Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = horizontal motion harvesting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7180 KB  
Article
Numerical Study on the Energy-Harvesting Performance of Multiple Flapping Foils
by Shihui Wu and Li Wang
Processes 2025, 13(9), 2739; https://doi.org/10.3390/pr13092739 - 27 Aug 2025
Viewed by 286
Abstract
Flapping foils, inspired by the wing motions of birds and the swimming mechanisms of aquatic animals, offer a promising alternative to traditional turbines for extracting renewable energy from ambient flows found in nature. This study employs an immersed boundary-lattice Boltzmann method (IB-LBM) to [...] Read more.
Flapping foils, inspired by the wing motions of birds and the swimming mechanisms of aquatic animals, offer a promising alternative to traditional turbines for extracting renewable energy from ambient flows found in nature. This study employs an immersed boundary-lattice Boltzmann method (IB-LBM) to numerically investigate the energy extraction performance of multiple flapping foils at a Reynolds number of 1100. Two staggered foils are systematically studied to identify the optimum spatial arrangements needed to achieve high energy-harvesting performance. The results show that the wake of the fore-foil mainly contributes to the negative performance of the hind-foil due to the loss of streamwise flow velocity, and the interaction between the two foils can enhance the energy-harvesting performance of the system, but cannot fully alleviate the effects of flow velocity loss. Therefore, the staggered arrangements, which help the hind-foil shed the wake, are essential to improve the energy-harvesting performance of the hind-foil. Comparable performance for the hind-foil is achieved at a horizontal gap of 2.5c and vertical gap of 2.5c with c being the chord length of the foil. The scaled-up systems, including three-, five-, and seven-foil configurations, are examined with gaps of 2.5c (horizontal) and 2.5c (vertical), and the results show that such ‘V’-shaped arrangements of these foils can achieve high energy-harvesting performance, with an enhancement up to 10.7% when seven foils are used, by utilizing the high mean streamwise velocity at the boundary of the leader’s wake, confirming the versatility of the optimum staggered arrangements for flapping-foil arrays. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 4771 KB  
Article
Constant High-Voltage Triboelectric Nanogenerator with Stable AC for Sustainable Energy Harvesting
by Aso Ali Abdalmohammed Shateri, Salar K. Fatah, Fengling Zhuo, Nazifi Sani Shuaibu, Chuanrui Chen, Rui Wan and Xiaozhi Wang
Micromachines 2025, 16(7), 801; https://doi.org/10.3390/mi16070801 - 9 Jul 2025
Viewed by 710
Abstract
Triboelectric nanogenerators (TENGs) hold significant potential for decentralized energy harvesting; however, their dependence on rotational mechanical energy often limits their ability to harness ubiquitous horizontal motion in real-world applications. Here, a single horizontal linear-to-rotational triboelectric nanogenerator (SHLR-TENG) is presented, designed to efficiently convert [...] Read more.
Triboelectric nanogenerators (TENGs) hold significant potential for decentralized energy harvesting; however, their dependence on rotational mechanical energy often limits their ability to harness ubiquitous horizontal motion in real-world applications. Here, a single horizontal linear-to-rotational triboelectric nanogenerator (SHLR-TENG) is presented, designed to efficiently convert linear motion into rotational energy using a robust gear system, enabling a high voltage and reliable full cycle of alternating current (AC). The device features a radially patterned disk with triboelectric layers composed of polyimide. The SHLR-TENG achieves a peak-to-peak voltage of 1420 V, a short-circuit current of 117 µA, and an average power output of 41.5 mW, with a surface charge density of 110 µC/m2. Moreover, it demonstrates a power density per unit volume of 371.2 W·m−3·Hz−1. The device retains 80% efficiency after 1.5 million cycles, demonstrating substantial durability under mechanical stress. These properties enable the SHLR-TENG to directly power commercial LEDs and low-power circuits without the need for energy storage. This study presents an innovative approach to sustainable energy generation by integrating horizontal motion harvesting with rotational energy conversion. The compact and scalable design of the SHLR-TENG, coupled with its resilience to humidity (20–90% RH) and temperature fluctuations (10–70 °C), positions it as a promising next-generation energy source for Internet of Things (IoT) devices and autonomous systems. Full article
(This article belongs to the Special Issue Micro-Energy Harvesting Technologies and Self-Powered Sensing Systems)
Show Figures

