across a wide spectrum of postmortem scenarios, such as hanging, drowning, carbon monoxide poisoning, and prolonged exposure to humid environments, indicating that their presence is neither pathognomonic nor exclusively associated with a specific cause of death. Assessment methods include semi-quantitative visual scoring systems (e.g., SPTC and SPTR), spectrophotometric assays, and histochemical analyses for hemoglobin derivatives. Recent advances in digital forensics, particularly micro-computed tomography and artificial intelligence–based segmentation, may further support the objective evaluation of chromatic dental changes. Conclusions: This review underscores the need for standardized approaches to the identification, classification, and analysis, both qualitative and quantitative, of pink teeth in medico-legal practice. Although not diagnostic in isolation, their systematic study enhances our understanding of decomposition processes and contributes supplementary interpretive data in forensic investigations. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

16 pages, 1844 KB  
Article
Granulomatous Lesions in the Head and Neck Region: A Clinicopathological, Histochemical, and Molecular Diagnostic Study
by Amjad S. Ali and Bashar H. Abdullah
Diagnostics 2025, 15(16), 2055; https://doi.org/10.3390/diagnostics15162055 - 16 Aug 2025
Viewed by 375
Abstract
Background/Objectives: Granulomatous lesions of the head and neck arise from diverse infectious and non-infectious causes, with tuberculosis (TB) being a predominant etiology. This retrospective study analyzed 42 cases from the archives of university of Baghdad, College of Dentistry (1975–2025). This study aimed [...] Read more.
Background/Objectives: Granulomatous lesions of the head and neck arise from diverse infectious and non-infectious causes, with tuberculosis (TB) being a predominant etiology. This retrospective study analyzed 42 cases from the archives of university of Baghdad, College of Dentistry (1975–2025). This study aimed to characterize the clinicopathological features of these lesions and to assess the diagnostic performance of histochemical stains and real-time PCR in identifying infectious etiologies—particularly Mycobacterium tuberculosis—in formalin-fixed, paraffin-embedded (FFPE) tissue samples. Methods: Definitive diagnoses included 25 TB cases confirmed through clinical, microbiological, and therapeutic follow-up at the Baghdad Tuberculosis Institute, and 17 non-TB cases classified by predefined clinicopathological criteria supported by relevant clinical data. Zieh–Neelsen (ZN), Periodic acid–Schiff (PAS), and Grocott methenamine silver (GMS) stains were employed to identify acid-fast bacilli and fungal organisms. Statistical analysis was performed using SPSS version 26, with significance set at p ≤ 0.05. Results: The mean patient age was 36.28 years (SD = 20.6), with a female predominance (59.5%). Necrotizing granulomas were identified in 69% of cases and were strongly associated with tuberculosis, which was detected in 59.5% of specimens. ZN staining showed a sensitivity of 16.7% for tuberculosis, while PCR sensitivity was highly dependent on sample age. The detection rate was 33.3% in samples archived for less than 10 years but only 10% in older samples, resulting in an overall sensitivity of 24.0% for tuberculous cases. Langhans-type giant cells were significantly more frequent in necrotizing granulomas and strongly associated with tuberculosis infection (p = 0.001). Fungal infections, predominantly aspergillosis, were confirmed by PAS and GMS in 11.9% and 9.5% of cases, respectively, and were confined to non-necrotizing granulomas. The mandible was the most commonly affected site, and soft tissue lesions were significantly associated with necrotizing granulomas (p = 0.004). Conclusions: These findings underscore the complementary role of histopathology, histochemical stains, and molecular diagnostics in improving the evaluation and diagnosis of granulomatous inflammation in head and neck lesions. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

