Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,670)

Search Parameters:
Keywords = homogeneous microstructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1047 KB  
Article
Wave Propagation Analysis in the Homogenized Second-Gradient Medium: A Direct and Inverse Approach
by Fadheelah Al Fayadh, Hassan Lakiss and Hilal Reda
Materials 2025, 18(18), 4248; https://doi.org/10.3390/ma18184248 - 10 Sep 2025
Abstract
In this work, we develop a method for homogenizing effective second-order gradient continuum models for 2D periodic composite materials. A constitutive law is formulated using a variational approach combined with the Hill macro-homogeneity condition for strain energy. Incorporating strain gradient effects enhances the [...] Read more.
In this work, we develop a method for homogenizing effective second-order gradient continuum models for 2D periodic composite materials. A constitutive law is formulated using a variational approach combined with the Hill macro-homogeneity condition for strain energy. Incorporating strain gradient effects enhances the constitutive law by linking the hyperstress tensor to the second-order gradient of displacement, capturing elastic size and microstructure effects beyond classical Cauchy elasticity. The effective strain gradient moduli are calculated for composites exhibiting strong internal length effects, validating the proposed approach by computing the strain energy at different scales. Additionally, we develop an inverse homogenization method to compute local mechanical properties (properties of the constituents) given known global properties (effective properties), showing good agreement with the literature data. This framework is extended to study wave propagation by analyzing longitudinal and shear waves in 2D composite materials. The effects of inclusion shape and volume percentage on wave propagation are examined, revealing that elliptic inclusions lead to a slight increase in both modes of propagation. Finally, we investigate the impact of property contrast between the inclusion and matrix, demonstrating its influence on wave dispersion. Full article
17 pages, 2303 KB  
Article
Investigation of the Effects of Gas Metal Arc Welding and Friction Stir Welding Hybrid Process on AA6082-T6 and AA5083-H111 Aluminum Alloys
by Mariane Chludzinski, Leire Garcia-Sesma, Oier Zubiri, Nieves Rodriguez and Egoitz Aldanondo
Metals 2025, 15(9), 1005; https://doi.org/10.3390/met15091005 - 9 Sep 2025
Abstract
Friction stir welding (FSW) has emerged as a solid-state joining technique offering notable advantages over traditional welding methods. Gas metal arc welding (GMAW), a fusion-based process, remains widely used due to its high efficiency, productivity, weld quality, and ease of automation. To combine [...] Read more.
Friction stir welding (FSW) has emerged as a solid-state joining technique offering notable advantages over traditional welding methods. Gas metal arc welding (GMAW), a fusion-based process, remains widely used due to its high efficiency, productivity, weld quality, and ease of automation. To combine the benefits of both techniques, a hybrid welding approach integrating GMAW and FSW has been developed. This study investigates the impact of this hybrid technique on the joint quality and properties of AA5083-H111 and AA6082-T6 aluminum alloys. Butt joints were produced on 6 mm thick plates, with variations in friction process parameters. Characterization included macro- and microstructural analyses, mechanical testing (hardness and tensile strength), and corrosion resistance evaluation through stress corrosion cracking tests. Results showed that FSW significantly refined and homogenized the microstructure in both alloys. AA5083-H111 welds achieved a joint efficiency of 99%, while AA6082-T6 reached 66.7%, differences attributed to their distinct strengthening mechanisms and the thermal–mechanical effects of FSW. To assess hydrogen-related behavior, slow strain rate tensile (SSRT) tests were conducted in both inert and hydrogen-rich environments. Hydrogen content was measured in arc, friction, and overlap zones, revealing variations depending on the alloy and microstructure. Despite these differences, both alloys exhibited negligible hydrogen embrittlement. In conclusion, the GMAW–FSW hybrid process successfully produced sound joints with good mechanical and corrosion resistance performance in both aluminum alloys. The findings demonstrate the potential of hybrid welding as a viable method for enhancing weld quality and performance in applications involving dissimilar aluminum alloys. Full article
(This article belongs to the Section Welding and Joining)
18 pages, 3503 KB  
Article
Influence of Different Heat Treatments on Microstructure Evolution and High-Temperature Tensile Properties of LPBF-Fabricated H13 Hot Work Steel
by Mohamed Meher Monjez, Narges Omidi, Pedram Farhadipour, Abderrazak El Ouafi and Noureddine Barka
Metals 2025, 15(9), 1003; https://doi.org/10.3390/met15091003 - 9 Sep 2025
Abstract
This study investigates the effect of tensile test temperatures, ranging from 300 °C to 600 °C, on the microstructure, mechanical properties, and fracture behavior of AISI H13 11 tool steel manufactured by laser powder bed fusion (LPBF) under three material conditions: As-Built (AB), [...] Read more.
This study investigates the effect of tensile test temperatures, ranging from 300 °C to 600 °C, on the microstructure, mechanical properties, and fracture behavior of AISI H13 11 tool steel manufactured by laser powder bed fusion (LPBF) under three material conditions: As-Built (AB), Direct Double-Tempered (DTT), and 13 Quenched and Double-Tempered (QTT). Optical and SEM observations show that quenching before tempering leads to a more homogeneous microstructure. Full austenitization during quenching eliminates the laser track patterns and cellular structures characteristic of the AB and DTT conditions, resulting in a microstructure like that of conventionally processed material. Tensile test results reveal that, while all material conditions (AB, DTT, and QTT) perform similarly at lower temperatures (up to 300 °C), significant differences emerge at elevated temperatures. At 300 °C, AB, DTT, and QTT maintain 87.5%, 85.8%, and 83.1% of their room-temperature yield strength, respectively. However, beyond this point, the DTT condition clearly outperforms the others. QTT shows a sharp decline above 300 °C, retaining only ~24% of its yield strength, whereas AB and DTT maintain approximately 80%. The superior performance of DTT becomes more evident at higher temperatures: it retains 25% and 20% of its yield strength at 500 °C and 600 °C, respectively, higher than both AB and QTT. Full article
(This article belongs to the Special Issue Laser Additive Manufacturing of Metallic Alloys)
Show Figures

Figure 1

17 pages, 2379 KB  
Article
Effect of Application of a Homogeneous Magnetic Field During Chemical Crosslinking of Magnetic Collagen-Based Hydrogels with Genipin on Their Essential Properties
by Adriana Gilarska, Wojciech Horak, Agnieszka Radziszewska, Damian Rybicki and Czesław Kapusta
Polymers 2025, 17(18), 2437; https://doi.org/10.3390/polym17182437 - 9 Sep 2025
Abstract
The aim of this study was to investigate the effect of a static, homogeneous magnetic field on the physicochemical properties of magnetic hydrogels based on collagen and superparamagnetic iron oxide nanoparticles (SPIONs), chemically crosslinked with genipin. The crosslinking process was initiated in the [...] Read more.
The aim of this study was to investigate the effect of a static, homogeneous magnetic field on the physicochemical properties of magnetic hydrogels based on collagen and superparamagnetic iron oxide nanoparticles (SPIONs), chemically crosslinked with genipin. The crosslinking process was initiated in the presence of a magnetic field with three different induction values (100, 250 and 500 mT), generated in specially designed experimental systems. It was demonstrated that the applied field did not noticeably affect the crosslinking efficiency, and stable hydrogels with a high gel fraction in the range of 87–94% were obtained. STEM image analysis revealed that in the highest magnetic field, the nanoparticles tended to form larger clusters, while at lower fields and in the material crosslinked at zero field, smaller clusters and chains of nanoparticles were observed mainly. This observation was reflected in the magnetic susceptibility, which showed a weaker response to the magnetic field of the material obtained by crosslinking in the presence of the 500 mT field compared to the material crosslinked without the field—larger clusters of nanoparticles may hinder the alignment of the magnetic moments of their constituent nanoparticles. Studies of the physicochemical properties of the hydrogels obtained indicate that the presence of larger clusters can cause a local decrease in the crosslinking density, resulting in a slight decrease in the storage modulus and increased initial swelling and degradation rates. The results obtained show that the application of a homogeneous magnetic field with moderate induction values during the crosslinking process can be used as a tool for modification of the microstructure of magnetic collagen-based hydrogels. The possibility of such structural modifications may be useful in designing biomaterials with properties tailored to their target application. Full article
(This article belongs to the Special Issue Application and Development of Polymer Hydrogel)
Show Figures

