Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (969)

Search Parameters:
Keywords = hybrid polymer composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 781 KB  
Review
Recent Advances in Electrochemical Sensors for the Detection of Anti-Inflammatory and Antibiotic Drugs: A Comprehensive Review
by Gisele Afonso Bento Mello, Stephen Rathinaraj Benjamin, Fábio de Lima and Rosa F. Dutra
Biosensors 2025, 15(10), 676; https://doi.org/10.3390/bios15100676 - 8 Oct 2025
Abstract
Electrochemical sensors have emerged as powerful analytical tools for the detection of anti-inflammatory and antibiotic drugs due to their high sensitivity, rapid response, and cost-effectiveness compared to conventional chromatographic and spectrophotometric methods. This review highlights recent advances in electrode materials, surface modification strategies, [...] Read more.
Electrochemical sensors have emerged as powerful analytical tools for the detection of anti-inflammatory and antibiotic drugs due to their high sensitivity, rapid response, and cost-effectiveness compared to conventional chromatographic and spectrophotometric methods. This review highlights recent advances in electrode materials, surface modification strategies, and signal amplification approaches for quantifying nonsteroidal anti-inflammatory drugs (NSAIDs) and various antibiotic classes, including sulfonamides, tetracyclines, macrolides, and quinolones. Particular attention is given to nanostructured carbon-based materials, metal nanoparticles, and polymer composites that enhance electron transfer, improve selectivity, and lower limits of detection (LODs). The analytical performance of different electrochemical techniques such as cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry is critically compared across various drug targets. Trends indicate that hybrid nanomaterial-modified electrodes consistently achieve sub-micromolar detection limits in biological and environmental samples, offering potential for point-of-care diagnostics and environmental monitoring. Current challenges include improving sensor stability, mitigating fouling effects, and ensuring reproducibility in complex matrices. Future research should focus on integrated, miniaturized sensing platforms capable of multiplex detection, paving the way for rapid, portable, and sustainable analytical solutions in pharmaceutical and biomedical applications. Full article
Show Figures

Graphical abstract

46 pages, 1449 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Viewed by 194
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
20 pages, 1640 KB  
Review
The Removal of Arsenic from Contaminated Water: A Critical Review of Adsorbent Materials from Agricultural Wastes to Advanced Metal–Organic Frameworks
by Mohammed A. E. Elmakki, Soumya Ghosh, Mokete Motente, Timothy Oladiran Ajiboye, Johan Venter and Adegoke Isiaka Adetunji
Minerals 2025, 15(10), 1037; https://doi.org/10.3390/min15101037 - 30 Sep 2025
Viewed by 347
Abstract
Arsenic pollution in potable water is a significant worldwide health concern. This study systematically evaluates current progress in adsorption technology, the most promising restorative approach, to provide a definitive framework for future research and use. The methodology entailed a rigorous evaluation of 91 [...] Read more.
Arsenic pollution in potable water is a significant worldwide health concern. This study systematically evaluates current progress in adsorption technology, the most promising restorative approach, to provide a definitive framework for future research and use. The methodology entailed a rigorous evaluation of 91 peer-reviewed studies (2012–2025), classifying adsorbents into three generations: (1) Natural adsorbents (e.g., agricultural/industrial wastes), characterized by cost-effectiveness but limited capacities (0.1–5 mg/g); (2) Engineered materials (e.g., metal oxides, activated alumina), which provide dependable performance (84–97% removal); and (3) Advanced hybrids (e.g., MOFs, polymer composites), demonstrating remarkable capacities (60–300 mg/g). The primary mechanisms of removal are confirmed to be surface complexation, electrostatic interactions, and redox precipitation. Nevertheless, the critical analysis indicates that despite significant laboratory efficacy, substantial obstacles to field implementation persist, including scalability limitations (approximately 15% of materials are evaluated beyond laboratory scale), stability concerns (e.g., structural collapse of MOFs at extreme pH levels), and elevated costs (e.g., MOFs priced at approximately $230/kg compared to $5/kg for alumina). The research indicates that the discipline must transition from only materials innovation to application science. Primary objectives include the development of economical hybrids (about $50/kg), the establishment of uniform WHO testing standards, and the implementation of AI-optimized systems. The primary objective is to attain sustainable solutions costing less than $0.10 per cubic meter that satisfy worldwide deployment standards via multidisciplinary cooperation. Full article
Show Figures