16 pages, 4340 KB  
Article
Comparing Two Varieties of Blood Orange: A Differential Methylation Region Within the Specific Encoding Sequence of a Retrotransposon Adjacent to the Ruby Locus
by Jianhui Wang, Zhihong Li, Weiqing Guo, Zhihan Liu, Mingfu Xu, Yan Sun, Dayu Liu and Ying Chen
Horticulturae 2025, 11(8), 966; https://doi.org/10.3390/horticulturae11080966 - 14 Aug 2025
Viewed by 209
Abstract
The blood orange arose from the insertion of a retrotransposon adjacent to the Ruby gene, an MYB-type transcriptional activator of anthocyanin production, as reported previously. However, the intricate process of anthocyanin regulation among different varieties of blood orange remains incompletely understood. In this [...] Read more.
The blood orange arose from the insertion of a retrotransposon adjacent to the Ruby gene, an MYB-type transcriptional activator of anthocyanin production, as reported previously. However, the intricate process of anthocyanin regulation among different varieties of blood orange remains incompletely understood. In this study, mRNA levels of the transcription factors Ruby and TT8 were found to be upregulated in the juice vesicle tissues of a variety with higher concentrations of anthocyanins in the pulp compared with another variety with a lower anthocyanin content. In contrast, comparative analysis of the two varieties using two-dimensional electrophoresis and mass spectrometry did not identify differentially expressed proteins related to anthocyanin biosynthesis in the juice vesicle tissues. Furthermore, higher anthocyanin contents were observed in various tissues of transgenic Arabidopsis thaliana overexpressing the Ruby gene from blood orange compared with the wildtype plant. Moreover, the long terminal repeat (LTR) region of a retrotransposon inserted upstream of the Ruby locus exhibited the ability to drive reporter expression through histochemical assay in a transgenic seedling. Thus, a PCR-based molecular marker was developed, targeting the upstream sequence of the Ruby locus to identify Citrus hybrids with the unique trait of red-fleshed fruit. Intriguingly, bisulfite sequencing revealed differentially methylated regions within a Gag-Pol polyprotein-encoding sequence of a retrotransposon adjacent to Ruby locus when comparing two varieties with different anthocyanin contents. A higher average level of methylation status was observed in the fruit with a lower anthocyanin content. In conclusion, methylation modifications at specific upstream positions on the Ruby locus may influence anthocyanin production in blood oranges. Full article
Show Figures

Figure 1

14 pages, 2957 KB  
Article
Histochemical Study of Enzyme Activity in the Digestive Tract of the Small-Spotted Catshark (Scyliorhinus canicula) and the Smooth-Hound (Mustelus mustelus)
by Lucija Devčić, Ivan Vlahek, Magdalena Palić, Valerija Benko, Siniša Faraguna, Marin Lovrić, Damir Valić and Snježana Kužir
Fishes 2025, 10(8), 386; https://doi.org/10.3390/fishes10080386 - 6 Aug 2025
Viewed by 245
Abstract
The small-spotted catshark and the smooth-hound are cartilaginous, carnivorous fish with similar depth ranges in their habitats. These two species are among the most abundant elasmobranchs in the Adriatic Sea and are frequently caught by local fishermen using longline fishing. Despite their ecological [...] Read more.
The small-spotted catshark and the smooth-hound are cartilaginous, carnivorous fish with similar depth ranges in their habitats. These two species are among the most abundant elasmobranchs in the Adriatic Sea and are frequently caught by local fishermen using longline fishing. Despite their ecological similarities, little is known about the physiological differences in their digestive processes. The study of enzymatic digestion in these ecologically relevant species helps to fill the knowledge gap in the understanding of nutrient processing in cartilaginous fish. Therefore, the aim of this study was to determine, measure and compare the enzymatic activity of alkaline phosphatase, acid phosphatase, non-specific esterase and aminopeptidase. Fish were caught in the central part of the Adriatic Sea between 2021 and 2023. A total of 60 adult individuals were analyzed, with samples taken from six parts of the digestive tract. Histochemical analysis of 1440 slides revealed clear differences in enzyme activity between the two species. In the small-spotted catshark, cellular protein degradation was most pronounced in esophagus, posterior stomach and rectum, whereas in the smooth-hound, it was concentrated in posterior stomach and spiral intestine. Cellular digestion of lipids in the small-spotted catshark appears to occur primarily in the stomach. The results of this study provide new insights into the distribution of cellular digestive enzymes in cartilaginous fish and emphasize the importance of studying the entire digestive tract as an integrated system rather than focusing on individual parts. This study fills an important knowledge gap and contributes to a deeper understanding of digestive physiology, which in turn has implications for species conservation and biological variability. Full article
(This article belongs to the Section Physiology and Biochemistry)
Show Figures

