Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (309)

Search Parameters:
Keywords = housing flexibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3807 KB  
Article
Graph-RWGAN: A Method for Generating House Layouts Based on Multi-Relation Graph Attention Mechanism
by Ziqi Ye, Sirui Liu, Zhen Tian, Yile Chen, Liang Zheng and Junming Chen
Buildings 2025, 15(19), 3623; https://doi.org/10.3390/buildings15193623 - 9 Oct 2025
Abstract
We address issues in existing house layout generation methods, including chaotic room layouts, limited iterative refinement, and restricted style diversity. We propose Graph-RWGAN, a generative adversarial network based on a multi-relational graph attention mechanism, to automatically generate reasonable and globally consistent house layouts [...] Read more.
We address issues in existing house layout generation methods, including chaotic room layouts, limited iterative refinement, and restricted style diversity. We propose Graph-RWGAN, a generative adversarial network based on a multi-relational graph attention mechanism, to automatically generate reasonable and globally consistent house layouts under weak constraints. In our framework, rooms are represented as graph nodes with semantic attributes. Their spatial relationships are modeled as edges. Optional room-level objects can be added by augmenting node attributes. This allows for object-aware layout generation when needed. The multi-relational graph attention mechanism captures complex inter-room relationships. Iterative generation enables stepwise layout optimization. Fusion of node features with building boundaries ensures spatial accuracy and structural coherence. A conditional graph discriminator with Wasserstein loss constrains global consistency. Experiments on the RPLAN dataset show strong performance. FID is 92.73, SSIM is 0.828, and layout accuracy is 85.96%. Room topology accuracy reaches 95%, layout quality 90%, and structural coherence 95%, outperforming House-GAN, LayoutGAN, and MR-GAT. Ablation studies confirm the effectiveness of each key component. Graph-RWGAN shows strong adaptability, flexible generation under weak constraints, and multi-style layouts. It provides an efficient and controllable scheme for intelligent building design and automated planning. Full article
Show Figures

Figure 1

39 pages, 8028 KB  
Article
Parametric Visualization, Climate Adaptability Evaluation, and Optimization of Strategies for the Subtropical Hakka Enclosed House: The Guangludi Case in Meizhou
by Yijiao Zhou, Zhe Zhou, Pei Cai and Nangkula Utaberta
Buildings 2025, 15(19), 3530; https://doi.org/10.3390/buildings15193530 - 1 Oct 2025
Viewed by 173
Abstract
Hakka traditional vernacular dwellings embody regionally specific climatic adaptation strategies. This study takes the Meizhou Guangludi enclosed house as a case study to evaluate its climate adaptability with longevity and passive survivability factors of the Hakka three-hall enclosed house under subtropical climatic conditions. [...] Read more.
Hakka traditional vernacular dwellings embody regionally specific climatic adaptation strategies. This study takes the Meizhou Guangludi enclosed house as a case study to evaluate its climate adaptability with longevity and passive survivability factors of the Hakka three-hall enclosed house under subtropical climatic conditions. A mixed research method is employed, integrating visualized parametric modeling analysis and on-site measurement comparisons to quantify wind, temperature, solar radiation/illuminance, and humidity, along with human comfort zone limits and building environment. The results reveal that nature erosion in the Guangludi enclosed house is the most pronounced during winter and spring, particularly on exterior walls below 2.8 m. Key issues include bulging, spalling, molding, and fractured purlins caused by wind-driven rain, exacerbated by low wind speeds and limited solar exposure, especially at test spots like the E8–E10 and N1–N16 southeast and southern walls below 1.5 m. Fungal growth and plant intrusion are severe where surrounding trees and fengshui forests restrict wind flow and lighting. In terms of passive survivability, the Guangludi enclosed house has strong thermal insulation and buffering, aided by the Huatai mound; however, humidity and day illuminance deficiencies persist in the interstitial spaces between lateral rooms and the central hall. To address these issues, this study proposes strategies such as adding ventilation shafts and flexible partitions, optimizing patio dimensions and window-to-wall ratios, retaining the spatial layout and Fengshui pond to enhance wind airflow, and reinforcing the identified easily eroded spots with waterproofing, antimicrobial coatings, and extended eaves. Through parametric simulation and empirical validation, this study presents a climate-responsive retrofit framework that supports the sustainability and conservation of the subtropical Hakka enclosed house. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

