Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (588)

Search Parameters:
Keywords = hybrid microgrid system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 967 KB  
Article
Robust Detection of Microgrid Islanding Events Under Diverse Operating Conditions Using RVFLN
by Yahya Akıl, Ali Rıfat Boynuegri and Musa Yilmaz
Energies 2025, 18(17), 4470; https://doi.org/10.3390/en18174470 - 22 Aug 2025
Viewed by 265
Abstract
Accurate and timely detection of islanding events is essential for ensuring the stability and safety of hybrid power systems with high penetration of distributed energy resources. Traditional islanding detection methods often face challenges related to detection speed, false alarms, and robustness under dynamic [...] Read more.
Accurate and timely detection of islanding events is essential for ensuring the stability and safety of hybrid power systems with high penetration of distributed energy resources. Traditional islanding detection methods often face challenges related to detection speed, false alarms, and robustness under dynamic operating conditions. This paper proposes a Robust Random Vector Functional Link Network (RVFLN)-based detection framework that leverages engineered features extracted from voltage, current, and power signals in a hybrid microgrid. The proposed method integrates statistical, spectral, and spatiotemporal features—including the Dynamic Harmonic Profile (DHP), which tracks rapid harmonic distortions during disconnection, the Sub-band Energy Ratio (SBER), which quantifies the redistribution of signal energy across frequency bands, and the Islanding Anomaly Index (IAI), which measures multivariate deviations in system behavior—capturing both transient and steady-state characteristics. A real-time digital simulator (RTDS) is used to model diverse scenarios including grid-connected operation, islanding at the Point of Common Coupling (PCC), synchronous converter islanding, and fault events. The RVFLN is trained and validated using this high-fidelity data, enabling robust classification of operational states. Results demonstrate that the RVFLN achieves high accuracy (up to 98.5%), low detection latency (average 0.05 s), and superior performance across precision, recall, and F1 score compared to conventional classifiers such as Random Forest, SVM, and k-NN. The proposed approach ensures reliable real-time islanding detection, making it a strong candidate for deployment in intelligent protection and monitoring systems in modern power networks. Full article
Show Figures

Figure 1

21 pages, 3812 KB  
Article
Hybrid PSO–Reinforcement Learning-Based Adaptive Virtual Inertia Control for Frequency Stability in Multi-Microgrid PV Systems
by Akeem Babatunde Akinwola and Abdulaziz Alkuhayli
Electronics 2025, 14(17), 3349; https://doi.org/10.3390/electronics14173349 - 22 Aug 2025
Viewed by 250
Abstract
The increasing integration of renewable energy sources, particularly photovoltaic (PV) systems, into power grids presents challenges in maintaining frequency stability due to the absence of traditional mechanical inertia. This paper proposes a hybrid control strategy combining Particle Swarm Optimization (PSO) and Reinforcement Learning [...] Read more.
The increasing integration of renewable energy sources, particularly photovoltaic (PV) systems, into power grids presents challenges in maintaining frequency stability due to the absence of traditional mechanical inertia. This paper proposes a hybrid control strategy combining Particle Swarm Optimization (PSO) and Reinforcement Learning (RL) to provide Adaptive Virtual Inertia Control for frequency stability in multi-microgrid PV systems. The proposed system dynamically adjusts virtual inertia and damping parameters in response to real-time grid conditions and frequency deviations. The PSO algorithm optimizes the base inertia and damping parameters offline, while the RL algorithm fine-tunes these parameters online by learning from the system’s performance. The adaptive control mechanism effectively mitigates frequency fluctuations and enhances grid synchronization, ensuring stable operation even under varying power generation and load conditions. The hybrid PSO–RL controller demonstrates a superior performance, maintaining a frequency close to nominal (50.02 Hz), with the fastest settling time (0.10 s), minimal RoCoF (0.2 Hz/s), and effectively zero steady-state error. Simulation results demonstrate the effectiveness of the hybrid control approach, showing fast and accurate frequency regulation with minimal power quality degradation. The system’s ability to adapt in real time provides a promising solution for next-generation smart grids that rely on renewable energy sources. Full article
Show Figures