Figure 1

18 pages, 1602 KB  
Article
Interacting Effects of Heat and Nanoplastics Affect Wheat (Triticum turgidum L.) Seedling Growth and Physiology
by Debora Fontanini, Stefania Bottega, Monica Ruffini Castiglione and Carmelina Spanò
Plants 2025, 14(15), 2426; https://doi.org/10.3390/plants14152426 - 5 Aug 2025
Viewed by 357
Abstract
Nano- and microplastic pollution, together with the ongoing rise in global temperatures driven by climate change, represent increasingly critical environmental challenges. Although these stressors often co-occur in the environment, their combined effects on plant systems remain largely unexplored. To test the hypothesis that [...] Read more.
Nano- and microplastic pollution, together with the ongoing rise in global temperatures driven by climate change, represent increasingly critical environmental challenges. Although these stressors often co-occur in the environment, their combined effects on plant systems remain largely unexplored. To test the hypothesis that their interaction may exacerbate the effects observed under each stressor individually, we investigated the response of seedlings of Triticum turgidum to treatments with fluorescent polystyrene nanoplastics under optimal (25 °C) and elevated (35 °C) temperature conditions. We evaluated seedling growth, photosynthetic pigment content, and oxidative stress markers using both biochemical and histochemical techniques. In addition, we assessed enzymatic and non-enzymatic antioxidant responses. The use of fluorescently labeled nanoplastics enabled the visualization of their uptake and translocation within plant tissues. Elevated temperatures negatively affect plant growth, increasing the production of proline, a key protective molecule, and weakly activating secondary defense mechanisms. Nanoplastics disturbed wheat seedling physiology, with these effects being amplified under high temperature conditions. Combined stress enhances nanoplastic uptake in roots, increases oxidative damage, and alters antioxidant responses, reducing defense capacity in leaves while triggering compensatory mechanisms in roots. These findings underscore a concerning interaction between plastic pollution and climate warming in crop plants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

12 pages, 1644 KB  
Brief Report
RNA-Seq Identification of Peanut Callus-Specific Promoters and Evaluation of Base-Editing Efficiency
by Lulu Xue, Han Liu, Huanhuan Zhao, Pengyu Qu, Xiaona Li, Xiaobo Wang, Bingyan Huang, Ziqi Sun, Suoyi Han, Xiaodong Dai, Wenzhao Dong, Lei Shi and Xinyou Zhang
Plants 2025, 14(15), 2290; https://doi.org/10.3390/plants14152290 - 25 Jul 2025
Viewed by 361
Abstract
Prolonged expression of gene-editing components in CRISPR-modified plants can interfere with phenotypic analysis of target traits, increase the risk of off-target mutations, and lead to unnecessary metabolic burden. To mitigate these issues in peanut (Arachis hypogaea L.), callus-specific promoters were screened to [...] Read more.
Prolonged expression of gene-editing components in CRISPR-modified plants can interfere with phenotypic analysis of target traits, increase the risk of off-target mutations, and lead to unnecessary metabolic burden. To mitigate these issues in peanut (Arachis hypogaea L.), callus-specific promoters were screened to restrict Cas9 expression to the callus stage, minimizing its activity in regenerated plants. In this study, six callus-specific genes in peanut were identified by mining RNA sequencing datasets and validating their expression profiles using quantitative reverse transcriptase PCR. The promoters of Arahy.H0FE8D, Arahy.WT3AEF, Arahy.I20Q6X, Arahy.ELJ55T, and Arahy.N9CMH4 were cloned and assessed for their expression activity. Beta-glucuronidase (GUS) histochemical staining confirmed that all five promoters were functional in peanut callus. Further investigation revealed their ability to drive cytosine base editing via a deaminase-nCas9 fusion protein, with all promoters successfully inducing precise base substitutions in peanut. Notably, PAh-H0FE8D, PAh-WT3AEF, PAh-ELJ55T, and PAh-N9CMH4 exhibited comparable or higher editing efficiencies than the commonly used cauliflower mosaic virus 35S promoter. These findings provide valuable tools for improving the biosafety of CRISPR-based genome editing in peanut breeding programs. Full article
(This article belongs to the Special Issue Advances in Oil Regulation in Seeds and Vegetative Tissues)
Show Figures