Figure 1

19 pages, 2403 KB  
Article
Magnetic Frequency Tuning of a Shape Memory Alloy Thermoelectric Vibration Energy Harvester
by Ivo Yotov, Georgi Todorov, Todor Gavrilov and Todor Todorov
Energies 2025, 18(13), 3341; https://doi.org/10.3390/en18133341 - 25 Jun 2025
Viewed by 329
Abstract
This study examines how the frequency of an innovative energy harvester is tuned and how it behaves. This harvester transforms thermal energy into mechanical oscillations of two polyvinylidene fluoride (PVDF) piezoelectric beams, which produce electrical energy via a shape memory alloy (SMA) thread. [...] Read more.
This study examines how the frequency of an innovative energy harvester is tuned and how it behaves. This harvester transforms thermal energy into mechanical oscillations of two polyvinylidene fluoride (PVDF) piezoelectric beams, which produce electrical energy via a shape memory alloy (SMA) thread. The oscillation frequency is modified by two magnetic weights that are positioned symmetrically on the SMA thread and interact with stationary NdFeB permanent magnets. The SMA thread shifts laterally due to longitudinal thermal contraction and expansion induced by a constant-temperature heater. Temperature gradients above the heater trigger cyclical variations in the length of the SMA thread, leading to autonomous vibrations of the masses in both the vertical and horizontal planes. An experimental apparatus was constructed to analyze the harvester by tracking the motions of the masses and the voltages produced by the piezoelectric beams. Information was gathered regarding the correlation between output voltage and power with the consumer’s load resistance. These outcomes were confirmed using a multiphysics dynamic simulation that incorporated the interconnections among mechanical, thermal, magnetic, and electrical systems. The findings indicate that the use of permanent magnets increases the bending vibration frequency from 8.3 Hz to 9.2 Hz. For a heater maintained at 70 °C, this boosts the output power from 1.9 µW to 8.18 µW. A notable property of the considered energy harvester configuration is its ability to operate at cryogenic temperatures. Full article
Show Figures

Figure 1

26 pages, 9633 KB  
Article
Analysis of Horizontal Cylinder Load under Different Conditions in Regards to Waves and Flows
by Xiaoguo Zhou, Qingdian Jiang, Kai Wang and Shuqi Wang
J. Mar. Sci. Eng. 2024, 12(7), 1101; https://doi.org/10.3390/jmse12071101 - 28 Jun 2024
Cited by 2 | Viewed by 1168
Abstract
A numerical simulation based on the CFD method is used to study the interaction between a horizontal cylinder and wave flow. Firstly, a two-dimensional numerical calculation model of both a fixed and a rigid moving cylinder, with a free surface under varying wave [...] Read more.
A numerical simulation based on the CFD method is used to study the interaction between a horizontal cylinder and wave flow. Firstly, a two-dimensional numerical calculation model of both a fixed and a rigid moving cylinder, with a free surface under varying wave flow conditions, is created. In the established model, the loads on the horizontal cylinder under different submergence depths, flow velocities, cylinder sizes, wave periods, and k values (spring stiffness) are analyzed and calculated. The results show that, when the cylinder is close to the free surface, its hydrodynamic load under wave flow conditions is more sensitive to changes in submergence depth, which essentially affects wave reflection and blockage. At different flow velocities, k values, cylinder radii, and arm lengths, the main frequency of the Fourier transform of the cylinder motion curve remains unchanged; however, the main frequency does change with the wave period and submergence depth. The efficiency of rotary cylindrical energy harvesting is influenced by various factors, among which an initial increase and then decrease are observed with a gradually increasing k value, arm length, period, and radius, in addition to an observed decrease with increasing flow velocity. Full article
(This article belongs to the Special Issue Advances in Marine Engineering Hydrodynamics)
Show Figures