Figure 1

26 pages, 2354 KB  
Article
Site Suitability Assessment and Grid-Forming Battery Energy Storage System Configuration for Hybrid Offshore Wind-Wave Energy Systems
by Yijin Li, Zihao Zhang, Jibo Wang, Zhanqin Wang, Wenhao Xu and Geng Niu
J. Mar. Sci. Eng. 2025, 13(9), 1601; https://doi.org/10.3390/jmse13091601 - 22 Aug 2025
Viewed by 290
Abstract
Hybrid offshore wind-wave systems play an important role in renewable energy transition. To maximize energy utilization efficiency, a comprehensive assessment to select optimal locations is urgently needed. The hydraulic power characteristics of these systems cause power fluctuations that reduce grid frequency stability. Thus, [...] Read more.
Hybrid offshore wind-wave systems play an important role in renewable energy transition. To maximize energy utilization efficiency, a comprehensive assessment to select optimal locations is urgently needed. The hydraulic power characteristics of these systems cause power fluctuations that reduce grid frequency stability. Thus, a site suitability assessment and a grid-forming battery energy storage system (BESS) configuration method are proposed. Considering energy efficiency, dynamic complementary characteristics, and output stability, a framework integrating three indices of Composite Energy Output Index (CEOI), Time-Shifted Cross-Covariance Index (TS-CCI), and Energy Penetration Balance Index (EPBI) is constructed to assess site suitability. To ensure secure and stable operation of microgrid, the frequency response characteristics of the hybrid system are analyzed, and the corresponding frequency constraint is given. A BESS configuration method considering frequency constraint is developed to minimize life cycle costs and maintain grid stability. Applied to a case study along China’s southeast coast, the assessment method successfully identified the optimal offshore station, confirming its practical applicability. The BESS configuration method is validated on a modified IEEE 30-bus system, with a 6.35% decrease in life cycle cost and complete renewable utilization. This research provides a technical and cost-effective solution for integrating hybrid wind-wave energy into island microgrids. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

40 pages, 17003 KB  
Article
Marine Predators Algorithm-Based Robust Composite Controller for Enhanced Power Sharing and Real-Time Voltage Stability in DC–AC Microgrids
by Md Saiful Islam, Tushar Kanti Roy and Israt Jahan Bushra
Algorithms 2025, 18(8), 531; https://doi.org/10.3390/a18080531 - 20 Aug 2025
Viewed by 273
Abstract
Hybrid AC/DC microgrids (HADCMGs), which integrate renewable energy sources and battery storage systems, often face significant stability challenges due to their inherently low inertia and highly variable power inputs. To address these issues, this paper proposes a novel, robust composite controller based on [...] Read more.
Hybrid AC/DC microgrids (HADCMGs), which integrate renewable energy sources and battery storage systems, often face significant stability challenges due to their inherently low inertia and highly variable power inputs. To address these issues, this paper proposes a novel, robust composite controller based on backstepping fast terminal sliding mode control (BFTSMC). This controller is further enhanced with a virtual capacitor to emulate synthetic inertia and with a fractional power-based reaching law, which ensures smooth and finite-time convergence. Moreover, the proposed control strategy ensures the effective coordination of power sharing between AC and DC sub-grids through bidirectional converters, thereby maintaining system stability during rapid fluctuations in load or generation. To achieve optimal control performance under diverse and dynamic operating conditions, the controller gains are adaptively tuned using the marine predators algorithm (MPA), a nature-inspired metaheuristic optimization technique. Furthermore, the stability of the closed-loop system is rigorously established through control Lyapunov function analysis. Extensive simulation results conducted in the MATLAB/Simulink environment demonstrate that the proposed controller significantly outperforms conventional methods by eliminating steady-state error, reducing the settling time by up to 93.9%, and minimizing overshoot and undershoot. In addition, real-time performance is validated via processor-in-the-loop (PIL) testing, thereby confirming the controller’s practical feasibility and effectiveness in enhancing the resilience and efficiency of HADCMG operations. Full article
Show Figures

Figure 1

17 pages, 2784 KB  
Article
Enhanced Distributed Coordinated Control Strategy for DC Microgrid Hybrid Energy Storage Systems Using Adaptive Event Triggering
by Fawad Nawaz, Ehsan Pashajavid, Yuanyuan Fan and Munira Batool
Electronics 2025, 14(16), 3303; https://doi.org/10.3390/electronics14163303 - 20 Aug 2025
Viewed by 470
Abstract
Islanded DC microgrids face challenges in voltage stability and communication overhead due to renewable energy variability. A novel enhanced distributed coordinated control framework, based on adaptive event-triggered mechanisms, is developed for the efficient management of multiple hybrid energy storage systems (HESSs) in islanded [...] Read more.
Islanded DC microgrids face challenges in voltage stability and communication overhead due to renewable energy variability. A novel enhanced distributed coordinated control framework, based on adaptive event-triggered mechanisms, is developed for the efficient management of multiple hybrid energy storage systems (HESSs) in islanded DC microgrids (MGs). We propose a hierarchical distributed control framework integrating ANN-based controllers and adaptive event-triggered mechanisms to dynamically regulate power flow and minimise communication. This system utilises a hierarchical coordinated control method (HCCM) with primary virtual resistance droop control integrated with state-of-charge (SoC) management and secondary control for voltage regulation and proportional current distribution through optimised communication networks. The integration of artificial neural network (ANN)-based controllers alongside traditional PI control leads to an improvement in system responsiveness. The control approach dynamically adjusts the trigger parameters to minimise communication overhead with tight voltage regulation. An extensive simulation using MATLAB/Simulink shows how the system can effectively manage variability in renewable energy sources and maintain stable voltage profiles with precise power distribution and minimal bus voltage fluctuations. Simulations confirm enhanced voltage regulation (±0.5% deviation), proportional current sharing (98% accuracy), and 60% communication reduction under load transients (outcomes). Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