17 pages, 1466 KB  
Article
Robust Minimum-Cost Consensus Model with Non-Cooperative Behavior: A Data-Driven Approach
by Jiangyue Fu, Xingrui Guan, Xun Han and Gang Chen
Mathematics 2025, 13(19), 3098; https://doi.org/10.3390/math13193098 - 26 Sep 2025
Viewed by 201
Abstract
Achieving consensus in group decision-making is both essential and challenging, especially in which non-cooperative behaviors can significantly hinder the process under uncertainty. These behaviors may distort consensus outcomes, leading to increased costs and reduced efficiency. To address this issue, this study proposes a [...] Read more.
Achieving consensus in group decision-making is both essential and challenging, especially in which non-cooperative behaviors can significantly hinder the process under uncertainty. These behaviors may distort consensus outcomes, leading to increased costs and reduced efficiency. To address this issue, this study proposes a data-driven robust minimum-cost consensus model (MCCM) that accounts for non-cooperative behaviors by leveraging individual adjustment willingness. The model introduces an adjustment willingness function to identify non-cooperative participants during the consensus-reached process (CRP). To handle uncertainty in unit consensus costs, Principal Component Analysis (PCA) and Kernel Density Estimation (KDE) are employed to construct data-driven uncertainty sets. A robust optimization framework is then used to minimize the worst-case consensus cost within these sets, improving the model’s adaptability and reducing the risk of suboptimal decisions. To enhance computational tractability, the model is reformulated into a linear equivalent using the duality theory. Experimental results from a case study on house demolition compensation negotiations in Guiyang demonstrate the model’s effectiveness in identifying and mitigating non-cooperative behaviors. The proposed approach significantly improves consensus efficiency and consistency, while the data-driven robust strategy offers greater flexibility than traditional robust optimization methods. These findings suggest that the model is well-suited for complex real-world group decision-making scenarios under uncertainty. Full article
Show Figures

Figure 1

35 pages, 3077 KB  
Article
A New G Family: Properties, Characterizations, Different Estimation Methods and PORT-VaR Analysis for U.K. Insurance Claims and U.S. House Prices Data Sets
by Ahmad M. AboAlkhair, G. G. Hamedani, Nazar Ali Ahmed, Mohamed Ibrahim, Mohammad A. Zayed and Haitham M. Yousof
Mathematics 2025, 13(19), 3097; https://doi.org/10.3390/math13193097 - 26 Sep 2025
Viewed by 183
Abstract
This paper introduces a new class of probability distributions, termed the generated log exponentiated polynomial (GLEP) family, designed to enhance flexibility in modeling complex real financial data. The proposed family is constructed through a novel cumulative distribution function that combines logarithmic and exponentiated [...] Read more.
This paper introduces a new class of probability distributions, termed the generated log exponentiated polynomial (GLEP) family, designed to enhance flexibility in modeling complex real financial data. The proposed family is constructed through a novel cumulative distribution function that combines logarithmic and exponentiated polynomial structures, allowing for rich distributional shapes and tail behaviors. We present comprehensive mathematical properties, including useful series expansions for the density, cumulative, and quantile functions, which facilitate the derivation of moments, generating functions, and order statistics. Characterization results based on the reverse hazard function and conditional expectations are established. The model parameters are estimated using various frequentist methods, including Maximum Likelihood Estimation (MLE), Cramer–von Mises (CVM), Anderson–Darling (ADE), Right Tail Anderson–Darling (RTADE), and Left Tail Anderson–Darling (LEADE), with a comparative simulation study assessing their performance. Risk analysis is conducted using actuarial key risk indicators (KRIs) such as Value-at-Risk (VaR), Tail Value-at-Risk (TVaR), Tail Variance (TV), Tail Mean Variance (TMV), and excess function (EL), demonstrating the model’s applicability in financial and insurance contexts. The practical utility of the GLEP family is illustrated through applications to real and simulated datasets, including house price dynamics and insurance claim sizes. Peaks Over Random Threshold Value-at-Risk (PORT-VaR) analysis is applied to U.K. motor insurance claims and U.S. house prices datasets. Some recommendations are provided. Finally, a comparative study is presented to prove the superiority of the new family. Full article
(This article belongs to the Special Issue Statistical Methods for Forecasting and Risk Analysis)
Show Figures