Figure 1

20 pages, 8711 KB  
Article
A Contactless Coupled Pendulum and Piezoelectric Wave Energy Harvester: Model and Experiment
by Wuwei Feng, Hongya Chen, Qingping Zou, Di Wang, Xiang Luo, Cathal Cummins, Chuanqiang Zhang, Shujie Yang and Yuxiang Su
Energies 2024, 17(4), 876; https://doi.org/10.3390/en17040876 - 14 Feb 2024
Cited by 6 | Viewed by 2826
Abstract
Wireless monitoring systems for the marine environment are important for rapidly growing subsea developments. The power supply of wireless sensor nodes within the monitoring systems, however, is a major challenge. This study proposes a novel piezoelectric wave energy converter (pWEC) device to power [...] Read more.
Wireless monitoring systems for the marine environment are important for rapidly growing subsea developments. The power supply of wireless sensor nodes within the monitoring systems, however, is a major challenge. This study proposes a novel piezoelectric wave energy converter (pWEC) device to power the wireless sensing nodes. Unlike previous studies, the proposed device utilizes contactless pWEC technology in which a spring pendulum provides a two-stage frequency amplification of 3.8 times for low-frequency wave environments. The pWEC device consists of a floating body, inner pendulum, spring pendulum, magnets and piezoelectric sheets. In order to harvest the energy from relatively low frequency ocean waves, the pWEC device is designed to have an enhanced energy-capturing frequency. The effects of internal pendulum mass, spring pendulum weight, pendulum length and spring stiffness on wave energy absorption are investigated using theoretical and numerical analysis combined with laboratory experiments. The slider that drives the motion of the piezoelectric sheet vibrates at up to 3.8 times the wave frequency. To test the piezoelectric generators in the laboratory environment, a mechanical structure is set up to simulate the motion of the external floating body and the internal wave energy converter under the action of waves. When the four piezoelectric plates are arranged horizontally, the average output power per plate is increased by 2.4 times, and a single piezoelectric plate can generate an average of 10 mW of power. The proposed piezoelectric wave energy converter device has the potential to provide long-term energy supply for small ocean monitoring platforms at remote locations with reasonable wave energy resources. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

15 pages, 6042 KB  
Article
A New Picking Pattern of a Flexible Three-Fingered End-Effector for Apple Harvesting Robot
by Wei Ji, Guozhi He, Bo Xu, Hongwei Zhang and Xiaowei Yu
Agriculture 2024, 14(1), 102; https://doi.org/10.3390/agriculture14010102 - 6 Jan 2024
Cited by 35 | Viewed by 3415
Abstract
During the picking process of the apple harvesting robot, the attitude of the end effector holding the apple and the movement method of separating the apple directly affect the success rate of picking. In order to improve the stability of the picking process, [...] Read more.
During the picking process of the apple harvesting robot, the attitude of the end effector holding the apple and the movement method of separating the apple directly affect the success rate of picking. In order to improve the stability of the picking process, reduce the gripping force, and avoid apple dislodgement and damage, this work studies the new apple-picking pattern of the flexible three-fingered end-effector based on the analysis of the existing apple-picking pattern. First, two new three-finger grasping postures for wrapping the apple horizontally and vertically on the inside of the fingers are proposed, and a new method of separating the stem with a circular-pull-down motion of the end-effector picking the apple is designed. Then, the pressure on the apple under different picking patterns was analyzed, and a branch–stem–apple simulation model was established. Combining the constraint conditions such as the angle between the apple stem and the vertical direction, the movement speed, the root impulse, and so on, the optimal angle of apple circular movement and the force required to realize the movement are obtained through dynamic simulation experiments. Finally, the experiments of apple picking patterns were carried out with the flexible three-fingered end-effector. The experiment shows that the best angle for apple picking is 15°~20° using the circular-pull-down movement separation method. In terms of average grasping force peaks and pressures, the combination of the vertical holding posture of the inner finger and the circular-pull-down movement separation method is the best picking pattern. In this pattern, the average peak exerts force on the inner side of a single finger is about 8.52 N, and the pressure is about 20.9 KPa. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 5432 KB  
Article
Multidirectional Piezoelectric Vibration Energy Harvester Based on Cam Rotor Mechanism
by Xin Jiang, Yan Liu, Jiaming Wei, Haotian Yang, Bin Yin, Hongbo Qin and Weidong Wang
Micromachines 2023, 14(6), 1159; https://doi.org/10.3390/mi14061159 - 30 May 2023
Cited by 10 | Viewed by 2663
Abstract
The techniques that harvest mechanical energy from low-frequency, multidirectional environmental vibrations have been considered a promising strategy to implement a sustainable power source for wireless sensor networks and the Internet of Things. However, the obvious inconsistency in the output voltage and operating frequency [...] Read more.
The techniques that harvest mechanical energy from low-frequency, multidirectional environmental vibrations have been considered a promising strategy to implement a sustainable power source for wireless sensor networks and the Internet of Things. However, the obvious inconsistency in the output voltage and operating frequency among different directions may bring a hindrance to energy management. To address this issue, this paper reports a cam-rotor-based approach for a multidirectional piezoelectric vibration energy harvester. The cam rotor can transform vertical excitation into a reciprocating circular motion, producing a dynamic centrifugal acceleration to excite the piezoelectric beam. The same beam group is utilized when harvesting vertical and horizontal vibrations. Therefore, the proposed harvester reveals similar characterization in its resonant frequency and output voltage at different working directions. The structure design and modeling, device prototyping and experimental validation are conducted. The results show that the proposed harvester can produce a peak voltage of up to 42.4 V under a 0.2 g acceleration with a favorable power of 0.52 mW, and the resonant frequency for each operating direction is stable at around 3.7 Hz. Practical applications in lighting up LEDs and powering a WSN system demonstrate the promising potential of the proposed approach in capturing energy from ambient vibrations to construct self-powered engineering systems for structural health monitoring, environmental measuring, etc. Full article
Show Figures

Figure 1

27 pages, 15124 KB  
Review
On the State-of-the-Art of Solar, Wind, and Other Green Energy Resources and Their Respective Storage Systems
by Sheldon Wang, Ernuel Tonge, Isaac Sekanyo, Elijah Portmann and Salim M. Azzouz
Eng 2023, 4(1), 857-883; https://doi.org/10.3390/eng4010052 - 6 Mar 2023
Cited by 7 | Viewed by 8533
Abstract
In this article, we provide a brief overview of solar photovoltaic and thermal energy, wind turbines with vertical and horizontal axes, and other sustainable energy production systems as well as energy storage systems. In some remote areas away from easy access to electricity [...] Read more.
In this article, we provide a brief overview of solar photovoltaic and thermal energy, wind turbines with vertical and horizontal axes, and other sustainable energy production systems as well as energy storage systems. In some remote areas away from easy access to electricity and fresh water, a self-contained and self-sustainable off-grid energy production and storage farm is very much needed. In this so-called sustainable energy farm, solar photovoltaic and solar thermal energies along with wind energy can be harvested and stored in a secured battery warehouse with mobile wireless surveillance systems with unpredictable coherent motions. In this battery-based energy storage system, special fire protection measures must also be employed with heat sensors and early detection and alarm systems. The alarm system will be connected to both local fire stations and automated fire extinguishing systems. A subsequent paper will present the details of this wireless fireproof alarm powered by sustainable energy resources. The main purpose of this paper is to document, provide references, and inform about the state-of-the-art achievements in the field of renewable energies, particularly, solar, wind, and other green energy resources. Full article
(This article belongs to the Special Issue Green Engineering for Sustainable Development)
Show Figures

Figure 1

23 pages, 3357 KB  
Article
Evaluation of Cutting Stability of a Natural-Rubber-Tapping Robot
by Hang Zhou, Jin Gao, Fan Zhang, Junxiong Zhang, Song Wang, Chunlong Zhang and Wei Li
Agriculture 2023, 13(3), 583; https://doi.org/10.3390/agriculture13030583 - 27 Feb 2023
Cited by 6 | Viewed by 3484
Abstract
Natural rubber is a crucial raw material in modern society. However, the process of latex acquisition has long depended on manual cutting operations. The mechanization and automation of rubber-tapping activities is a promising field. Rubber-tapping operations rely on the horizontal cutting of the [...] Read more.
Natural rubber is a crucial raw material in modern society. However, the process of latex acquisition has long depended on manual cutting operations. The mechanization and automation of rubber-tapping activities is a promising field. Rubber-tapping operations rely on the horizontal cutting of the leading edge and vertical stripping of the secondary edge. Nevertheless, variations in the impact acceleration of the blade can lead to changes in the continuity of the chip, affecting the stability of the cut. In this study, an inertial measurement unit (IMU) and a robotic arm were combined to achieve the real-time sensing of the blade’s posture and position. The accelerations of the blade were measured at 21 interpolated points in the optimized cutting trajectory based on the principle of temporal synchronization. A multiple regression model was used to establish a link between impact acceleration and chip characteristics to evaluate cutting stability. The R-squared value for the regression equation was 0.976, while the correlation analysis for the R-squared and root mean square error (RMSE) values yielded 0.977 and 0.0766 mm, respectively. The correlation coefficient for the Z-axis was the highest among the three axes, at 0.22937. Strict control of blade chatter in the radial direction is necessary to improve the stability of the cut. This study provides theoretical support and operational reference for subsequent work on end-effector improvement and motion control. The optimized robotic system for rubber tapping can contribute to accelerating the mechanization of latex harvesting. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

13 pages, 2816 KB  
Article
Theory of Movement of Machine-Tractor Unit with Trailer Haulm Harvester Machine
by Volodymyr Bulgakov, Aivars Aboltins, Semjons Ivanovs, Hristo Beloev, Volodymyr Nadykto, Yevhen Ihnatiev and Jüri Olt
Appl. Sci. 2022, 12(8), 3901; https://doi.org/10.3390/app12083901 - 12 Apr 2022
Cited by 5 | Viewed by 2630
Abstract
Harvesting sugar and fodder beet tops is a complex technological process that requires the use of special harvesting machines. Trailed harvesters of different rows, which together with aggregate tractors form symmetric or asymmetric machine-tractor units, the movement of which in the horizontal plane [...] Read more.
Harvesting sugar and fodder beet tops is a complex technological process that requires the use of special harvesting machines. Trailed harvesters of different rows, which together with aggregate tractors form symmetric or asymmetric machine-tractor units, the movement of which in the horizontal plane is not always stable, are widely used. The purpose of this study is to determine the parameters of stable plane-parallel motion of asymmetric harvester machine-tractor unit based on numerical computer simulation of the obtained analytical dependencies. According to the results of the analytical study, the values of the amplitude and phase-frequency characteristics of the turning angle tractor’s oscillations were obtained. They reflect the reproduction by the angle rotation fluctuations of the haulm harvester machine in the horizontal plane. Calculations have shown that reducing the value of the input resistance coefficient of pneumatic tires of the driving wheels of the aggregating tractor increases its sensitivity to the action of disturbing influences. The greater the sensitivity, the closer the wheels of the power tool are to the attachment point of the trailed haulm harvester. In qualitative terms, increasing the speed of the machine-tractor unit from 1.5 to 2.5 m∙s−1 leads to an undesirable increase in the amplitude-frequency response and desired increase in the phase-frequency response when reproducing its external disturbing effects in the form of oscillations of the angle of rotation of the harvester. Full article
(This article belongs to the Special Issue Engineering of Smart Agriculture)
Show Figures

Figure 1

12 pages, 726 KB  
Article
Global Dynamics of a Vibro-Impact Energy Harvester
by Zhenbang Cao, Haotong Ma, Xuegang Yu, Jianliang Shi, Hu Yang, Yi Tan and Ge Ren
Mathematics 2022, 10(3), 472; https://doi.org/10.3390/math10030472 - 1 Feb 2022
Cited by 2 | Viewed by 2006
Abstract
In this paper, we consider a two-sided vibro-impact energy harvester described as a forced cylindrical capsule inclined at a horizontal angle, and the motion of the ball inside the capsule follows from the impacts with the capsule ends and gravity. Two distinct cases [...] Read more.
In this paper, we consider a two-sided vibro-impact energy harvester described as a forced cylindrical capsule inclined at a horizontal angle, and the motion of the ball inside the capsule follows from the impacts with the capsule ends and gravity. Two distinct cases of dynamical behavior are investigated: the nondissipative and dissipative cases, where the dissipation is given by a restitution coefficient of impacts. We show that the dynamics of the system are described by the use of a 2D implicit map written in terms of the variables’ energy and time when the ball leaves the moving capsule ends. More precisely, in the nondissipative case, we analytically show that this map is area-preserving and the existence of invariant curves for some rotation number with Markoff constant type is proved according to Moser’s twist theorem in high energy. The existence of invariant curves implies that the kinetic energy of the ball is always bounded, and hence, the structure of system is not destroyed by the impacts of the ball. Furthermore, by numerical analysis we also show that the dynamical behavior of this system is regular, mainly containing periodic points, invariant curves and Aubry–Mather sets. After introducing dissipation, the dissipation destroys the regular dynamical behavior of the nondissipative case, and a periodic point with low energy is generated. Full article
(This article belongs to the Topic Dynamical Systems: Theory and Applications)
Show Figures