Figure 1

15 pages, 6729 KB  
Article
Electropolymerized PAA as a Functional Matrix for CeO2-NiO Hybrid Electrocatalysts for Efficient Water Oxidation
by Mrunal Bhosale, Pritam J. Morankar, Yeonsu Lee, Hajin Seo and Chan-Wook Jeon
Polymers 2025, 17(19), 2631; https://doi.org/10.3390/polym17192631 - 28 Sep 2025
Viewed by 346
Abstract
Electrochemical water splitting has emerged as a pivotal strategy for advancing sustainable and renewable energy technologies. However, its practical deployment is often hampered by sluggish reaction kinetics, large overpotentials, and the high cost of efficient electrocatalysts. To overcome these critical challenges, a novel [...] Read more.
Electrochemical water splitting has emerged as a pivotal strategy for advancing sustainable and renewable energy technologies. However, its practical deployment is often hampered by sluggish reaction kinetics, large overpotentials, and the high cost of efficient electrocatalysts. To overcome these critical challenges, a novel bifunctional electrocatalyst based on electropolymerized CeO2-NiO with polyacrylic acid (Ce-Ni-PAA) has been rationally engineered for overall water splitting. The strategic incorporation of conductive polymer framework enables effective modulation of the local electronic structure, enhances charge transport pathways, and maximizes the density of electrochemically accessible active sites, thereby substantially boosting catalytic performance. When evaluated in a 1 M KOH alkaline medium, the optimized Ce-Ni-PAA0.5/NF hybrid demonstrates remarkable catalytic activity with 366.5 mV overpotential at 50 mA cm−2, coupled with lower Tafel slope of 93.5 mV dec−1. Additionally, the Ce-Ni-PAA0.5/NF electrocatalyst exhibits exceptional ECSA of 1092.3 cm2, which confirms the presence of a significantly larger number of electrochemically active sites. The electrocatalyst retains its performance even after 5000 continuous cycles of operation. The superior performance is attributed to the synergistic effects arising from the enriched composition, efficient electron transport channels, and abundant catalytic centers. Collectively, this study not only highlights the significance of rational structural and compositional design but also offers valuable insights toward the development of next-generation, cost-effective bifunctional electrocatalysts with strong potential for scalable water splitting and clean energy applications. Full article
Show Figures

Figure 1

29 pages, 1662 KB  
Review
Adsorbent Materials Based on Modified Chitosan for Purification of Aqueous Media from Pharmaceutical Residues, Primarily Antibiotics
by Balzhima Shagdarova, Yulia Zhuikova and Alla Il’ina
Polymers 2025, 17(19), 2601; https://doi.org/10.3390/polym17192601 - 26 Sep 2025
Viewed by 471
Abstract
This literature review highlights the latest advances in the use of adsorption materials based on modified chitosan for the purification of aqueous solutions from pharmaceutical residues. Some countries are actively working to detect pharmaceuticals and their metabolites in water samples from natural sources [...] Read more.
This literature review highlights the latest advances in the use of adsorption materials based on modified chitosan for the purification of aqueous solutions from pharmaceutical residues. Some countries are actively working to detect pharmaceuticals and their metabolites in water samples from natural sources and municipal wastewater, as well as to study their impact on the environment. In this article, adsorbents based on chitosan, a natural, low toxic and biodegradable polymer, are considered as a promising solution to this problem. Due to some disadvantages of pure chitosan (low mechanical strength, small specific surface area), its practical application is limited. One of the ways to overcome them is to create modified materials, such as grafted copolymers, as well as chitosan derivatives and its composites, including those with magnetic nanoparticles and carbon materials. Modification of chitosan makes it possible to achieve an increase in mechanical strength, specific surface area and porosity. The high efficiency of hybrid adsorbents is emphasised, demonstrating high adsorption capacity, reuse ability and selectivity for a wide range of pharmaceutical preparations, including antibiotics. Thus, despite a number of limitations, chitosan-based materials are a promising solution for deep wastewater treatment. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

24 pages, 2067 KB  
Review
Coconut Coir Fiber Composites for Sustainable Architecture: A Comprehensive Review of Properties, Processing, and Applications
by Mohammed Nissar, Chethan K. N., Yashaswini Anantsagar Birjerane, Shantharam Patil, Sawan Shetty and Animita Das
J. Compos. Sci. 2025, 9(10), 516; https://doi.org/10.3390/jcs9100516 - 26 Sep 2025
Viewed by 947
Abstract
The growing need for sustainable materials in architecture has sparked significant interest in natural-fiber-based composites. Among these, coconut coir, a by-product of the coconut industry, has emerged as a promising raw material owing to its abundance, renewability, and excellent mechanical properties. The promise [...] Read more.
The growing need for sustainable materials in architecture has sparked significant interest in natural-fiber-based composites. Among these, coconut coir, a by-product of the coconut industry, has emerged as a promising raw material owing to its abundance, renewability, and excellent mechanical properties. The promise of coir-based composites in architecture is highlighted in this review, which also looks at their problems, advantages for the environment, manufacturing processes, and mechanical, thermal, and acoustic performances. The fibrous shape of the coir provides efficient thermal and acoustic insulation, while its high lignin concentration guarantees stiffness, biological resistance, and dimensional stability. Fiber-matrix adhesion and durability have improved owing to advancements in treatment and environmentally friendly binders, opening up the use of cement, polymers, and hybrid composites. In terms of the environment, coir composites promote a biophilic design, reduce embodied carbon, and decrease landfill waste. Moisture sensitivity, inconsistent fiber quality, and production scaling are obstacles; however, advancements in hybridization, grading, and nanotechnology hold promise. This review provides comprehensive, architecture-focused review that integrates material science, fabrication techniques, and real-world architectural applications of coir-based composites. Coir-based composites have the potential to be long-lasting, sustainable substitutes for conventional materials in climate-resilient architectural design if they are further investigated and included in green certification programs and the circular economy. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

13 pages, 4071 KB  
Article
Synthesis and Studies of PAM-Ag-g/WS2/Ti3C2Tx Hydrogel and Its Possible Applications
by Anar Arinova, Danil W. Boukhvalov, Arman Umirzakov, Ekaterina Bondar, Aigul Shongalova, Laura Mustafa, Ainagul Kemelbekova and Elena Dmitriyeva
Polymers 2025, 17(19), 2588; https://doi.org/10.3390/polym17192588 - 24 Sep 2025
Viewed by 233
Abstract
In this study, a new hybrid hydrogel based on PAM (polyacrylamide)-Ag-g/WS2/Ti3C2Tx was synthesized by radical polymerization using a conductive heterostructural nanocomposite WS2/Ti3C2Tx. The synergy between the polymer matrix [...] Read more.
In this study, a new hybrid hydrogel based on PAM (polyacrylamide)-Ag-g/WS2/Ti3C2Tx was synthesized by radical polymerization using a conductive heterostructural nanocomposite WS2/Ti3C2Tx. The synergy between the polymer matrix and the interface between two-dimensional nanomaterials ensured the production of a hydrogel with high extensibility and conductivity, as well as sensory characteristics. The composite hydrogel exhibited excellent strain-sensing capabilities, with gauge factors of 1.4 at low strain and 2.8 at higher strain levels. In addition, the material showed a fast response time of 2.17 s and a short recovery time of 0.46 s under cyclic stretching, which confirms its high reliability and reproducibility. The integration of Ti3C2Tx and WS2 promoted the formation of a conductive network in the hydrogel structure, which simultaneously increased its mechanical strength and signal stability under variable loads. Measurements confirm some potential of the PAM-Ag-g/WS2/Ti3C2Tx composite hydrogel as a flexible wearable strain sensor. Based on measured numbers, we discussed the impact of the WS2/Ti3C2Tx interface on the Gauge factor and conductivity of the composite. Theoretical modeling demonstrates significant changes in the electronic structure of the WS2/Ti3C2Tx interface, and especially the WS2 surface, induced by substrate strain. Possible applications of the peculiar properties of PAM-Ag-g/WS2/Ti3C2Tx composite were proposed. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 2046 KB  
Article
Reduced Anisotropic in Thermal Conductivity of Polymer Composites via Chemically Bonded BN–SiC Hybrid Fillers
by Won-Jin Kim, Mi-Ri An and Sung-Hoon Park
Polymers 2025, 17(19), 2580; https://doi.org/10.3390/polym17192580 - 24 Sep 2025
Viewed by 372
Abstract
The growing demand for efficient thermal management in power electronics and high-density optoelectronic systems necessitates thermal interface materials (TIMs) with high through-plane thermal conductivity and minimal anisotropy. However, conventional polymer composites filled with platelet-type fillers such as hexagonal boron nitride (h-BN) suffer from [...] Read more.
The growing demand for efficient thermal management in power electronics and high-density optoelectronic systems necessitates thermal interface materials (TIMs) with high through-plane thermal conductivity and minimal anisotropy. However, conventional polymer composites filled with platelet-type fillers such as hexagonal boron nitride (h-BN) suffer from strong directional thermal transport and interfacial resistance, limiting their practical effectiveness. To address this limitation, we present a hybrid filler strategy wherein h-BN and silicon carbide (SiC) nanoparticles interact via hydroxylated surfaces, forming a three-dimensional thermally conductive network. The resulting BN–SiC composite exhibits enhanced through-plane thermal conductivity (1.61 W/mK at 70 vol%) and lower anisotropy ratios (<2.0 at 30 vol%), all while maintaining mechanical integrity and processability. These results demonstrate that chemical bonding at the filler interface can reduce interfacial thermal resistance and extend thermal conduction paths three-dimensionally, providing insights into interface-based heat transfer mechanisms. This strategy presents a scalable and practical approach for next-generation thermal management solutions in electronic packaging and high-power device platforms. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

22 pages, 9020 KB  
Article
Hybrid Inductively Coupled Plasma and Computer-Controlled Optical Surfacing Polishing for Rapid Fabrication of Damage-Free Ultra-Smooth Surfaces
by Wei Li, Peiqi Jiao, Dawei Luo, Qiang Xin, Bin Fan, Xiang Wu, Bo Gao and Qiang Chen
Micromachines 2025, 16(9), 1073; https://doi.org/10.3390/mi16091073 - 22 Sep 2025
Viewed by 293
Abstract
The polymer deposition layer (PDL) formed during inductively coupled plasma (ICP) processing significantly limits the figuring accuracy and surface quality of fused silica optics. This study investigates the formation mechanism, composition, and evolution of the PDL under varying dwell times and proposes an [...] Read more.
The polymer deposition layer (PDL) formed during inductively coupled plasma (ICP) processing significantly limits the figuring accuracy and surface quality of fused silica optics. This study investigates the formation mechanism, composition, and evolution of the PDL under varying dwell times and proposes an innovative dwell time gradient strategy to suppress roughness deterioration. A significant disparity in hardness and elastic modulus between the deposition layer and the substrate is revealed, explaining its preferential removal and protective buffering effect in computer-controlled optical surfacing (CCOS). A hybrid ICP-CCOS polishing process was developed for processing a ϕ100 mm fused silica mirror. The results show that within 33 min, the surface graphic error RMS was significantly reduced from 58.006 nm to 12.111 nm, and within 90 min, the surface roughness was ultra-precisely reduced from Ra 1.719 nm to Ra 0.151 nm. The average processing efficiency was approximately 0.63 cm2/min. Critically, a damage-free, ultra-smooth surface without subsurface damage (SSD) was successfully achieved. This hybrid process enables the simultaneous optimization of figure accuracy and roughness, eliminating the need for iterative figuring cycles. It provides a novel theoretical framework for high-precision figuring and post-ICP polymer removal, advancing the efficient fabrication of high-performance optics. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 4th Edition)
Show Figures

Figure 1

20 pages, 8741 KB  
Article
Experimental and Numerical Studies of “Wood–Composite” Reinforcement in Bending Sheared Wooden Beams Using Pre-Stressed Natural and Artificial Fibers
by Agnieszka Katarzyna Wdowiak-Postulak, Grzegorz Świt, Aleksandra Krampikowska and Luong Minh Chinh
Materials 2025, 18(18), 4418; https://doi.org/10.3390/ma18184418 - 22 Sep 2025
Viewed by 410
Abstract
Recent studies have confirmed the effectiveness of using natural fibers and fiber-reinforced polymer (FRP) composites as methods to improve the mechanical properties of timber structures. This improvement is particularly evident in static and dynamic flexural and shear performance. Moreover, there is a paucity [...] Read more.
Recent studies have confirmed the effectiveness of using natural fibers and fiber-reinforced polymer (FRP) composites as methods to improve the mechanical properties of timber structures. This improvement is particularly evident in static and dynamic flexural and shear performance. Moreover, there is a paucity of literature pertaining to numerical models that predict the non-linear behaviour of low-quality timber beams reinforced with natural and man-made fibers. The present article expounds upon a shear bending study of timber beams reinforced with bars in addition to other materials. The experimental study yielded the following findings: the best properties were obtained with hybrid reinforcement, in comparison to the reference beams. The enhancement of load-bearing capacity and stiffness for beams that have been reinforced with pre-stressed basalt bars was found to be the most advantageous, with increases of approximately 17% and 8%, respectively. Natural fibers exhibited slightly lower values, with an increase in load-bearing capacity and stiffness of approximately 14% and 3%, respectively, when compared to beams that had not been reinforced. Moreover, the numerical analyses yielded analogous results to those obtained from the experimental study. The numerical models thus proved to be a valid tool with which to study the influence of the reinforcement factor. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

34 pages, 7936 KB  
Article
Delamination and Its Morphological Study on Hibiscus Rosa-Sinensis/Carbon Nano-Tubes/Epoxy Based-Hybrid Composites During Abrasive Water-Jet Machining Using Statistical Optimization Techniques
by Supriya J. P., Raviraj Shetty, Sawan Shetty, Rajesh Nayak and Adithya Hegde
J. Compos. Sci. 2025, 9(9), 509; https://doi.org/10.3390/jcs9090509 - 19 Sep 2025
Viewed by 363
Abstract
The natural fiber-reinforced nanomaterial filler polymer matrix hybrid composite has superior applications in industrial and manufacturing fields due to its enhanced mechanical and machinability characteristics. However, in order to generate high-quality components, unconventional machining techniques, notably abrasive waterjet machining, have become more popular [...] Read more.
The natural fiber-reinforced nanomaterial filler polymer matrix hybrid composite has superior applications in industrial and manufacturing fields due to its enhanced mechanical and machinability characteristics. However, in order to generate high-quality components, unconventional machining techniques, notably abrasive waterjet machining, have become more popular due to the inhomogeneity of composites, fiber pullout, greater surface roughness, and dimensional inaccuracy under traditional machining. Delamination typically refers to the separation that occurs along a plane parallel to the surface, such as the detachment of a coating from its underlying material or the separation between different layers within the coating itself. This paper investigates the AWJM characteristics of Hibiscus Rosa-Sinensis/Carbon nanotube/Epoxy (HRSCE)-based hybrid composite, focusing on delamination factors at entry, exit, and machining time. An L27 orthogonal array was employed to optimize process parameters, revealing that DF-entry decreased with increasing CNT (wt.%), achieving its lowest values at 3 (wt.%) CNT and 2 mm stand-off distance due to enhanced composite toughness and precise jet focus. Conversely, DF-exit increased with higher CNT (wt.%), stand-off distance and traverse speed, attributed to the composite’s increased brittleness and reduced cutting efficiency. Machining time was predominantly influenced by CNT (wt.%) (92.4%), increasing with higher reinforcement levels due to enhanced material resistance. Response surface methodology models demonstrated high accuracy in predicting machining outcomes, with errors below 3%. Contour and surface plots identified optimal conditions for minimal delamination and machining time as 3 (wt.%) CNT, low stand-off distance (2 mm), and moderate traverse speed (200 mm/min). The SEM and optimal microscopy analysis confirmed that CNT reinforcement positively influenced fiber matrix interfacial integrity and reduced surface damage. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

47 pages, 1967 KB  
Review
Reinforced Concrete Beams with FRP and Hybrid Steel–FRP Composite Bars: Load–Deflection Response, Failure Mechanisms, and Design Implications
by Paulina Dziomdziora and Piotr Smarzewski
Materials 2025, 18(18), 4381; https://doi.org/10.3390/ma18184381 - 19 Sep 2025
Viewed by 474
Abstract
Corrosion concerns motivate the use of alternatives to conventional steel reinforcement in RC beams. This review evaluates fiber-reinforced polymer (FRP) bars and hybrid steel–FRP composite bars (SFCBs) used for durability-critical applications. We conducted a structured literature search focused on 2010–2025 and included seminal [...] Read more.
Corrosion concerns motivate the use of alternatives to conventional steel reinforcement in RC beams. This review evaluates fiber-reinforced polymer (FRP) bars and hybrid steel–FRP composite bars (SFCBs) used for durability-critical applications. We conducted a structured literature search focused on 2010–2025 and included seminal pre-2010 studies for context. Experimental studies and code provisions were screened to synthesize evidence on load–deflection response, cracking, and failure, with brief notes on UHPC systems. FRP-RC offers corrosion resistance but limited ductility and an abrupt post-peak response. Steel is ductile and provides warning before failure. SFCB combines durability with steel-core ductility and yields gradual softening and higher energy absorption. Practice should select reinforcement based on stiffness–ductility–durability trade-offs. Current codes only partially cover hybrids. Key gaps include standardized bond–slip and tension-stiffening models for SFCB and robust data on long-term performance under aggressive exposure. Full article
Show Figures

Figure 1

20 pages, 2923 KB  
Article
Synthesis and Integration of an Fe(II) Coordination Compound into Green Resin Matrices for Multifunctional Dielectric, Piezoelectric, Energy Harvesting, and Storage Applications
by Anastasios C. Patsidis, Ioanna Th. Papageorgiou and Zoi G. Lada
Polymers 2025, 17(18), 2509; https://doi.org/10.3390/polym17182509 - 17 Sep 2025
Viewed by 402
Abstract
Polymer-based hybrid composites have emerged as promising platforms for multifunctional energy applications, combining structural versatility with tunable dielectric behavior. In this study, synthesized [Fe(bpy)3]SO4; (tris(2,2′-bipyridine)iron(II) sulfate) coordination compound was incorporated into a green epoxy resin matrix to fabricate nanocomposites [...] Read more.
Polymer-based hybrid composites have emerged as promising platforms for multifunctional energy applications, combining structural versatility with tunable dielectric behavior. In this study, synthesized [Fe(bpy)3]SO4; (tris(2,2′-bipyridine)iron(II) sulfate) coordination compound was incorporated into a green epoxy resin matrix to fabricate nanocomposites aimed at enhancing dielectric permittivity (ε′), piezoelectric coefficient (d33, pC/N), energy-storage efficiency (nrel, %), and mechanical strength (σ, MPa). The integration of the Fe(II) complex via Scanning Electron Microscopy (SEM) confirmed a homogeneous dispersion within the matrix. Broadband Dielectric Spectroscopy (BDS) revealed the presence of three relaxation processes in the spectra of the tested systems, demonstrating enhanced dielectric permittivity with increasing Fe(II) content. Under progressively shorter relaxation times (τ, s), key processes such as interfacial polarization, the polymer matrix’s transition from a glassy to a rubbery state, and the dynamic reorganization of polar side groups along the polymer backbone are activated. The ability to store and retrieve electric energy was confirmed by varying filler content under direct current (dc) conditions. The nanocomposite with 10 phr (mass parts/100 mass parts of resin) filler achieved a piezoelectric coefficient of d33 = 5.1 pC/N, an energy-storage efficiency of nrel = 44%, and a tensile strength of σ = 55.5 MPa, all of which surpass values reported for conventional epoxy-based composites. These results confirm the ability of the system to store and retrieve electric energy under direct current (dc) fields, while maintaining mechanical robustness and thermal stability due to synergistic interactions between the epoxy matrix and the Fe(II) complex. The multifunctional behavior of the composites underscores their potential as advanced materials for integrated dielectric, piezoelectric, and energy storage and harvesting applications. Full article
Show Figures

Graphical abstract

15 pages, 4240 KB  
Article
Thermomechanical Properties of Sustainable Polymer Composites Incorporating Agricultural Wastes
by Emmanuel Kwaku Aidoo, Abubakar Sumaila, Maryam Jahan, Guoqiang Li and Patrick Mensah
J. Manuf. Mater. Process. 2025, 9(9), 315; https://doi.org/10.3390/jmmp9090315 - 15 Sep 2025
Viewed by 518
Abstract
Polymer matrix composites have been used extensively in the aerospace and automotive industries. Nevertheless, the growing demand for composites raises concerns about the thermal stability, cost, and environmental impacts of synthetic fillers like graphene and carbon nanotubes. Hence, this study investigates the possibility [...] Read more.
Polymer matrix composites have been used extensively in the aerospace and automotive industries. Nevertheless, the growing demand for composites raises concerns about the thermal stability, cost, and environmental impacts of synthetic fillers like graphene and carbon nanotubes. Hence, this study investigates the possibility of enhancing the thermomechanical properties of polymer composites through the incorporation of agricultural waste as fillers. Particles from walnut, coffee, and coconut shells were used as fillers to create particulate composites. Bio-based composites with 10 to 30 wt.% filler were created by sifting these particles into various mesh sizes and dispersing them in an epoxy matrix. In comparison to the pure polymer, DSC results indicated that the inclusion of 50 mesh 30 wt.% agricultural waste fillers increased the glass transition temperature by 8.5%, from 55.6 °C to 60.33 °C. Also, the TGA data showed improved thermal stability. Subsequently, the agricultural wastes were employed as reinforcement for laminated composites containing woven glass fiber with a 50% fiber volume fraction, eight plies, and varying particle filler weight percentages from 0% to 6% with respect to the laminated composite. The hybrid laminated composite demonstrated improved impact resistance of 142% in low-velocity impact testing. These results demonstrate that fillers made of agricultural wastes can enhance the thermomechanical properties of sustainable composites, creating new environmentally friendly prospects for the automotive and aerospace industries. Full article
Show Figures

Graphical abstract

58 pages, 16131 KB  
Review
Polymer Gel-Based Triboelectric Nanogenerators: Conductivity and Morphology Engineering for Advanced Sensing Applications
by Sabuj Chandra Sutradhar, Nipa Banik, Mohammad Mizanur Rahman Khan and Jae-Ho Jeong
Gels 2025, 11(9), 737; https://doi.org/10.3390/gels11090737 - 13 Sep 2025
Viewed by 540
Abstract
Polymer gel-based triboelectric nanogenerators (TENGs) have emerged as versatile platforms for self-powered sensing due to their inherent softness, stretchability, and tunable conductivity. This review comprehensively explores the roles of polymer gels in TENG architecture, including their function as triboelectric layers, electrodes, and conductive [...] Read more.
Polymer gel-based triboelectric nanogenerators (TENGs) have emerged as versatile platforms for self-powered sensing due to their inherent softness, stretchability, and tunable conductivity. This review comprehensively explores the roles of polymer gels in TENG architecture, including their function as triboelectric layers, electrodes, and conductive matrices. We analyze four operational modes—vertical contact-separation, lateral-sliding, single-electrode, and freestanding configurations—alongside key performance metrics. Recent studies have reported output voltages of up to 545 V, short-circuit currents of 48.7 μA, and power densities exceeding 120 mW/m2, demonstrating the high efficiency of gel-based TENGs. Gel materials are classified by network structure (single-, double-, and multi-network), matrix composition (hydrogels, aerogels, and ionic gels), and dielectric medium. Strategies to enhance conductivity using ionic salts, conductive polymers, and nanomaterials are discussed in relation to triboelectric output and sensing sensitivity. Morphological features such as surface roughness, porosity, and micro/nano-patterning are examined for their impact on charge generation. Application-focused sections detail the integration of gel-based TENGs in health monitoring (e.g., sweat, glucose, respiratory, and tremor sensing), environmental sensing (e.g., humidity, fire, marine, and gas detection), and tactile interfaces (e.g., e-skin and wearable electronics). Finally, we address current challenges, including mechanical durability, dehydration, and system integration, and outline future directions involving self-healing gels, hybrid architectures, and AI-assisted sensing. This review expands the subject area by synthesizing recent advances and offering a strategic roadmap for developing intelligent, sustainable, and multifunctional TENG-based sensing technologies. Full article
Show Figures

Figure 1

Back to TopTop