Figure 1

18 pages, 3816 KB  
Article
The HMGB1-RAGE Axis Drives the Proneural-to-Mesenchymal Transition and Aggressiveness in Glioblastoma
by Hao-Chien Yang, Yu-Kai Su, Vijesh Kumar Yadav, Iat-Hang Fong, Heng-Wei Liu and Chien-Min Lin
Int. J. Mol. Sci. 2025, 26(19), 9352; https://doi.org/10.3390/ijms26199352 - 25 Sep 2025
Viewed by 312
Abstract
Glioblastoma (GBM) remains the most lethal primary brain tumor, owing to profound intratumoral heterogeneity and the limited efficacy of standard treatments. The mesenchymal (MES) molecular subtype is particularly aggressive, exhibiting heightened invasiveness, therapy resistance, and dismal patient survival compared with the proneural (PN) [...] Read more.
Glioblastoma (GBM) remains the most lethal primary brain tumor, owing to profound intratumoral heterogeneity and the limited efficacy of standard treatments. The mesenchymal (MES) molecular subtype is particularly aggressive, exhibiting heightened invasiveness, therapy resistance, and dismal patient survival compared with the proneural (PN) subtype. Emerging evidence implicates the High Mobility Group Box 1 (HMGB1) protein and its cognate receptor, the Receptor for Advanced Glycation End Products (RAGE), as drivers of malignant progression, yet their contribution to the PN-to-MES transition is incompletely defined. We integrated transcriptomic analyses of TCGA-GBM and TCGA-LGG cohorts with immunohistochemistry on in-house patient specimens. Functional studies in patient-derived and established GBM cell lines included migration and invasion assays, tumorsphere formation assays, shRNA knockdowns, and Seahorse XF metabolic profiling to interrogate the HMGB1-RAGE axis. HMGB1 and RAGE expression was markedly elevated in MES GBM tissues and cell lines. Importantly, higher HMGB1 expression correlated with shortened overall survival (p < 0.009). HMGB1 silencing curtailed cell motility and downregulated core epithelial-to-mesenchymal transition markers (N-cadherin, Snail). RAGE knockdown diminished tumorsphere formation efficiency and reduced transcription of stemness genes (OCT4), underscoring its role in sustaining tumor-initiating capacity. Metabolically, HMGB1/RAGE activation boosted both mitochondrial respiration and glycolysis, conferring the bioenergetic flexibility characteristic of MES GBM. The HMGB1-RAGE signaling axis orchestrates mesenchymal identity, invasiveness, stem cell-like properties, and metabolic reprogramming in GBM. Targeting this pathway may disrupt the PN-to-MES transition, mitigate therapeutic resistance, and ultimately improve outcomes for glioblastoma patients. Full article
(This article belongs to the Special Issue Advanced Molecular Research in Brain Tumors)
Show Figures