Figure 1

20 pages, 4334 KB  
Article
Research on the Blade Motion of a Bidirectional Energy-Generating Turbine under Integrated Wave and Tidal Current Action
by Yamei Li, Zeyu Li, Andong Liu, Yutian Zhu, Shiming Wang and Zhao Liu
J. Mar. Sci. Eng. 2021, 9(8), 869; https://doi.org/10.3390/jmse9080869 - 12 Aug 2021
Cited by 3 | Viewed by 2838
Abstract
An integrated wave-tidal current power turbine is affected by both wave and tidal current forces, and its energy efficiency is closely related to the velocity and direction of the two forces. To improve the probability of the horizontal axis turbine reaching maximum energy [...] Read more.
An integrated wave-tidal current power turbine is affected by both wave and tidal current forces, and its energy efficiency is closely related to the velocity and direction of the two forces. To improve the probability of the horizontal axis turbine reaching maximum energy efficiency under real-time changing sea conditions, we performed the following investigations in this study. Based on the actual application scenario of Lianyungang port, a time series prediction model of tidal current (velocity and flow direction) and wave (mean wave direction, mean wave period, and significant wave height) data for the past year was established. The changes in waves and tidal currents within 24 h after the cutoff point of the existing data were predicted. The integrated wave-tidal current mechanism was studied, and the superposition of wave energy and tidal current energy was transformed into the equivalent velocity vector of wave-tidal current integration. The conversion coefficient between waves and equivalent flows was determined by a numerical wave flume simulation. According to the historical wave and tidal current data, the equivalent velocity range of the integrated action of waves and tidal currents in Lianyungang was determined. The influence of different blade motions on the energy harvesting efficiency of the turbine under the corresponding flow conditions was studied using the Computational Fluid Dynamics (CFD) method to determine the blade motion law of the turbine. The blade motion law of the prototype was verified in a sea trial experiment. The experimental results were basically consistent with the simulation results for the blade motion law designed according to the wave and tidal current prediction law. This design scheme can provide a reference for engineering design for the development and utilization of new marine energy. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 5013 KB  
Article
Horizontally Assembled Trapezoidal Piezoelectric Cantilevers Driven by Magnetic Coupling for Rotational Energy Harvester Applications
by Yonghyeon Na, Min-Seon Lee, Jung Woo Lee and Young Hun Jeong
Energies 2021, 14(2), 498; https://doi.org/10.3390/en14020498 - 18 Jan 2021
Cited by 12 | Viewed by 3007
Abstract
Horizontally assembled trapezoidal piezoelectric cantilevers driven by magnetic coupling were fabricated for rotational energy harvester applications. A dodecagonal rigid frame with an attached array of six trapezoidal cantilevers served as a stator for electrical power generation. A rotor disk with six permanent magnets [...] Read more.
Horizontally assembled trapezoidal piezoelectric cantilevers driven by magnetic coupling were fabricated for rotational energy harvester applications. A dodecagonal rigid frame with an attached array of six trapezoidal cantilevers served as a stator for electrical power generation. A rotor disk with six permanent magnets (PMs) interacted magnetically with the counterpart cantilever’s tip-mass PMs of the stator by rotational motion. Each trapezoidal piezoelectric cantilever beam was designed to operate in a transverse mode that utilizes a planar Ag/Pd electrode printed onto lead zirconate titanate (PZT) piezoelectric thick film. The optimized distance between a pair of PMs of the rotor and the stator was evaluated as approximately 10 mm along the same vertical direction to make the piezoelectric cantilever beam most deflectable without the occurrence of cracks. The theoretically calculated resistance torque was maximized at 46 mN·m for the optimized trapezoidal piezoelectric cantilever. The proposed energy harvester was also demonstrated for wind energy harvester applications. Its harvested output power reached a maximum of approximately 22 mW at a wind speed of 10 m/s under a resistive load of 30 kΩ. The output performance of the proposed energy harvester makes it possible to power numerous low-power applications such as smart sensor systems. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

21 pages, 8995 KB  
Article
Center-Articulated Hydrostatic Cotton Harvesting Rover Using Visual-Servoing Control and a Finite State Machine
by Kadeghe Fue, Wesley Porter, Edward Barnes, Changying Li and Glen Rains
Electronics 2020, 9(8), 1226; https://doi.org/10.3390/electronics9081226 - 30 Jul 2020
Cited by 25 | Viewed by 5438
Abstract
Multiple small rovers can repeatedly pick cotton as bolls begin to open until the end of the season. Several of these rovers can move between rows of cotton, and when bolls are detected, use a manipulator to pick the bolls. To develop such [...] Read more.
Multiple small rovers can repeatedly pick cotton as bolls begin to open until the end of the season. Several of these rovers can move between rows of cotton, and when bolls are detected, use a manipulator to pick the bolls. To develop such a multi-agent cotton-harvesting system, each cotton-harvesting rover would need to accomplish three motions: the rover must move forward/backward, turn left/right, and the robotic manipulator must move to harvest cotton bolls. Controlling these actions can involve several complex states and transitions. However, using the robot operating system (ROS)-independent finite state machine (SMACH), adaptive and optimal control can be achieved. SMACH provides task level capability for deploying multiple tasks to the rover and manipulator. In this study, a center-articulated hydrostatic cotton-harvesting rover, using a stereo camera to locate end-effector and pick cotton bolls, was developed. The robot harvested the bolls by using a 2D manipulator that moves linearly horizontally and vertically perpendicular to the direction of the rover’s movement. We demonstrate preliminary results in an environment simulating direct sunlight, as well as in an actual cotton field. This study contributes to cotton engineering by presenting a robotic system that operates in the real field. The designed robot demonstrates that it is possible to use a Cartesian manipulator for the robotic harvesting of cotton; however, to reach commercial viability, the speed of harvest and successful removal of bolls (Action Success Ratio (ASR)) must be improved. Full article
(This article belongs to the Special Issue Modeling, Control, and Applications of Field Robotics)
Show Figures

Figure 1

12 pages, 4012 KB  
Article
Analysis of a Cantilevered Piezoelectric Energy Harvester in Different Orientations for Rotational Motion
by Wei-Jiun Su, Jia-Han Lin and Wei-Chang Li
Sensors 2020, 20(4), 1206; https://doi.org/10.3390/s20041206 - 22 Feb 2020
Cited by 30 | Viewed by 4643
Abstract
This paper investigates a piezoelectric energy harvester that consists of a piezoelectric cantilever and a tip mass for horizontal rotational motion. Rotational motion results in centrifugal force, which causes the axial load on the beam and alters the resonant frequency of the system. [...] Read more.
This paper investigates a piezoelectric energy harvester that consists of a piezoelectric cantilever and a tip mass for horizontal rotational motion. Rotational motion results in centrifugal force, which causes the axial load on the beam and alters the resonant frequency of the system. The piezoelectric energy harvester is installed on a rotational hub in three orientations—inward, outward, and tilted configurations—to examine their influence on the performance of the harvester. The theoretical model of the piezoelectric energy harvester is developed to explain the dynamics of the system and experiments are conducted to validate the model. Theoretical and experimental studies are presented with various tilt angles and distances between the harvester and the rotating center. The results show that the installation distance and the tilt angle can be used to adjust the resonant frequency of the system to match the excitation frequency. Full article
(This article belongs to the Special Issue Energy Harvesting Sensors)
Show Figures

Figure 1

Back to TopTop