Figure 1

10 pages, 4102 KB  
Article
Silencing of the Alkaline α-Galactosidase Gene CsAGA1 Impairs Root and Gall Development in Cucumber upon Meloidogyne incognita Infection
by Tingting Ji, Xingyi Wang, Xueyun Wang, Lihong Gao, Yongqiang Tian and Si Ma
Int. J. Mol. Sci. 2025, 26(14), 6686; https://doi.org/10.3390/ijms26146686 - 11 Jul 2025
Viewed by 515
Abstract
Meloidogyne incognita (M. incognita) is a devastating root-knot nematode that parasitizes a broad range of crop species by inducing the formation of giant cells (GCs) in host roots, thereby facilitating nutrient acquisition. This process profoundly alters host sugar metabolism, yet the [...] Read more.
Meloidogyne incognita (M. incognita) is a devastating root-knot nematode that parasitizes a broad range of crop species by inducing the formation of giant cells (GCs) in host roots, thereby facilitating nutrient acquisition. This process profoundly alters host sugar metabolism, yet the molecular regulators underlying sugar dynamics during infection remain poorly understood in cucumber. In this study, we investigated the role of the cucumber alkaline α-galactosidase gene (CsAGA1) in M. incognita-infected roots. Histochemical analysis of proCsAGA1::GUS transgenic lines demonstrated that CsAGA1 is spatially localized to nematode-induced feeding sites, with its expression markedly induced in GCs and phloem-adjacent tissues during infection. Functional analyses revealed that silencing CsAGA1 impaired root and gall development. CsAGA1-silenced plants exhibited increased gall numbers (per gram root) but significantly reduced root growth and smaller galls compared to controls. These results indicate that CsAGA1 is required for proper gall expansion and root growth during M. incognita infection. This study provides novel insight into the sugar-mediated regulation of host–nematode interactions, and CsAGA1 emerges as a potential target for the biological control of M. incognita. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Vegetable Crops)
Show Figures

Figure 1

19 pages, 9587 KB  
Article
Histological and Histochemical Analysis of Austrocedrus chilensis Trees Healthy and Infected with Phytophthora austrocedri
by Oscar Troncoso and Alina G. Greslebin
Forests 2025, 16(7), 1073; https://doi.org/10.3390/f16071073 - 27 Jun 2025
Viewed by 329
Abstract
The endemic Patagonian conifer, Austrocedrus chilensis, is threatened by the pathogen Phytophthora austrocedri. This study presents the first histological and histochemical analysis of A. chilensis affected by this pathogen. We examined the stem tissues of naturally infected adult trees (over 30 [...] Read more.
The endemic Patagonian conifer, Austrocedrus chilensis, is threatened by the pathogen Phytophthora austrocedri. This study presents the first histological and histochemical analysis of A. chilensis affected by this pathogen. We examined the stem tissues of naturally infected adult trees (over 30 years old) and artificially inoculated saplings (8–12 years old) to identify the pathogen’s colonization strategies and the tree’s histological responses. Using light and scanning electronic microscopy along with several histochemical techniques (Lugol, toluidine blue, vanillin-HCl, Phloroglucinol, Calcofluor white, and aniline blue), we found that P. austrocedri can grow in all active tissues, leading to cambium and parenchyma necrosis. The pathogen spreads through sieve cells and tracheids, moving to the adjacent cells via sieve plates and bordered pits and colonizing nearby parenchyma cells. We observed loss of starch in necrotic tissues. In contrast, starch accumulation and an increase in the number of polyphenolic cells occur in the healthy areas adjacent to the margins of the lesion, indicating a tree’s induced defense mechanisms. The tree’s responses include cambium reprogramming, which leads to the formation of traumatic resin ducts, alterations in cell shape and size, and the deposition of phenolic compounds. We analyze the tree responses and discuss their potential relationship with a methyl jasmonate-induced defense and a hypersensitive-like response. Full article
(This article belongs to the Section Forest Health)
Show Figures

Graphical abstract

17 pages, 3134 KB  
Article
Validation of Fiber-Dominant Expressing Gene Promoters in Populus trichocarpa
by Mengjie Guo, Ruxia Wang, Bo Wang, Wenjing Xu, Hui Hou, Hao Cheng, Yun Zhang, Chong Wang and Yuxiang Cheng
Plants 2025, 14(13), 1948; https://doi.org/10.3390/plants14131948 - 25 Jun 2025
Viewed by 607
Abstract
Wood is an important raw material for industrial applications. Its fiber-specific genetic modification provides an effective strategy to alter wood characteristics in tree breeding. Here, we performed a cross-analysis of previously reported single-cell RNA sequencing and the AspWood database during wood formation to [...] Read more.
Wood is an important raw material for industrial applications. Its fiber-specific genetic modification provides an effective strategy to alter wood characteristics in tree breeding. Here, we performed a cross-analysis of previously reported single-cell RNA sequencing and the AspWood database during wood formation to identify potential xylem fiber-dominant expressing genes in poplar. As a result, 32 candidate genes were obtained, and subsequently, we further examined the expression of these genes in fibers and/or vessels of stem secondary xylem using the laser capture microdissection technique and RT-qPCR. Analysis identified nine candidate genes, including PtrFLA12-2, PtrIRX12, PtrFLA12-6, PtrMYB52, PtrMYB103, PtrMAP70, PtrLRR-1, PtrKIFC2-3, and PtrNAC12. Next, we cloned the promoter regions of the nine candidate genes and created promoter::GUS transgenic poplars. Histochemical GUS staining was used to investigate the tissue expression activities of these gene promoters in transgenic poplars. In one month, transgenic plantlets grown in medium showed intensive GUS staining signals that were visible in the leaves and apical buds, suggesting substantial expression activities of these gene promoters in plantlets predominantly undergoing primary growth. In contrast, for three-month-old transgenic poplars in the greenhouse with predominantly developed secondary stem tissues, the promoters of seven of nine candidate genes, including PtrMYB103, PtrIRX12, and PtrMAP70, showed secondary xylem fiber-dominant GUS signals with considerable spatial specificity. Overall, this study presents xylem fiber-dominant promoters that are well-suited for specifically expressing genes of interest in wood fibers for forest tree breeding. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

30 pages, 17972 KB  
Article
Histological Characterization of Ocular and Adnexal Tissues in Dogs (Canis familiaris) and Wolves (Canis lupus)
by Abel Diz López, Mateo V. Torres, Fabio Martínez Gómez, Silvia Alejandra Fraga Abelleira, Ana López-Beceiro, Luis Fidalgo, Pablo Sanchez-Quinteiro and Irene Ortiz-Leal
Anatomia 2025, 4(3), 10; https://doi.org/10.3390/anatomia4030010 - 25 Jun 2025
Viewed by 530
Abstract
Background/Objectives: This study explores the ocular anatomy and glandular components of domestic dogs compared to their ancestor, the wolf, with the aim of identifying evolutionary changes due to domestication and their implications for ocular pathologies. Methods: Utilizing histological and histochemical techniques, including hematoxylin–eosin, [...] Read more.
Background/Objectives: This study explores the ocular anatomy and glandular components of domestic dogs compared to their ancestor, the wolf, with the aim of identifying evolutionary changes due to domestication and their implications for ocular pathologies. Methods: Utilizing histological and histochemical techniques, including hematoxylin–eosin, Periodic Acid–Schiff, Alcian Blue, and lectins, this research conducts a detailed analysis of the canine and wolf ocular systems, focusing on the eyelids, tarsal glands, and conjunctival tissues. Results: There are marked histological differences between the two species, particularly in the thickness and secretion levels of the conjunctival epithelia and the structure of the tarsal glands. Dogs exhibit a thicker epithelium with greater Periodic Acid–Schiff and Alcian Blue positive secretion, suggesting enhanced ocular protection and lubrication adapted to domestic environments. Conversely, wolves display more concentrated glandular secretions and a predominance of acidic mucopolysaccharides, aligning with their adaptation to natural habitats. Conclusions: Although this study is constrained by the limited number of samples, the use of mixed dog breeds, and the focus on the Iberian wolf, it nonetheless suggests histological and evolutionary differences between domestic dogs and wolves, particularly in structures related to ocular surface protection and lubrication. These differences likely reflect adaptive responses to domestication in dogs and environmental demands in wolves. Importantly, the findings emphasize the clinical and translational potential of using dogs as comparative models for human ocular surface disorders, given their anatomical proximity to humans. Full article
Show Figures