Graphical abstract

21 pages, 1708 KB  
Article
Response of a Cantilever Beam Equipped with a Particle Damper Subjected to Impact Load
by Mehrdad Karimipetanlar and Usama El Shamy
Buildings 2025, 15(19), 3463; https://doi.org/10.3390/buildings15193463 - 25 Sep 2025
Viewed by 205
Abstract
The behavior of a cantilever beam equipped with a particle damper, subjected to impact loads at various locations, was investigated using the discrete element method (DEM). The flexible cantilever steel beam and the particle damper attached to the beam’s tip were modeled with [...] Read more.
The behavior of a cantilever beam equipped with a particle damper, subjected to impact loads at various locations, was investigated using the discrete element method (DEM). The flexible cantilever steel beam and the particle damper attached to the beam’s tip were modeled with bonded particles through DEM. Computational simulations were conducted to explore the influence of different particle damper porosities and positions along the beam’s length. It was observed that reducing the particle damper’s porosity decreases the beam’s displacement. The impact force was significantly influenced by the porosity, where having lower porosities resulted in higher impact forces. In addition, the time intervals between sub-impacts were also affected by the damper’s porosity, showing a reduction as the porosity of the damper decreases. The unique type of particle damper used in this study contained sand grains as fillers and was capable of pressurizing the sand within its housing. This feature was utilized to investigate the effect of different initial pressures on the beam’s response. It was revealed that an increase in initial pressure reduces the beam’s displacement. Based on the results obtained, the optimal location for the particle damper was determined to be at the point where displacement reduction is required. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

28 pages, 5782 KB  
Article
Design of a Shipping Container-Based Home: Structural, Thermal, and Acoustic Conditioning
by Javier Pinilla-Melo, Jose Ramón Aira-Zunzunegui, Giuseppe La Ferla, Daniel de la Prida and María Ángeles Navacerrada
Buildings 2025, 15(17), 3127; https://doi.org/10.3390/buildings15173127 - 1 Sep 2025
Viewed by 1204
Abstract
The construction of buildings using shipping containers (SCs) is a way to extend their useful life. They are constructed by modifying the structure, thermal, and acoustic conditioning by improving the envelope and creating openings for lighting and ventilation purposes. This study explores the [...] Read more.
The construction of buildings using shipping containers (SCs) is a way to extend their useful life. They are constructed by modifying the structure, thermal, and acoustic conditioning by improving the envelope and creating openings for lighting and ventilation purposes. This study explores the architectural adaptation of SCs to sustainable residential housing, focusing on structural, thermal, and acoustic performance. The project centers on a case study in Madrid, Spain, transforming four containers into a semi-detached, multilevel dwelling. The design emphasizes modular coordination, spatial flexibility, and structural reinforcement. The retrofit process includes the integration of thermal insulation systems in the ventilated façades and sandwich roof panels to counteract steel’s high thermal conductivity, enhancing energy efficiency. The acoustic performance of the container-based dwelling was assessed through in situ measurements of façade airborne sound insulation and floor impact noisedemonstrating compliance with building code requirements by means of laminated glazing, sealed joints, and floating floors. This represents a novel contribution, given the scarcity of experimental acoustic data for residential buildings made from shipping containers. Results confirm that despite the structure’s low surface mass, appropriate design strategies can achieve the required sound insulation levels, supporting the viability of this lightweight modular construction system. Structural calculations verify the building’s load-bearing capacity post-modification. Overall, the findings support container architecture as a viable and eco-efficient alternative to conventional construction, while highlighting critical design considerations such as thermal performance, sound attenuation, and load redistribution. The results offer valuable data for designers working with container-based systems and contribute to a strategic methodology for the sustainable refurbishment of modular housing. Full article
Show Figures