19 pages, 12556 KB  
Article
Energy Management for Microgrids with Hybrid Hydrogen-Battery Storage: A Reinforcement Learning Framework Integrated Multi-Objective Dynamic Regulation
by Yi Zheng, Jinhua Jia and Dou An
Processes 2025, 13(8), 2558; https://doi.org/10.3390/pr13082558 - 13 Aug 2025
Viewed by 564
Abstract
The integration of renewable energy resources (RES) into microgrids (MGs) poses significant challenges due to the intermittent nature of generation and the increasing complexity of multi-energy scheduling. To enhance operational flexibility and reliability, this paper proposes an intelligent energy management system (EMS) for [...] Read more.
The integration of renewable energy resources (RES) into microgrids (MGs) poses significant challenges due to the intermittent nature of generation and the increasing complexity of multi-energy scheduling. To enhance operational flexibility and reliability, this paper proposes an intelligent energy management system (EMS) for MGs incorporating a hybrid hydrogen-battery energy storage system (HHB-ESS). The system model jointly considers the complementary characteristics of short-term and long-term storage technologies. Three conflicting objectives are defined: economic cost (EC), system response stability, and battery life loss (BLO). To address the challenges of multi-objective trade-offs and heterogeneous storage coordination, a novel deep-reinforcement-learning (DRL) algorithm, termed MOATD3, is developed based on a dynamic reward adjustment mechanism (DRAM). Simulation results under various operational scenarios demonstrate that the proposed method significantly outperforms baseline methods, achieving a maximum improvement of 31.4% in SRS and a reduction of 46.7% in BLO. Full article
Show Figures

Figure 1

25 pages, 15062 KB  
Article
Power Allocation and Capacity Optimization Configuration of Hybrid Energy Storage Systems in Microgrids Using RW-GWO-VMD
by Honghui Liu, Donghui Li, Zhong Xiao, Qiansheng Qiu, Xinjie Tao, Qifeng Qian, Mengxin Jiang and Wei Yu
Energies 2025, 18(16), 4215; https://doi.org/10.3390/en18164215 - 8 Aug 2025
Viewed by 280
Abstract
Optimizing the power allocation and capacity configuration of hybrid energy storage systems (HESS) is crucial for enhancing grid stability, power quality and renewable energy utilization in wind–solar complementary microgrids. However, the conventional configuration methods exhibit inaccuracy and low reliability. To achieve the optimal [...] Read more.
Optimizing the power allocation and capacity configuration of hybrid energy storage systems (HESS) is crucial for enhancing grid stability, power quality and renewable energy utilization in wind–solar complementary microgrids. However, the conventional configuration methods exhibit inaccuracy and low reliability. To achieve the optimal capacity configuration of HESS in wind–solar complementary microgrids, a power allocation strategy and a capacity optimization configuration model for HESS consisting of vanadium redox flow batteries (VRBs) and supercapacitors (SCs) were proposed based on parameter-optimized variational mode decomposition (VMD). Firstly, the number of mode decomposition (K) and the penalty factor (α) of VMD were optimized using the random walk grey wolf optimizer (RW-GWO) algorithm, and the HESS power signal was decomposed by RW-GWO-VMD. Secondly, an optimal capacity configuration model was formulated, taking into account the whole life cycle cost of HESS, and particle swarm optimization (PSO) algorithm was applied to optimize HESS capacity while satisfying operational constraints on charge/discharge power, state of charge (SOC) range, and permissible rates of load deficit and energy loss. Thirdly, the optimal capacity allocation was obtained by minimizing the whole life cycle cost of HESS, with the frequency division threshold N serving as the optimization parameter. Finally, comprehensive comparison and analysis of proposed methods were conducted through simulation experiments. The results demonstrated that the whole life cycle cost of RW-GWO-VMD was 7.44% lower than that of EMD, 1.00% lower than that of PSO-VMD, 0.72% lower than that of AOA-VMD, and 0.27% lower than that of GWO-VMD. Full article
Show Figures