Figure 1

17 pages, 7981 KB  
Article
Genome-Wide Identification and Pollen-Specific Promoter Analysis of the DIR Gene Family in Rosa chinensis
by Qijing Dong, Qian Yang, Zitong Wang, Yuan Zhao, Sixu Guo, Yifang Peng, Qi Li and Yu Han
Horticulturae 2025, 11(7), 717; https://doi.org/10.3390/horticulturae11070717 - 20 Jun 2025
Viewed by 415
Abstract
Dirigent proteins (DIRs) are pivotal regulators of lignin/lignan biosynthesis and play multifaceted roles in plant development and stress adaptation. Despite their functional significance, DIR genes remain unexplored in Rosa chinensis, a globally important woody ornamental species. This study identified 33 RcDIRs through [...] Read more.
Dirigent proteins (DIRs) are pivotal regulators of lignin/lignan biosynthesis and play multifaceted roles in plant development and stress adaptation. Despite their functional significance, DIR genes remain unexplored in Rosa chinensis, a globally important woody ornamental species. This study identified 33 RcDIRs through whole-genome analysis, including their chromosomal distribution, phylogenetic relationships, collinearity, protein and gene structure, conserved motifs, and cis-acting element distribution, and classified them into three phylogenetically independent subgroups (DIR-a, DIR-b/d, and DIR-e). Notably, the DIR-e subgroup includes an exclusive tandem cluster comprising RcDIR7-RcDIR12, representing the largest lineage-specific RcDIR expansion in R. chinensis. Structural characterization revealed that most RcDIRs exhibit a conserved single-exon architecture. Promoter cis-element analysis uncovered abundant stress-/hormone-responsive elements and three pollen-specific motifs (AAATGA, POLLEN1LELAT52, GTGANTG10), with RcDIR12 from the DIR-e cluster showing high pollen-specific regulatory potential. Experimental validation included cloning the RcDIR12 promoter from R. chinensis ‘Old Blush’, constructing proRcDIR12::GUS vectors, and conducting histochemical GUS assays with pollen viability/DAPI staining in transgenic Arabidopsis. Histochemical assays demonstrated GUS activity localization in mature trinucleate pollen grains, marking the first experimental evidence of pollen-specific DIRs in rose. Our findings not only elucidate the DIR family’s genomic organization and evolutionary innovations in R. chinensis but also establish proRcDIR12 as a molecular tool for manipulating pollen development in plants. Full article
Show Figures

Figure 1

11 pages, 709 KB  
Article
An Overlooked Etiology of Acute Kidney Injury: A Clinicopathological Analysis of Phosphate Nephropathy and Review of the Literature
by Erman Özdemir, Pınar Özdemir, Serap Yadigar, Serkan Feyyaz Yalın, Ergün Parmaksız, Şükran Sarıkaya, Erdoğan Özdemir and Mehmet Rıza Altıparmak
J. Clin. Med. 2025, 14(12), 4081; https://doi.org/10.3390/jcm14124081 - 9 Jun 2025
Viewed by 699
Abstract
Background: Acute phosphate nephropathy (APN) is an underrecognized cause of acute kidney injury (AKI), typically associated with the use of oral sodium phosphate (OSP)-based bowel preparations. It is characterized by calcium phosphate crystal deposition within the renal tubules and may result in permanent [...] Read more.
Background: Acute phosphate nephropathy (APN) is an underrecognized cause of acute kidney injury (AKI), typically associated with the use of oral sodium phosphate (OSP)-based bowel preparations. It is characterized by calcium phosphate crystal deposition within the renal tubules and may result in permanent renal impairment. Despite known risks, phosphate-containing solutions are still widely used without sufficient risk stratification. Methods: We retrospectively evaluated 517 native kidney biopsies performed in our nephrology clinic between 2017 and 2022. Among these, 12 patients with unexplained AKI and recent colonoscopy history were identified. In nine cases, non-specific tubular deposits on routine staining prompted further histochemical analysis. All had a history of recent OSP-based bowel cleansing. The use of von Kossa staining confirmed calcium phosphate deposition, consistent with APN. Results: Out of 517 kidney biopsies performed during the study period, 9 patients were diagnosed with APN based on histopathological findings following recent colonoscopy and OSP-based bowel cleansing. The mean age was 58.7 years, and three were female. Hypertension was present in seven patients, diabetes mellitus in three, and epilepsy in two; one patient had no comorbidities. Baseline renal function was normal (mean serum creatinine 0.86 mg/dL) and increased to 1.76 mg/dL at three months post-exposure. All biopsies revealed tubulointerstitial calcium phosphate deposits and interstitial inflammation; mesangial hypercellularity was observed in five cases, tubular atrophy in three, and acute tubular necrosis in one. All samples stained positive with von Kossa staining. Over time, all patients developed chronic kidney disease, and one progressed to end-stage renal disease requiring dialysis. Conclusions: In patients presenting with unexplained AKI and recent OSP-based bowel preparation, APN should be considered in the differential diagnosis. When routine histology is inconclusive, definitive diagnosis may require special histochemical staining. Risk-based restrictions on phosphate-containing agents are warranted to reduce preventable kidney injury. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

17 pages, 4031 KB  
Article
Gradual Thickening of the Peritubular Lamina Propria in Healthy Boar Seminiferous Tubules Due to Cryptorchidism: Increased Immunoexpression of Diverse Proteins in Sertoli and Myoid Cells
by Vicente Seco-Rovira, Jesús Martínez-Hernández, Laís Freire-Brito, Ester Beltrán-Frutos, Juan Francisco Madrid and Luis Miguel Pastor
Animals 2025, 15(12), 1696; https://doi.org/10.3390/ani15121696 - 8 Jun 2025
Viewed by 539
Abstract
In testicular pathology, the accumulation of extracellular matrix and thickening of the peritubular lamina propria are associated with altered spermatogenesis. This study evaluated the immunoexpression of certain proteins in Sertoli and myoid cells of cryptorchid boar seminiferous tubule sections to determine the role [...] Read more.
In testicular pathology, the accumulation of extracellular matrix and thickening of the peritubular lamina propria are associated with altered spermatogenesis. This study evaluated the immunoexpression of certain proteins in Sertoli and myoid cells of cryptorchid boar seminiferous tubule sections to determine the role of these cells in peritubular lamina propria thickening. Sections of normal seminiferous tubules and those with varying degrees of atrophy (I–III) were studied using histochemical and immunohistochemical techniques. A semiquantitative analysis of histochemical staining or immunostaining intensity in these sections was performed. Gradual thickening of the peritubular lamina propria was observed between stage II and III sections. HSP47 was present in myoid and Sertoli cells in normal sections and was significantly increased in stage II and III sections. The increase in stage II was dependent on Sertoli cells, while in stage III, it depended on myoid cells. The vimentin increases in stage I sections were due to Sertoli cells and later to myoid cells in stages II and III. α-actin and collagen IV immunoreactivity were observed from the early stage of atrophy, with a significant increase in stage III. In conclusion, in porcine spontaneous cryptorchidism, the seminiferous tubule exhibits gradual fibrotic alterations in the peritubular lamina propria, initially related to changes in the Sertoli cell phenotype and later, in the final stages, to myoid cells. Collagen I deposition appears to be caused by myoid cells, initiating the sclerosis of the seminiferous tubules. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