Figure 1

23 pages, 5304 KB  
Article
A Comparative Study on Unit Plans of Public Rental Housing in China, Japan, and South Korea: Policy, Culture, and Spatial Insights for China’s Indemnificatory Housing Development
by Xuerui Wang, Liping Yang, Ting Huang and Byung-Kweon Jun
Buildings 2025, 15(17), 3068; https://doi.org/10.3390/buildings15173068 - 27 Aug 2025
Viewed by 939
Abstract
In the current context where China is continuously emphasizing the construction and supply of indemnificatory housing, and actively promoting the construction of “Better Housing” for such housing, the development experiences of Japan and South Korea in the field of public housing reveal that [...] Read more.
In the current context where China is continuously emphasizing the construction and supply of indemnificatory housing, and actively promoting the construction of “Better Housing” for such housing, the development experiences of Japan and South Korea in the field of public housing reveal that the construction and supply of public housing cannot be separated from the interaction and coordinated development of the policy system, spatial composition, and cultural factors. Based on this, this study takes the public rental housing in China, Japan, and South Korea as the research objects, through comparative analysis of their policy systems, cultural backgrounds, and spatial composition characteristics of unit plans, to explore the implications for the development of China’s indemnificatory housing, and provides theoretical basis and practical references for optimizing the supply system and space design of China’s indemnificatory housing. The study selects typical cases of public rental housing from the three countries, and conducts comparisons from dimensions such as unit plane shape, L.D.K. layout, bedroom configuration, transitional space, balcony design, and bathroom composition. Findings indicate that Japan’s UR rental housing focuses on refined and diversified design, South Korea’s public housing emphasizes spatial flexibility, while China’s indemnificatory housing, while pursuing standardized construction, faces challenges of area limitations and insufficient functional adaptability. Based on the experiences of the three countries, this study proposes a tripartite guidance suggestion of “Policy–Space–Culture” to advance the realization of “Better Housing” objectives and ensure that China’s indemnificatory housing meets both international advanced experience and local social and cultural specific needs: (1) policy systems—strengthening legalization and long-term sustainability in governance; (2) spatial composition—incorporating flexible layouts and human-centric detailing; (3) cultural adaptability—balancing traditional living habits with contemporary needs. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 1568 KB  
Article
Improving Quality and Sustainability Outcomes in Building Rehabilitation: Concepts, Tools, and a New Assessment Methodology
by Catarina P. Mouraz, José A.R. Mendes Silva and Tiago Miguel Ferreira
Buildings 2025, 15(17), 3001; https://doi.org/10.3390/buildings15173001 - 23 Aug 2025
Viewed by 395
Abstract
Pursuing quality and sustainability concerns in construction activities is not new. However, the construction sector continues to face criticism for the outcome of many interventions, and significant progress is still required to realise both objectives. This is particularly pressing in sectors essential for [...] Read more.
Pursuing quality and sustainability concerns in construction activities is not new. However, the construction sector continues to face criticism for the outcome of many interventions, and significant progress is still required to realise both objectives. This is particularly pressing in sectors essential for quality of life and wellbeing, such as housing, and in areas frequently neglected in research and practice, such as existing buildings. This paper provides insights into the assessment of quality and sustainability in existing buildings, clarifying these concerns, exploring their interrelationship, emphasising the critical role of the design phase, and synthesising relevant methodologies focused on each objective. Furthermore, a novel methodology is proposed to minimise the risk of poor quality in building rehabilitation processes. Methodologically, the paper includes a review of concepts associated with quality and sustainability in building rehabilitation, a synthesis of existing evaluation tools and methods, and the development of the proposed methodology. The main findings include a definition of construction quality, identification of strong correlations between quality and sustainability, and the recognition that using accessible, flexible, and collaborative tools during the design phase is crucial to achieving both objectives, especially in the context of existing buildings, where practical and operational outcomes remain limited. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