Graphical abstract

31 pages, 6551 KB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Viewed by 1617
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

17 pages, 6108 KB  
Article
Grid-Forming Buck-Type Current-Source Inverter Using Hybrid Model-Predictive Control
by Gianni Avilan-Losee and Hang Gao
Energies 2025, 18(15), 4124; https://doi.org/10.3390/en18154124 - 4 Aug 2025
Viewed by 337
Abstract
Grid-forming (GFM) inverters have recently seen wider adoption in microgrids and inverter-based-resource (IBR)-penetrated grids, and are primarily used to establish grid voltage under a wide array of conditions. In the existing literature, GFM control is almost exclusively applied using voltage-source inverters (VSIs). However, [...] Read more.
Grid-forming (GFM) inverters have recently seen wider adoption in microgrids and inverter-based-resource (IBR)-penetrated grids, and are primarily used to establish grid voltage under a wide array of conditions. In the existing literature, GFM control is almost exclusively applied using voltage-source inverters (VSIs). However, due to the inherent limitations of available semiconductor devices’ current ratings, inverter-side current must be limited in VSIs, particularly during grid-fault conditions. These limitations complicate the real-world application of GFM functionality in VSIs, and complex control methodologies and tuning parameters are required as a result. In the following study, GFM control is instead applied to a buck-type current-source inverter (CSI) using a combination of linear droop-control and finite-control-set (FCS) mode-predictive control (MPC) that will be referred to herein as hybrid model-predictive control (HMPC). The resulting inverter features a simple topology, inherent current limiting capabilities, and a relatively simple and intuitive control structure. Verification was performed on a 1MVA/630V system via MATLAB/Simulink, and the simulation results demonstrate strong performance in voltage establishment, power regulation, and low-voltage ride through under-grid-fault conditions, highlighting its potential as a competent alternative to VSIs in GFM applications, and lacking the inherent limitations and/or complexity of existing GFM control methodologies. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

26 pages, 4116 KB  
Article
Robust Optimal Operation of Smart Microgrid Considering Source–Load Uncertainty
by Zejian Qiu, Zhuowen Zhu, Lili Yu, Zhanyuan Han, Weitao Shao, Kuan Zhang and Yinfeng Ma
Processes 2025, 13(8), 2458; https://doi.org/10.3390/pr13082458 - 4 Aug 2025
Viewed by 530
Abstract
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) [...] Read more.
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) power flow modeling, and integration with optimization frameworks. This paper proposes a closed-loop technical framework combining high-confidence interval prediction, second-order cone convex relaxation, and robust optimization to facilitate renewable energy integration in distribution networks via smart microgrid technology. First, a hybrid prediction model integrating Variational Mode Decomposition (VMD), Long Short-Term Memory (LSTM), and Quantile Regression (QR) is designed to extract multi-frequency characteristics of time-series data, generating adaptive prediction intervals that accommodate individualized decision-making preferences. Second, a second-order cone relaxation method transforms the AC power flow optimization problem into a mixed-integer second-order cone programming (MISOCP) model. Finally, a robust optimization method considering source–load uncertainties is developed. Case studies demonstrate that the proposed approach reduces prediction errors by 21.15%, decreases node voltage fluctuations by 16.71%, and reduces voltage deviation at maximum offset nodes by 17.36%. This framework significantly mitigates voltage violation risks in distribution networks with large-scale grid-connected photovoltaic systems. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

32 pages, 1970 KB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 - 1 Aug 2025
Viewed by 530
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

19 pages, 3963 KB  
Article
Real-Time Energy Management in Microgrids: Integrating T-Cell Optimization, Droop Control, and HIL Validation with OPAL-RT
by Achraf Boukaibat, Nissrine Krami, Youssef Rochdi, Yassir El Bakkali, Mohamed Laamim and Abdelilah Rochd
Energies 2025, 18(15), 4035; https://doi.org/10.3390/en18154035 - 29 Jul 2025
Viewed by 502
Abstract
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these [...] Read more.
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these challenges. A JADE-based multi-agent system (MAS) orchestrates coordination between the T-Cell optimizer and edge-level controllers, enabling scalable and fault-tolerant decision-making. The T-Cell algorithm, inspired by adaptive immune system dynamics, optimizes global power distribution through the MAS platform, while droop control ensures local voltage stability via autonomous adjustments by distributed energy resources (DERs). The framework is rigorously validated through Hardware-in-the-Loop (HIL) testing using OPAL-RT, which interfaces MATLAB/Simulink models with Raspberry Pi for real-time communication (MQTT/Modbus protocols). Experimental results demonstrate a 91% reduction in grid dependency, 70% mitigation of voltage fluctuations, and a 93% self-consumption rate, significantly enhancing power quality and resilience. By integrating centralized optimization with decentralized control through MAS coordination, the hybrid approach achieves scalable, self-organizing microgrid operation under variable generation and load conditions. This work advances the practical deployment of adaptive energy management systems, offering a robust solution for sustainable and resilient microgrids. Full article
Show Figures