19 pages, 1298 KB  
Article
In Vivo Regenerative Potential of Coprinus comatus in Pancreatic Tissue After Acute Stress with Chronic Consequences
by Nebojša Stilinović, Ana Tomas, Saša Vukmirović, Nebojša Kladar, Miloš Čanković, Maja Đanić, Michał Seweryn Karbownik, Aleksandar Rašković and Ivan Čapo
Molecules 2025, 30(11), 2261; https://doi.org/10.3390/molecules30112261 - 22 May 2025
Viewed by 605
Abstract
The edible mushroom Coprinus comatus has a long history of use in metabolic diseases, which is increasingly documented by modern research. Due to its favorable nutritional composition, it was assumed that this mushroom could accelerate tissue recovery after acutely induced damage with subsequent [...] Read more.
The edible mushroom Coprinus comatus has a long history of use in metabolic diseases, which is increasingly documented by modern research. Due to its favorable nutritional composition, it was assumed that this mushroom could accelerate tissue recovery after acutely induced damage with subsequent disturbance of primarily carbohydrate metabolism. To test this hypothesis, the alloxan diabetes model was used, where experimental animals’ change in body weight and biochemical and histological indicators of recovery were monitored. Before performing the in vivo part, HPLC analysis of the C. comatus extract was carried out with subsequent in silico and in vitro tests. Comparing the animals treated with the mushroom in three different doses, no significant change in body weight was observed. Still, the change was also noticed in the lipid status and glycemia, with a dose-dependent beneficial effect. Morphometric analysis of pancreatic tissue stained by immuno-histochemical methods showed that long-term treatment with C. comatus leads to increased numerical density, nuclear volume, and absolute number of beta cells of the islets of Langerhans, which suffered severe damage after alloxan administration. Overall, C. comatus may contribute to faster tissue recovery after acute diabetic-relevant damage with chronic consequences. Full article
(This article belongs to the Special Issue Research on Functional Active Ingredients of Edible Fungi)
Show Figures

Figure 1

18 pages, 4677 KB  
Article
CsCBDAS2-Driven Enhancement of Cannabinoid Biosynthetic Genes Using a High-Efficiency Transient Transformation System in Cannabis sativa ‘Cheungsam’
by Sang-Cheol Baek, Sang-Yoon Jeon, Bo-Hyun Byun, Da-Hoon Kim, Ga-Ram Yu, Hyuck Kim and Dong-Woo Lim
Plants 2025, 14(10), 1460; https://doi.org/10.3390/plants14101460 - 14 May 2025
Viewed by 680
Abstract
Cannabis sativa produces pharmacologically valuable cannabinoids. In this study, we developed and optimized a transient transformation system using Cannabis sativa ‘Cheungsam’ to facilitate gene functional analysis. Various experimental conditions, including plant developmental stages, light conditions, Agrobacterium strains, tissue types, and physical treatments such [...] Read more.
Cannabis sativa produces pharmacologically valuable cannabinoids. In this study, we developed and optimized a transient transformation system using Cannabis sativa ‘Cheungsam’ to facilitate gene functional analysis. Various experimental conditions, including plant developmental stages, light conditions, Agrobacterium strains, tissue types, and physical treatments such as sonication and vacuum infiltration, were systematically evaluated using GUS histochemical staining and qPCR analysis. Among these, 7-day-old seedlings cultured under dark conditions and transformed with the GV3101 strain exhibited high transformation efficiency. Leaf tissue showed a higher GUS staining proportion and GUS staining area compared to hypocotyl and cotyledon tissues. The application of a combination of sonication and vacuum infiltration techniques resulted in the most intense GUS expression. Using the optimized protocol, we introduced a recombinant vector carrying CsCBDAS2, a key gene in cannabidiol (CBD) biosynthesis. qPCR analysis revealed that CsCBDAS2 overexpression led to significant upregulation of multiple upstream CBD biosynthetic genes (CsOAC, CsGOT, CsPT1, CsPT4, CsCBDAS1, and CsCBDAS2) and the transcription factor (TF) CsWRKY20, suggesting coordinated co-expression and potential involvement of a transcriptional feedback loop. These results demonstrate the effectiveness of our transient transformation system and provide insights into the regulatory mechanisms of cannabinoid biosynthesis in cannabis. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

Back to TopTop