13 pages, 561 KB  
Article
Evaluation of Impacts and Sustainability Indicators of Construction in Prefabricated Concrete Houses in Ecuador
by Marcel Paredes and Javier Perez
Sustainability 2025, 17(17), 7616; https://doi.org/10.3390/su17177616 - 23 Aug 2025
Viewed by 677
Abstract
The construction of prefabricated concrete houses in Ecuador poses significant challenges in terms of environmental and social sustainability, amid growing housing demand and the urgent need to mitigate adverse impacts associated with the construction processes and materials. In particular, the lack of a [...] Read more.
The construction of prefabricated concrete houses in Ecuador poses significant challenges in terms of environmental and social sustainability, amid growing housing demand and the urgent need to mitigate adverse impacts associated with the construction processes and materials. In particular, the lack of a comprehensive assessment of these impacts limits the development of effective strategies to improve the sustainability of the sector. In addition, in rural areas, the design of flexible and adapted solutions is required, as evidenced by recent studies in the Andean area. This study conducts a comprehensive assessment of the impacts and sustainability indicators for prefabricated concrete houses, employing international certification systems such as LEED, BREEAM, and VERDE, to validate various relevant environmental and social indicators. The methodology used is the Hierarchical Analytical Process (AHP), which facilitates the prioritization of impacts through paired comparisons, establishing priorities for decision-making. Hydrological, soil, faunal, floral, and socioeconomic aspects are evaluated in a regional context. The results reveal that the most critical environmental impacts in Ecuador are climate change (28.77%), water depletion (13.73%) and loss of human health (19.17%), generation of non-hazardous waste 8.40%, changes in biodiversity 5%, extraction of mineral resources 12.07%, financial risks 5.33%, loss of aquatic life 4.67%, and loss of fertility 3%, as derived from hierarchical and standardization matrices. Despite being grounded in a literature review and being constrained due to the scarcity of previous projects in the country, this research provides a useful framework for the environmental evaluation and planning of prefabricated housing. To conclude, this study enhances existing methodologies of environmental assessment techniques and practices in the construction of precast concrete and promotes the development of sustainable and socially responsible housing in Ecuador. Full article
(This article belongs to the Special Issue Sustainable Approaches for Developing Concrete and Mortar)
Show Figures

Figure 1

25 pages, 24821 KB  
Article
Parameters Impacting the 3D Direct Ink Writing (DIW) Silicone Printing Process and Investigating How the Size of 3D-Printed Aortic Heart Valve Models Influences Cardiac Efficiency
by Atila Ertas, Erik Farley-Talamantes and Olkan Cuvalci
Designs 2025, 9(4), 98; https://doi.org/10.3390/designs9040098 - 19 Aug 2025
Viewed by 775
Abstract
In the healthcare industry, the selection of biocompatible materials suitable for 3D printing is markedly less extensive than what is typically available through conventional manufacturing processes. Liquid silicone rubber (LSR) is distinguished by its exceptional stability, excellent biocompatibility, and considerable flexibility, offering significant [...] Read more.
In the healthcare industry, the selection of biocompatible materials suitable for 3D printing is markedly less extensive than what is typically available through conventional manufacturing processes. Liquid silicone rubber (LSR) is distinguished by its exceptional stability, excellent biocompatibility, and considerable flexibility, offering significant prospects for manufacturers of medical devices involved in 3D printing. The primary aim of this research is to examine the essential factors and their interconnections that affect the 3D printing process with a Direct Ink Writing (DIW) 3D printer, which is specifically tailored for the production of aortic heart valves made from UV-cured silicone. Additionally, this study aims to investigate how the size of the heart valve impacts cardiac performance. This study implements House of Quality (HOQ) and Interpretive Structural Modeling (ISM) techniques to evaluate the interrelations among the different factors identified in the 3D printing process. Liquid silicone is especially advantageous for Direct Ink Writing (DIW) due to its low-temperature curing properties and low viscosity, which enable precise printing for intricate designs. Two different sizes of aortic heart valves, namely 23 mm and 36 mm, will be manufactured using UV-cured silicone, with both sizes having the same leaflet thickness of 0.8 mm and 1.6 mm. An examination will be conducted to assess how the size of the valve influences its performance and functionality. A Mock Circulatory Loop experimental setup will be used to test the silicone-printed heart valves, focusing on their capacity to maintain unidirectional flow and inhibit backflow through the flexible leaflets that function in alignment with the cardiac cycle. Full article
Show Figures