Figure 1

19 pages, 10077 KB  
Article
Effect of Post-Weld Heat Treatment on Microstructure and Hardness Evolution of the Martensitic Hardfacing Layers for Hot Forging Tools Repair
by Marzena Lachowicz, Marcin Kaszuba, Paweł Widomski and Paweł Sokołowski
Materials 2025, 18(17), 4214; https://doi.org/10.3390/ma18174214 - 8 Sep 2025
Abstract
The study investigates the influence of post-weld heat treatment (PWHT) on the microstructure and hardness of hardfacing layers applied to hot forging tools. The research focuses on three tool steels (55NiCrMoV7, X37CrMoV5-1, and a modified X38CrMoV5-3) and uses robotized gas metal arc welding [...] Read more.
The study investigates the influence of post-weld heat treatment (PWHT) on the microstructure and hardness of hardfacing layers applied to hot forging tools. The research focuses on three tool steels (55NiCrMoV7, X37CrMoV5-1, and a modified X38CrMoV5-3) and uses robotized gas metal arc welding (GMAW) with DO015 filler material. It examines the structural and mechanical differences in the hardfaced layers before and after heat treatment involving quenching and tempering. The findings reveal that PWHT significantly improves microstructural homogeneity and hardness distribution, especially in the heat-affected zone (HAZ), mitigating the risk of crack initiation and tool failure. The study shows that untempered as-welded layers exhibit microstructural inhomogeneity and extreme hardness gradients, which negatively impact tool durability. PWHT leads to tempered martensite formation, grain refinement, and a more stable hardness profile across the joint. These improvements are critical for extending the service life of forging tools. The results underscore the importance of customizing PWHT parameters according to the specific material and application to optimize tool performance. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
19 pages, 4380 KB  
Article
Optimization of Casting Process Parameters for Solidification Structures in Complex Superalloy Castings
by Shaoli Han, Heli Luo, Shangping Li and Guangwei Han
Materials 2025, 18(17), 4205; https://doi.org/10.3390/ma18174205 - 8 Sep 2025
Viewed by 69
Abstract
This study aimed to optimize the grain structure of complex thin-walled nickel-based superalloy castings by investigating the influence of key casting parameters using both cellular automaton–finite element (CAFE) simulations and experimental validation. The main problem addressed was the inhomogeneous grain morphology arising from [...] Read more.
This study aimed to optimize the grain structure of complex thin-walled nickel-based superalloy castings by investigating the influence of key casting parameters using both cellular automaton–finite element (CAFE) simulations and experimental validation. The main problem addressed was the inhomogeneous grain morphology arising from complex mold geometries and uneven thermal conditions during investment casting. The solidification process was simulated using the ProCAST software, incorporating the CAFE method to model temperature fields and grain growth dynamics. The results revealed that the molten metal flow pattern during mold filling significantly affected the local temperature field and subsequent grain formation. Specifically, simultaneous bidirectional filling minimized thermal gradients and suppressed coarse columnar grain formation, promoting finer, more uniform equiaxed grains. Lowering the pouring temperature (to 1430 °C) in combination with reduced shell temperature (600–800 °C) enhanced nucleation and improved grain uniformity in thin-walled regions. Higher cooling rates also refined the grain structure by increasing undercooling and limiting grain growth. Experimental castings confirmed these simulation outcomes, demonstrating that the proposed optimization strategies can significantly improve grain homogeneity in critical structural areas. These findings provide a practical approach for controlling microstructure in large, intricate superalloy components through targeted process parameter tuning. Full article
Show Figures

Figure 1

19 pages, 10755 KB  
Article
Corrosion Performance of (TiAlZrTaNb)Nx High-Entropy Nitrides Thin Films Deposited on 304 Stainless Steel via HiPIMS
by Maria-Camila Castañeda, Oscar Piamba and Jhon Olaya
Metals 2025, 15(9), 988; https://doi.org/10.3390/met15090988 - 6 Sep 2025
Viewed by 227
Abstract
In this study, the electrochemical corrosion behavior of TiAlZrTaNb nitride thin films deposited on 304 stainless steel substrates was investigated. The thin films were synthesized using high-power impulse magnetron sputtering (HiPIMS) and are classified as high-entropy alloys (HEAs). The microstructure, morphology, and chemical [...] Read more.
In this study, the electrochemical corrosion behavior of TiAlZrTaNb nitride thin films deposited on 304 stainless steel substrates was investigated. The thin films were synthesized using high-power impulse magnetron sputtering (HiPIMS) and are classified as high-entropy alloys (HEAs). The microstructure, morphology, and chemical composition of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), respectively. Corrosion resistance was evaluated through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests, employing tap water, acetic acid, and citric acid solutions at room temperature as electrolytes. The results demonstrated that the TiAlZrTaNbN coating exhibits a dense and homogeneous structure with a uniform elemental distribution. XRD analysis revealed the presence of face-centered cubic (FCC) crystalline phases, which significantly contribute to the coating’s corrosion resistance. Furthermore, the coating displayed exceptional corrosion performance in both acetic acid and citric acid electrolytes—simulating food environments with a pH ≤ 4.5—as revealed by a substantial reduction in corrosion current density and a positive shift in corrosion potential. These findings provide valuable insights into the properties of TiAlZrTaNbN coatings and underscore their potential for enhancing the durability of mechanical components employed in the food industry. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

41 pages, 7520 KB  
Article
Modification Mechanism of Multipolymer Granulated Modifiers and Their Effect on the Physical, Rheological, and Viscoelastic Properties of Bitumen
by Yao Li, Ke Chao, Qikai Li, Kefeng Bi, Yuanyuan Li, Dongliang Kuang, Gangping Jiang and Haowen Ji
Materials 2025, 18(17), 4182; https://doi.org/10.3390/ma18174182 - 5 Sep 2025
Viewed by 386
Abstract
Polymer-modified bitumen is difficult to produce and often separates during storage and transport. In contrast, granular bitumen modifiers offer wide applicability, construction flexibility, and ease of transport and storage. This study involved preparing a multipolymer granulated bitumen modifier with a styrene–butadiene–styrene block copolymer, [...] Read more.
Polymer-modified bitumen is difficult to produce and often separates during storage and transport. In contrast, granular bitumen modifiers offer wide applicability, construction flexibility, and ease of transport and storage. This study involved preparing a multipolymer granulated bitumen modifier with a styrene–butadiene–styrene block copolymer, polyethylene, and aromatic oil. To elucidate the modification mechanism of a multipolymer granulated bitumen modifier on bitumen, the elemental composition of bitumen A and B, the micro-morphology of the modifiers, the changes in functional groups, and the distribution state of the polymers in the bitumen were investigated using an elemental analyzer, a scanning electron microscope, Fourier-transform infrared spectroscopy, and fluorescence microscopy. The effects of the multipolymer granulated bitumen modifier on the physical, rheological, and viscoelastic properties of two types of base bituminous binders were investigated at various dosages. The test results show that the ZH/C ratio of base bitumen A is smaller than that of base bitumen B and that the cross-linking effect with the polymer is optimal. Therefore, the direct-feed modified asphalt of A performs better than the direct-feed modified asphalt of B under the same multipolymer granulated bitumen modifier content. The loose, porous surface structure of styrene–butadiene–styrene block copolymer promotes the adsorption of light components in bitumen, and the microstructure of the multipolymer granulated bitumen modifier is highly coherent. When the multipolymer granulated bitumen modifier content is 20%, the physical, rheological, and viscoelastic properties of the direct-feed modified asphalt of A/direct-feed modified asphalt of B and the commodity styrene–butadiene–styrene block copolymer are essentially identical. While the multipolymer granulated bitumen modifier did not significantly improve the performance of bitumen A/B at contents greater than 20%, the mass loss rate of the direct-feed modified asphalt of A to aggregate stabilized, and the adhesion effect reached stability. Image processing determined the optimum mixing temperature and time for multipolymer granulated bitumen modifier and aggregate to be 185–195 °C and 80–100 s, respectively, at which point the dispersion homogeneity of the multipolymer granulated bitumen modifier in the mixture was at its best. The dynamic stability, fracture energy, freeze–thaw splitting strength ratio, and immersion residual stability of bitumen mixtures were similar to those of commodity styrene–butadiene–styrene block copolymers with a 20% multipolymer granulated bitumen modifier mixing amount, which was equivalent to the wet method. The styrene–butadiene–styrene block copolymer bitumen mixture reached the same technical level. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 4654 KB  
Article
In Situ TEM Investigation of Dislocation-Mediated Deformation in Eutectic Fe36Ni18Mn33Al13 Alloy
by Fanling Meng, Jiaqi Zhu, Heyi Wang, Jiayi Li and Yang Lu
Crystals 2025, 15(9), 792; https://doi.org/10.3390/cryst15090792 - 5 Sep 2025
Viewed by 272
Abstract
Eutectic FeNiMnAl multi-principal element alloys exhibit exceptional strength–ductility synergy, yet their dynamic deformation mechanisms remain poorly characterized. This study employs in situ transmission electron microscopy to investigate dislocation-mediated plasticity in Fe36Ni18Mn33Al13—a lamellar FCC/B2 alloy with [...] Read more.
Eutectic FeNiMnAl multi-principal element alloys exhibit exceptional strength–ductility synergy, yet their dynamic deformation mechanisms remain poorly characterized. This study employs in situ transmission electron microscopy to investigate dislocation-mediated plasticity in Fe36Ni18Mn33Al13—a lamellar FCC/B2 alloy with balanced properties. Real-time observations under tensile loading (at a strain rate of 0.1 μm/s, with a resolution of ~2 nm) reveal coordinated dislocation planar glide, cross-slip at obstacles, and pile-up formation at phase boundaries. Planar slip bands dominate early deformation, while cross-slip facilitates barrier bypass and strain homogenization. The coarse microstructure of Fe36Ni18Mn33Al13 promotes extensive dislocation storage, reducing strength but enhancing ductility compared to finer FeNiMnAl variants. Full article
Show Figures

Figure 1

13 pages, 12319 KB  
Article
Effects of Homogenization Heat Treatment on Microstructure of Inconel 718 Lattice Structures Manufactured by Selective Laser Melting
by Lucia-Antoneta Chicos, Camil Lancea, Sebastian-Marian Zaharia, Grzegorz Cempura, Adam Kruk and Mihai Alin Pop
Materials 2025, 18(17), 4149; https://doi.org/10.3390/ma18174149 - 4 Sep 2025
Viewed by 503
Abstract
Inconel 718 is a nickel-based superalloy that has a wide range of applications in the industries that require corrosion resistance or high-temperature resistance. It is well known that parts display internal stresses, anisotropy, and alloying element segregation after the selective laser melting (SLM) [...] Read more.
Inconel 718 is a nickel-based superalloy that has a wide range of applications in the industries that require corrosion resistance or high-temperature resistance. It is well known that parts display internal stresses, anisotropy, and alloying element segregation after the selective laser melting (SLM) process. A homogenization heat treatment, which reduces internal stresses and homogenizes the material structure, can resolve these shortcomings. The present study focuses on the impact of this heat treatment on the microstructure of the Inconel 718 material produced by SLM. The research results indicate that this heat treatment improves both the material microstructure and mechanical performance by lessening the microstructural inhomogeneities, dissolving the Laves phases, and promoting grain coarsening. The findings of this study can contribute to the optimization of post-fabrication strategies for Inconel 718 parts fabricated by SLM. Full article
Show Figures

Figure 1

20 pages, 3004 KB  
Article
Synthesis, Characterization, and Evaluation of Photocatalytic and Gas Sensing Properties of ZnSb2O6 Pellets
by Jacob Morales-Bautista, Héctor Guillén-Bonilla, Lucia Ivonne Juárez-Amador, Alex Guillén-Bonilla, Verónica-María Rodríguez-Betancourtt, Jorge Alberto Ramírez-Ortega, José Trinidad Guillén-Bonilla and María de la Luz Olvera-Amador
Chemosensors 2025, 13(9), 329; https://doi.org/10.3390/chemosensors13090329 - 2 Sep 2025
Cited by 1 | Viewed by 381
Abstract
This work reports a low-cost, microwave-assisted wet chemistry synthesis of zinc antimonate (ZnSb2O6) powders with a trirutile structure, yielding highly homogeneous, nanometric particles. X-ray diffraction (XRD) confirmed the formation of the trirutile phase with lattice parameters of a = [...] Read more.
This work reports a low-cost, microwave-assisted wet chemistry synthesis of zinc antimonate (ZnSb2O6) powders with a trirutile structure, yielding highly homogeneous, nanometric particles. X-ray diffraction (XRD) confirmed the formation of the trirutile phase with lattice parameters of a = 4.664 Å and c = 9.263 Å, and an estimated crystallite size of 42 nm. UV–vis spectroscopy revealed a bandgap of 3.35 eV. Scanning electron microscopy (SEM) showed that ethylenediamine, as a chelating agent, formed porous microstructures of microrods and cuboids, ideal for enhanced gas adsorption. Brunauer–Emmett–Teller (BET) analysis revealed a specific surface area of 6 m2/g and a total pore volume of 0.0831 cm3/g, indicating a predominantly mesoporous structure. The gas sensing properties of ZnSb2O6 pellets were evaluated in CO and C3H8 atmospheres at 100, 200, and 300 °C. The material exhibited high sensitivity at 300 °C, where the maximum responses were 5.86 for CO at 300 ppm and 1.04 for C3H8 at 500 ppm. The enhanced sensitivity at elevated temperatures was corroborated by a corresponding decrease in electrical resistivity. Furthermore, the material demonstrated effective photocatalytic activity, achieving up to 60% degradation of methylene blue and 50% of malachite green after 300 min of UV irradiation, with the process following first-order reaction kinetics. These results highlight that ZnSb2O6 synthesized by this method is a promising bifunctional material for gas sensing and photocatalytic applications. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

12 pages, 7860 KB  
Article
In Situ Synthesis of RMB6-TMB2 Composite Nanopowders via One-Step Solid-State Reduction
by Xiaogang Guo, Linyan Wang, Hang Zhou, Jun Xu, An Liu, Mengdong Ma, Rongxin Sun, Weidong Qin, Yufei Gao, Bing Liu, Baozhong Li, Lei Sun and Dongli Yu
Nanomaterials 2025, 15(17), 1341; https://doi.org/10.3390/nano15171341 - 1 Sep 2025
Viewed by 432
Abstract
RMB6-TMB2 (RM = rare earth elements, TM = transition metal elements) composites retain superior field emission properties of RMB6 while addressing its inherent mechanical limitations by constructing a eutectic structure with TMB2. Herein, an in situ route [...] Read more.
RMB6-TMB2 (RM = rare earth elements, TM = transition metal elements) composites retain superior field emission properties of RMB6 while addressing its inherent mechanical limitations by constructing a eutectic structure with TMB2. Herein, an in situ route for synthesizing RMB6-TMB2 composite nanopowders with homogeneous phase distribution using reduction reactions was proposed. The LaB6-ZrB2 composite nanopowders were synthesized in situ for the first time using sodium borohydride (NaBH4) as both a reducing agent and boron source, with lanthanum oxide (La2O3) and zirconium dioxide (ZrO2) serving as metal sources. The effects of the synthesis temperature on phase compositions and microstructure of the composites were systematically investigated. The LaB6-ZrB2 system with a eutectic weight ratio exhibited an accelerated reaction rate, achieving a complete reaction at 1000 °C, 300 °C lower than that of single-phase ZrB2 synthesis. The composite phases were uniformly distributed even at nanoscale. The composite powder displayed an average particle size of ~170 nm when synthesized at 1300 °C. With the benefit of the in situ synthesis method, LaB6-TiB2, CeB6-ZrB2, and CeB6-TiB2 composite powders were successfully synthesized. This process effectively addresses phase separation and contamination issues typically associated with traditional mixing methods, providing a scalable precursor for high-performance RMB6-TMB2 composites. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Upscaling of Nanomaterials)
Show Figures

Figure 1

8 pages, 2204 KB  
Article
Process and Mechanism of Surface Brazing of Graphene on Aluminum Nitride
by Wenbo Li, Zijia Wang, Xinyun Wu, Deren Kong, Chundong Xu, Yugang Yin and Jing Lv
Coatings 2025, 15(9), 1011; https://doi.org/10.3390/coatings15091011 - 1 Sep 2025
Viewed by 337
Abstract
In order to enhance the heat dissipation of a chip, this work investigates the enhancement of the thermal homogenization effect of a ceramic substrate with a high-thermal-conductivity graphene material to improve the interfacial heat transfer performance. AgCuTi-activated brazing material is used to connect [...] Read more.
In order to enhance the heat dissipation of a chip, this work investigates the enhancement of the thermal homogenization effect of a ceramic substrate with a high-thermal-conductivity graphene material to improve the interfacial heat transfer performance. AgCuTi-activated brazing material is used to connect the graphene film/AlN. The mechanism of the influence of brazing temperatures on the microstructure and thermal conductivity of joints is discussed. The thermal conductivity of the graphene/AlN double layer composite brazed at 890 °C for 10 min holding time was the highest at 482.3 W m−1 K−1. This study provides a new solution for the application of AlN ceramics in high-heat-flow scenarios. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