Figure 1

21 pages, 3463 KB  
Article
Research on Adaptive Bidirectional Droop Control Strategy for Hybrid AC-DC Microgrid in Islanding Mode
by Can Ding, Ruihua Zhao, Hongrong Zhang and Wenhui Chen
Appl. Sci. 2025, 15(15), 8248; https://doi.org/10.3390/app15158248 - 24 Jul 2025
Viewed by 264
Abstract
The interlinking converter, an important device in a hybrid AC-DC microgrid, undertakes the task of power distribution between the AC sub-microgrid and DC sub-microgrid. To address the limitations of traditional bidirectional droop control in islanding mode, particularly the lack of consideration for regulation [...] Read more.
The interlinking converter, an important device in a hybrid AC-DC microgrid, undertakes the task of power distribution between the AC sub-microgrid and DC sub-microgrid. To address the limitations of traditional bidirectional droop control in islanding mode, particularly the lack of consideration for regulation priority between AC frequency and DC voltage, this paper proposes an adaptive bidirectional droop control strategy. By introducing an adaptive weight coefficient based on normalized AC frequency and DC voltage, the strategy prioritizes regulating larger deviations in AC frequency or DC voltage. Interlinking converter action thresholds are set to avoid unnecessary frequent starts and stops. Finally, a hybrid AC-DC microgrid system in islanding mode is established in the Matlab/Simulink R2020a simulation platform to verify the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

27 pages, 3280 KB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 594
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

31 pages, 3874 KB  
Review
Vertical-Axis Wind Turbines in Emerging Energy Applications (1979–2025): Global Trends and Technological Gaps Revealed by a Bibliometric Analysis and Review
by Beatriz Salvador-Gutierrez, Lozano Sanchez-Cortez, Monica Hinojosa-Manrique, Adolfo Lozada-Pedraza, Mario Ninaquispe-Soto, Jorge Montaño-Pisfil, Ricardo Gutiérrez-Tirado, Wilmer Chávez-Sánchez, Luis Romero-Goytendia, Julio Díaz-Aliaga and Abner Vigo-Roldán
Energies 2025, 18(14), 3810; https://doi.org/10.3390/en18143810 - 17 Jul 2025
Viewed by 1502
Abstract
This study provides a comprehensive overview of vertical-axis wind turbines (VAWTs) for emerging energy applications by combining a bibliometric analysis and a thematic mini-review. Scopus-indexed publications from 1979 to 2025 were analyzed using PRISMA guidelines and bibliometric tools (Bibliometrix, CiteSpace, and VOSviewer) to [...] Read more.
This study provides a comprehensive overview of vertical-axis wind turbines (VAWTs) for emerging energy applications by combining a bibliometric analysis and a thematic mini-review. Scopus-indexed publications from 1979 to 2025 were analyzed using PRISMA guidelines and bibliometric tools (Bibliometrix, CiteSpace, and VOSviewer) to map global research trends, and a parallel mini-review distilled recent advances into five thematic areas: aerodynamic strategies, advanced materials, urban integration, hybrid systems, and floating offshore platforms. The results reveal that VAWT research output has surged since 2006, led by China with strong contributions from Europe and North America, and is concentrated in leading renewable energy journals. Dominant topics include computational fluid dynamics (CFD) simulations, performance optimization, wind–solar hybrid integration, and adaptation to turbulent urban environments. Technologically, active and passive aerodynamic innovations have boosted performance albeit with added complexity, remaining mostly at moderate technology readiness (TRL 3–5), while advanced composite materials are improving durability and fatigue life. Emerging applications in microgrids, building-integrated systems, and offshore floating platforms leverage VAWTs’ omnidirectional, low-noise operation, although challenges persist in scaling up, control integration, and long-term field validation. Overall, VAWTs are gaining relevance as a complement to conventional turbines in the sustainable energy transition, and this study’s integrated approach identifies critical gaps and high-priority research directions to accelerate VAWT development and help transition these turbines from niche prototypes to mainstream renewable solutions. Full article
Show Figures

Figure 1

Back to TopTop