Figure 1

19 pages, 3924 KB  
Article
Seismic Performance of Steel Structures with Base-Hinged Columns Under Rigidly and Flexibly Braced Systems
by Chenwei Shi, Chuntao Zhang, Renbing An and Yongxiang Cai
Buildings 2025, 15(16), 2881; https://doi.org/10.3390/buildings15162881 - 14 Aug 2025
Viewed by 567
Abstract
Steel structures with base-hinged columns are one of the typical forms adopted for rural housing in villages and towns due to their superior seismic resistance, energy efficiency, and environmental benefits. The lateral bracing system plays a crucial role in the ability of steel [...] Read more.
Steel structures with base-hinged columns are one of the typical forms adopted for rural housing in villages and towns due to their superior seismic resistance, energy efficiency, and environmental benefits. The lateral bracing system plays a crucial role in the ability of steel frames with base-hinged columns to resist horizontal forces. This study investigates the impact of rigid and flexible bracing on the seismic performance of such structures, emphasizing that enhanced ductility—particularly in flexibly braced frames—is essential for seismic resilience in earthquake-prone areas. Two full-scale steel frame models, one with rigid bracing and the other with flexible bracing, were fabricated based on typical rural housing designs and subjected to low-cycle reversed loading tests. The results indicate that the rigidly braced frame undergoes brittle failure, characterized by fractures and buckling at bracing intersections. In contrast, the flexibly braced frame exhibits ductile failure, identified by the bending deformation of tension rods. Despite the flexibly braced frame reaching a peak-load bearing capacity that is only 69.1% (positive direction) and 76.0% (negative direction) of the rigidly braced frame, it achieves ultimate displacements 2.7 times (positive direction) and 2.5 times (negative direction) greater. Additionally, the flexibly braced frame exhibits a stable energy dissipation capacity, with cumulative energy dissipation 1.49 times that of the rigidly braced frame. Numerical simulations were conducted to develop finite element models for both rigidly and flexibly braced frames. The resulting failure characteristics and bearing capacities of the frames were obtained, providing further validation of the experimental results. These findings provide data-supported evidence for promoting steel structures with base-hinged columns in rural housing applications. Full article
Show Figures

Figure 1

29 pages, 2736 KB  
Review
3D Printing in the Design of Potentiometric Sensors: A Review of Techniques, Materials, and Applications
by Aleksandra Zalewska, Nikola Lenar and Beata Paczosa-Bator
Sensors 2025, 25(16), 4986; https://doi.org/10.3390/s25164986 - 12 Aug 2025
Viewed by 821
Abstract
The integration of 3D printing into the development of potentiometric sensors has revolutionized sensor fabrication by enabling customizable, low-cost, and rapid prototyping of analytical devices. Techniques like fused deposition modeling (FDM) and stereolithography (SLA) allow researchers to produce different sensor parts, such as [...] Read more.
The integration of 3D printing into the development of potentiometric sensors has revolutionized sensor fabrication by enabling customizable, low-cost, and rapid prototyping of analytical devices. Techniques like fused deposition modeling (FDM) and stereolithography (SLA) allow researchers to produce different sensor parts, such as electrode housings, solid contacts, reference electrodes, and even microfluidic systems. This review explains the basic principles of potentiometric sensors and shows how 3D printing helps solve problems faced in traditional sensor manufacturing. Benefits include smaller size, flexible shapes, the use of different materials in one print, and quick production of working prototypes. However, some challenges still exist—like differences between prints, limited chemical resistance of some materials, and the long-term stability of sensors in real-world conditions. This paper overviews recent examples of 3D-printed ion-selective electrodes and related components and discusses new ideas to improve their performance. It also points to future directions, such as better materials and combining different manufacturing methods. Overall, 3D printing is a powerful and growing tool for developing the next generation of potentiometric sensors for use in healthcare, environmental monitoring, and industry. Full article
(This article belongs to the Special Issue 3D Printed Sensors: Innovations and Applications)
Show Figures