16 pages, 5620 KB  
Article
Influence of Build Orientation and Heat Treatment on the Microstructure and Mechanical Properties of SUS316L Fabricated by Selective Laser Melting
by Yujin Lim, Chami Jeon, Yoon-Seok Lee and Ilguk Jo
Metals 2025, 15(9), 971; https://doi.org/10.3390/met15090971 - 30 Aug 2025
Viewed by 495
Abstract
Additive manufacturing (AM) via selective laser melting (SLM) is increasingly deployed in aerospace, biomedical, and tooling applications where complex geometries and high performance are required. Yet, process-induced anisotropy and microstructural heterogeneity can strongly affect mechanical and tribological behavior. This study systematically evaluates the [...] Read more.
Additive manufacturing (AM) via selective laser melting (SLM) is increasingly deployed in aerospace, biomedical, and tooling applications where complex geometries and high performance are required. Yet, process-induced anisotropy and microstructural heterogeneity can strongly affect mechanical and tribological behavior. This study systematically evaluates the combined effects of build orientation (0°, 45°, and 90° relative to the build plate) and post-build heat treatment (as-built, 600 °C, and 860 °C) on the phase constitution, microstructure, hardness, tensile response, and dry sliding wear of SLM-fabricated 316L stainless steel. X-ray diffraction indicated a fully austenitic (γ-fcc) structure without detectable secondary phases across all conditions. Orientation-dependent substructures were observed: ~1 µm equiaxed cellular features at 0°, finer 0.3–0.5 µm cells at 45°, and 1–2 µm elongated features at 90°. Microhardness varied with orientation; relative to 0°, 45° specimens were ~15 HV higher, whereas 90° specimens were ~10 HV lower. Heat treatment at 600 °C promoted refinement and recovery of the cellular network, most pronounced in the 45° orientation, while treatment at 860 °C largely erased melt pool boundary contrast, producing a more homogeneous particle-like microstructure. Tensile fractography revealed dimpled rupture in all cases; the 90° orientation showed finer dimples and lower hardness, consistent with a ductile failure mode under reduced constraint. Dry sliding wear tests identified adhesive wear, intensified by the build-up of transferred fragments, as the dominant mechanism in both as-built and 600 °C conditions. Changes to melt pool morphology after 860 °C heat treatment correlated with altered wear track widths, with the 0° condition showing a notable narrowing relative to the 600 °C state. These results highlight processing pathways for tailoring anisotropy, strength–ductility balance, and wear resistance in SLM 316L. Full article
(This article belongs to the Special Issue Advances in Laser Processing of Metals and Alloys)
Show Figures

Figure 1

54 pages, 7698 KB  
Review
Recent Advances in Ceramic-Reinforced Aluminum Metal Matrix Composites: A Review
by Surendra Kumar Patel and Lei Shi
Alloys 2025, 4(3), 18; https://doi.org/10.3390/alloys4030018 - 30 Aug 2025
Viewed by 447
Abstract
Aluminium metal matrix composites (AMMCs) incorporate aluminium alloys reinforced with fibres (continuous/discontinuous), whiskers, or particulate. These materials were engineered as advanced solutions for demanding sectors including construction, aerospace, automotive, and marine. Micro- and nano-scale reinforcing particles typically enable attainment of exceptional combined properties, [...] Read more.
Aluminium metal matrix composites (AMMCs) incorporate aluminium alloys reinforced with fibres (continuous/discontinuous), whiskers, or particulate. These materials were engineered as advanced solutions for demanding sectors including construction, aerospace, automotive, and marine. Micro- and nano-scale reinforcing particles typically enable attainment of exceptional combined properties, including reduced density with ultra-high strength, enhanced fatigue strength, superior creep resistance, high specific strength, and specific stiffness. Microstructural, mechanical, and tribological characterizations were performed, evaluating input parameters like reinforcement weight percentage, applied normal load, sliding speed, and sliding distance. Fabricated nanocomposites underwent tribometer testing to quantify abrasive and erosive wear behaviour. Multiple investigations employed the Taguchi technique with regression modelling. Analysis of variance (ANOVA) assessed the influence of varied test constraints. Applied load constituted the most significant factor affecting the physical/statistical attributes of nanocomposites. Sliding velocity critically governed the coefficient of friction (COF), becoming highly significant for minimizing COF and wear loss. In this review, the reinforcement homogeneity, fractural behaviour, and worn surface morphology of AMMCswere examined. Full article
Show Figures

Figure 1

Back to TopTop