Figure 1

50 pages, 10950 KB  
Article
Applicable and Flexible Post-Disaster Housing Through Parametric Design and 3D Printing: A Novel Model for Prototyping and Deployment
by Ali Mehdizade, Ahmad Walid Ayoobi and Mehmet Inceoğlu
Sustainability 2025, 17(16), 7212; https://doi.org/10.3390/su17167212 - 9 Aug 2025
Viewed by 953
Abstract
Natural disasters are increasing in frequency and intensity, causing escalating humanitarian crises and complex housing challenges globally. Traditional post-disaster housing solutions often fall short, being slow, costly, and ill-adapted to specific community needs. This study addresses these limitations by proposing an innovative, technology-driven [...] Read more.
Natural disasters are increasing in frequency and intensity, causing escalating humanitarian crises and complex housing challenges globally. Traditional post-disaster housing solutions often fall short, being slow, costly, and ill-adapted to specific community needs. This study addresses these limitations by proposing an innovative, technology-driven model for post-disaster housing that integrates parametric design with 3D printing. The objective is to develop a flexible and adaptable system capable of providing both immediate temporary shelter and evolving permanent housing solutions. In this study, the methodology of the proposed model for post-disaster housing solutions is structured around three main phases: the development of the theoretical framework, the parametric design process, and the implementation phase. In the first phase, a comprehensive literature review and conceptual analyses were conducted to examine the concept of disaster, post-disaster housing approaches, and advanced technologies, thereby establishing the conceptual foundation of the model. In the second phase, parametric modeling was carried out for a modular system using algorithmic design tools such as Grasshopper; the model’s applicability across various scales and its flexibility were analyzed. In the final phase, material selection and digital prototyping of the gridal system were undertaken using 3D printing technology to evaluate the model’s feasibility for rapid on-site production, assembly, and disassembly. The model prioritizes user participation, modularity, and configurability to ensure rapid response and socio-cultural sensitivity. Findings indicate that this integrated approach offers substantial benefits, including accelerated construction, reduced labor and material waste, enhanced design flexibility, and the use of local, sustainable materials. This research highlights the transformative potential of advanced manufacturing in providing resilient, user-centered, and environmentally sustainable post-disaster housing, advocating for governmental financial support to overcome adoption barriers and foster broader implementation. Full article
Show Figures

Figure 1

19 pages, 6349 KB  
Article
From Theory to Practice: Assessing the Open Building Movement’s Role in Egypt’s Housing Market over Four Decades
by Rania Nasreldin and Dalia Abdelfattah
Buildings 2025, 15(15), 2600; https://doi.org/10.3390/buildings15152600 - 23 Jul 2025
Viewed by 971
Abstract
This research explores the concept of open building (OB) in the context of low-cost housing, focusing on its historical applications in Egypt during the 1980s. By evaluating past experiences, the study aims to extract key lessons that can inform the design and implementation [...] Read more.
This research explores the concept of open building (OB) in the context of low-cost housing, focusing on its historical applications in Egypt during the 1980s. By evaluating past experiences, the study aims to extract key lessons that can inform the design and implementation of contemporary social housing projects. The goal is to foster resilience and diversity in housing typologies to ensure they align with the evolving needs of residents. To achieve these objectives, the research employed a multi-dimensional strategy, beginning with a comprehensive literature review of the open building movement (OB); then, the study traced the evolution of the OB movement in Egypt using a qualitative analysis approach, which involved analyzing its implementation in low-cost housing projects over the past four decades. Through this historical lens, the study identifies design principles and strategies that can enhance social housing projects by applying OB. Considering the life cycle cost, OB enables an incremental process that would align with users’ financial capacities. The research revealed the substantial capacity of open building (OB) to address Egypt’s social housing challenges, primarily by fostering user-driven flexibility in housing unit design and area selection. This empowers occupants to choose spaces perfectly suited to their family’s evolving needs. Moreover, the findings provide a roadmap for revitalizing the OB movement by analyzing and overcoming past implementation difficulties, consequently balancing the initial cost and long-term economics for citizens and significantly reducing the governmental sector’s expenditure. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop