Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = hydraulic actuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1734 KB  
Article
Analytical Modeling and Simulation of Machinery Containing Hydraulic Lines with Fluid Transients
by David Hullender
Actuators 2025, 14(10), 489; https://doi.org/10.3390/act14100489 (registering DOI) - 9 Oct 2025
Abstract
In industrial equipment containing hydraulic lines for power transmission, the lines have boundary conditions defined by components such as pumps, valves, and actuators located at the ends of the lines. Sudden changes in any of the boundary conditions may result in significant pressure/flow [...] Read more.
In industrial equipment containing hydraulic lines for power transmission, the lines have boundary conditions defined by components such as pumps, valves, and actuators located at the ends of the lines. Sudden changes in any of the boundary conditions may result in significant pressure/flow dynamics (fluid transients) in the lines that may be detrimental or favorable to the performance of the equipment. Accurate models for line transients are defined by the exact solution to a set of simultaneous partial differential equations. In this paper, analytical solutions to the partial differential equations provide Laplace transform transfer functions applicable to any set of boundary conditions yet to be specified that satisfy the requirements of causality. Analytical solutions of these partial differential equations from previous publications are reviewed for cases of laminar and turbulent flow for Newtonian and a class of non-Newtonian fluids. This paper focuses on a method for obtaining total system analytical models and time domain solutions for cases in which the end-of-line components can be modeled with linear equations for perturbations relative to pre-transient flow conditions. Examples with pumps, valves, and actuators demonstrate the process of coupling equations for components at the ends of a line to obtain total system transfer functions and then obtain time domain solutions for outputs of interest associated with system inputs and load variations. Full article
(This article belongs to the Special Issue Advances in Fluid Power Systems and Actuators)
18 pages, 2957 KB  
Article
Modelling a Fuzzy Logic-Based Multiple-Actuator Hydraulic Lifting and Positioning System
by Grzegorz Filo, Edward Lisowski, Paweł Lempa and Konrad Wisowski
Appl. Sci. 2025, 15(19), 10747; https://doi.org/10.3390/app151910747 - 6 Oct 2025
Viewed by 203
Abstract
This paper presents a fuzzy logic control strategy for synchronising the vertical lifting and positioning of a multi-actuator hydraulic system designed for a 360-ton movable platform. The primary focus is on achieving precise actuator movement coordination under uneven loading conditions without using external [...] Read more.
This paper presents a fuzzy logic control strategy for synchronising the vertical lifting and positioning of a multi-actuator hydraulic system designed for a 360-ton movable platform. The primary focus is on achieving precise actuator movement coordination under uneven loading conditions without using external reference systems or high-cost sensors. A mathematical model and a simulation environment were developed in MATLAB/Simulink with Fuzzy Logic Toolbox. Four fuzzy controller variants were evaluated regarding positioning accuracy, robustness, and compliance with dynamic constraints. The results demonstrate the effectiveness of the proposed control method, particularly when using Gaussian membership functions and PROD–PROBOR fuzzy operators. The system achieved sub-millimetre synchronisation accuracy even under 20% load imbalance. This work contributes to developing decentralised, sensor-light control strategies for large-scale hydraulic systems and offers a validated foundation for future experimental implementation in the PANDA particle detector project. Full article
(This article belongs to the Special Issue Applications of Fuzzy Systems and Fuzzy Decision Making)
Show Figures

Figure 1

21 pages, 720 KB  
Article
A Bilevel Optimization Framework for Adversarial Control of Gas Pipeline Operations
by Tejaswini Sanjay Katale, Lu Gao, Yunpeng Zhang and Alaa Senouci
Actuators 2025, 14(10), 480; https://doi.org/10.3390/act14100480 - 1 Oct 2025
Viewed by 251
Abstract
Cyberattacks on pipeline operational technology systems pose growing risks to energy infrastructure. This study develops a physics-informed simulation and optimization framework for analyzing cyber–physical threats in petroleum pipeline networks. The model integrates networked hydraulic dynamics, SCADA-based state estimation, model predictive control (MPC), and [...] Read more.
Cyberattacks on pipeline operational technology systems pose growing risks to energy infrastructure. This study develops a physics-informed simulation and optimization framework for analyzing cyber–physical threats in petroleum pipeline networks. The model integrates networked hydraulic dynamics, SCADA-based state estimation, model predictive control (MPC), and a bilevel formulation for stealthy false-data injection (FDI) attacks. Pipeline flow and pressure dynamics are modeled on a directed graph using nodal pressure evolution and edge-based Weymouth-type relations, including control-aware equipment such as valves and compressors. An extended Kalman filter estimates the full network state from partial SCADA telemetry. The controller computes pressure-safe control inputs via MPC under actuator constraints and forecasted demands. Adversarial manipulation is formalized as a bilevel optimization problem where an attacker perturbs sensor data to degrade throughput while remaining undetected by bad-data detectors. This attack–control interaction is solved via Karush–Kuhn–Tucker (KKT) reformulation, which results in a tractable mixed-integer quadratic program. Test gas pipeline case studies demonstrate the covert reduction in service delivery under attack. Results show that undetectable attacks can cause sustained throughput loss with minimal instantaneous deviation. This reveals the need for integrated detection and control strategies in cyber–physical infrastructure. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

18 pages, 3921 KB  
Article
One Innovative Method for Improving the Power Density and Efficiency of Electro-Hydrostatic Actuators
by Zhenfei Ling, Fengqi Zhou, Hao Liu, Bo Yang and Xiaoping Ouyang
Actuators 2025, 14(10), 467; https://doi.org/10.3390/act14100467 - 25 Sep 2025
Viewed by 299
Abstract
Although electro-hydrostatic actuators (EHAs) hold broad application prospects in more-electric aircraft and high-end equipment, they face a difficult trade-off between dynamic response and energy efficiency. To simultaneously enhance the dynamic response and energy efficiency of the EHA, this paper designs an innovative variable [...] Read more.
Although electro-hydrostatic actuators (EHAs) hold broad application prospects in more-electric aircraft and high-end equipment, they face a difficult trade-off between dynamic response and energy efficiency. To simultaneously enhance the dynamic response and energy efficiency of the EHA, this paper designs an innovative variable pump displacement and variable motor speed (VPVM) configuration that utilizes an electro-hydraulic servo valve for active displacement control. To address the flow mismatch problem associated with traditional asymmetric single-rod cylinders without reducing the power density of EHA, this paper also designs an innovative symmetric single-rod cylinder configuration. Based on the above two innovative configurations, this paper further develops a corresponding EHA prototype with a rated power density of 0.72 kW/kg. Simulation and experimental results demonstrate that compared to the traditional EHA with the fixed pump displacement and variable motor speed configuration (FPVM-EHA), the EHA with the proposed VPVM configuration (VPVM-EHA) not only improves energy efficiency and reduces motor heat generation under low-speed and heavy-load conditions, but also achieves a dynamic response close to that of the FPVM-EHA under fast dynamic response conditions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

22 pages, 9427 KB  
Article
Development of a Hydraulic Conical Valve for the Linearization of Flow
by Suyambu Pandian Asok, Balasubramanian Vijayaragavan, Thirumalachari Sundararajan and Gurunathan Rajaguru Manikandan
Machines 2025, 13(9), 866; https://doi.org/10.3390/machines13090866 - 18 Sep 2025
Viewed by 392
Abstract
Conventional throttling valves have non-linear flow characteristics. However, in precise processes of flow control requiring them, appropriate flow modulations are necessary to enable a linear flow response even under partial valve actuations. This paper formulates a hydraulic conical valve configuration that exhibits linear [...] Read more.
Conventional throttling valves have non-linear flow characteristics. However, in precise processes of flow control requiring them, appropriate flow modulations are necessary to enable a linear flow response even under partial valve actuations. This paper formulates a hydraulic conical valve configuration that exhibits linear flow. Flow studies were conducted on a 24 mm orifice-sized Conventional Conical Valve (CCV) using Computational Fluid Dynamics (CFD) analysis with commercial code ANSYS Fluent 2022 R1 and through experiments. The mass flow curve for the CCV had a convex upward shape, implying that at all valve openings, its discharges lay above the linear discharge line. To create greater resistance to flow, a venturi was incorporated into the valve casing close to the downstream side of the valve seat, leading to a Venturi Conical Valve (VCV). CFD analysis revealed that the addition of the venturi added more flow resistance, while the identified optimal VCV was still unable to make the flow linear. Subsequently, labyrinth cavities were machined on the conical valve body of the VCV, changing it into a Labyrinth Venturi Conical Valve (LVCV). Experiments revealed that the discharge curve for the identified LVCV was nearly linear. The maximum linearity deviation of 45.76% found in the CCV decreased to 9.95% in the LVCV. The reduction in linearity deviation indicates an improved closeness of the valve discharge to the linear conditions. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

18 pages, 2277 KB  
Article
The Integrated Disturbance Estimation and Non-Singular Terminal Sliding Mode Longitudinal Motion Controller for Low-Speed Autonomous Electric Vehicles
by Boyuan Li, Wenfei Li, Wei Hua, Lei Guo, Haitao Xing, Hangbin Tang and Chao Huang
Sensors 2025, 25(18), 5799; https://doi.org/10.3390/s25185799 - 17 Sep 2025
Viewed by 318
Abstract
In the current literature, few motion control studies have considered the disturbances caused by road profile, model uncertainty, and actuator delay in regard to low-speed autonomous vehicles. In addition, motion controller designs usually rely on motor/brake torque control, which is not always available. [...] Read more.
In the current literature, few motion control studies have considered the disturbances caused by road profile, model uncertainty, and actuator delay in regard to low-speed autonomous vehicles. In addition, motion controller designs usually rely on motor/brake torque control, which is not always available. This study outlines an integrated disturbance estimation and non-singular terminal sliding mode controller (NS-TSMC) to overcome disturbances in low-speed scenarios through traction/brake pedal position control. First, a longitudinal dynamic model that considers a detailed brake-by-wire hydraulic braking system model and a motor actuator model is proposed. Road disturbances, model uncertainty, and actuator delays are also considered in vehicle modelling. This vehicle model was verified through experimental data from a low-speed autonomous sightseeing vehicle. Then, based on the proposed vehicle model, the disturbance and uncertain parameter estimator was designed and integrated with NS-TSMC to achieve longitudinal motion control through throttle/brake pedal control. Experimental results from the experimental sightseeing vehicle and simulation results demonstrated the improvement of the longitudinal motion tracking performance and motion comfort compared with a benchmark proportional–integral–derivative (PID) longitudinal motion controller. Full article
Show Figures

Figure 1

35 pages, 7300 KB  
Article
Optimization of EHA Hydraulic Cylinder Buffer Design Using Enhanced SBO–BP Neural Network and NSGA-II
by Shuai Cao, Weibo Li, Kangzheng Huang, Xiaoqing Deng and Rentai Li
Mathematics 2025, 13(18), 2960; https://doi.org/10.3390/math13182960 - 12 Sep 2025
Viewed by 317
Abstract
In order to solve a certain type of Electro-Hydrostatic Actuators (EHA) hydraulic cylinder small cavity buffer end impact problem, based on AMESim to establish a hydraulic cylinder small cavity buffer machine–hydraulic joint simulation model. First, four important structural parameters, namely, the fitting clearance [...] Read more.
In order to solve a certain type of Electro-Hydrostatic Actuators (EHA) hydraulic cylinder small cavity buffer end impact problem, based on AMESim to establish a hydraulic cylinder small cavity buffer machine–hydraulic joint simulation model. First, four important structural parameters, namely, the fitting clearance G of the buffer sleeve and buffer hole, the fixed orifice D, the wedge face angle θ, and the wedge face length L1 were selected to analyze their influence on the pressure of the buffer chamber and the end speed of the piston. Second, enhanced Social Behavior Optimization (SBO) was used to optimize the back-propagation neural network (BP) model to construct a prediction model for the buffer time T of the small chamber of the hydraulic cylinder, the end-piston speed Ve, the rate of change of the end-piston speed Vr, and the return speed of the hydraulic oil Vh. The SBO–BP model performed well in several key performance evaluation metrics, showing better prediction accuracy and generalization performance. Finally, the multi-objective Non-dominated Sorting Genetic Algorithm II (NSGA-II) was used to optimize the hydraulic cylinder small-cavity buffer structure using the multi-objective NSGA-II with the objectives of the shortest buffer time, the minimum end-piston speed, the minimum change rate of the end-piston speed, and the minimum hydraulic oil reflux speed. The optimized design reduced the piston end speed from 0.060 m/s to 0.032 m/s, corresponding to a 46.7% improvement. The findings demonstrate that the proposed hybrid optimization approach effectively alleviates the end-impact problem of EHA small-cavity buffers and provides a novel methodology for achieving high-performance and reliable actuator designs. Full article
Show Figures

Figure 1

38 pages, 5009 KB  
Article
An Adaptive Estimation Model for the States and Loads in Electro-Hydraulic Actuation Systems
by Dimitar Dichev, Borislav Georgiev, Iliya Zhelezarov, Tsanko Karadzhov and Hristo Hristov
Actuators 2025, 14(9), 447; https://doi.org/10.3390/act14090447 - 11 Sep 2025
Viewed by 285
Abstract
In this study, we introduce an advanced framework for state estimation in electro-hydraulic systems, utilizing a structurally adapted Kalman filter. The proposed model was designed to enhance estimation accuracy and robustness under dynamic load variations and evolving measurement conditions. A notable feature of [...] Read more.
In this study, we introduce an advanced framework for state estimation in electro-hydraulic systems, utilizing a structurally adapted Kalman filter. The proposed model was designed to enhance estimation accuracy and robustness under dynamic load variations and evolving measurement conditions. A notable feature of the approach is the algebraic resolution of one system state during each iteration, enabling the seamless inclusion of variables that are otherwise difficult to measure, without disrupting the model’s linear formulation. In addition, the dynamics of the load torque are empirically characterized through a regression-based model derived from experimental observations. The framework integrates adaptive mechanisms for updating the model and measurement error covariance matrices, facilitating the real-time accommodation of system nonlinearities and environmental changes. Experimental results are presented in different operating modes, reflecting characteristic dynamic movements. They show that the method reduced the root mean square error (RMSE) when estimating angular velocity between five and more than six times, depending on the mode. When evaluating the load torque, even in modes with a sharply changing load, the RMSE value remains stable below 0.05 Nm, which indicates the absence of systematic drift and high stability of the estimates. This confirms the stable operation of the algorithm in dynamic conditions and its applicability in real systems. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

19 pages, 1539 KB  
Article
Design and Evaluation of a Torque-Controlled Ankle Exoskeleton Using the Small-Scale Hydrostatic Actuator: miniHydrA
by Kyrian Staman and Herman van der Kooij
Actuators 2025, 14(9), 443; https://doi.org/10.3390/act14090443 - 8 Sep 2025
Viewed by 618
Abstract
A small-scale electro-hydrostatic actuator, termed miniHydrA, was developed based on biomechanical requirements for gait and integrated into an ankle exoskeleton. The key advantage of this actuator concept lies in its compact size and the low mass of its output stage, combined with the [...] Read more.
A small-scale electro-hydrostatic actuator, termed miniHydrA, was developed based on biomechanical requirements for gait and integrated into an ankle exoskeleton. The key advantage of this actuator concept lies in its compact size and the low mass of its output stage, combined with the ability to deliver high support torques, sufficient for full human assistance. During development, hydraulic cylinder leakage and friction were identified as key challenges. To address control requirements, a dedicated control strategy was proposed and implemented. The prototype exoskeleton was evaluated for joint torque tracking performance across a range of torques (0–120 Nm), both in benchtop tests and during treadmill walking trials. In benchtop experiments, zero-torque tracking was achieved with a mean absolute error ranging from 0.03 to 2.26 Nm across frequencies from 0 to 5 Hz. During treadmill walking, torque tracking errors ranged from 0.70 to 0.95 Nm, with no observable deviations in ankle joint kinematics among the three test subjects. These results show the feasibility of the miniHydrA for remote actuation. Compared to Bowden cables, commonly used in exoskeletons and exosuits, the proposed actuator concept offers two key advantages: it is better suited for high-torque applications, and its friction characteristics can be more accurately predicted and modeled, enabling more effective feedforward control. Full article
(This article belongs to the Special Issue Control of Hydraulic Robotic Manipulators)
Show Figures

Figure 1

8 pages, 1371 KB  
Proceeding Paper
Design of a Forklift Hydraulic System with Unloading Valves for Load Handling
by Yordan Stoyanov, Atanasi Tashev and Penko Mitev
Eng. Proc. 2025, 104(1), 85; https://doi.org/10.3390/engproc2025104085 - 6 Sep 2025
Viewed by 931
Abstract
This paper presents the design and analysis of a forklift hydraulic system utilizing an open-center configuration equipped with unloading (safety-overflow) valves and an emergency lowering mechanism. The hydraulic system includes an external gear pump, double-acting power cylinders, hydraulic distributors, and control valves. A [...] Read more.
This paper presents the design and analysis of a forklift hydraulic system utilizing an open-center configuration equipped with unloading (safety-overflow) valves and an emergency lowering mechanism. The hydraulic system includes an external gear pump, double-acting power cylinders, hydraulic distributors, and control valves. A comprehensive approach is undertaken to select system components based on catalog data and to model the flow rate, required torque, and power characteristics of the pump, along with load handling performance as a function of cylinder dimensions and hydraulic pressure. System behavior under various operating conditions is simulated using Automation Studio, enabling performance optimization and fault response assessment. The inclusion of unloading valves and an emergency button enhances system safety by enabling controlled pressure relief and emergency actuation. The impact of thermal effects, filter efficiency, and reservoir design on hydraulic fluid integrity is also addressed. This study aims to improve reliability, efficiency, and safety in hydraulic forklift systems while supporting informed design decisions using simulation-driven methodologies. Full article
Show Figures

Figure 1

24 pages, 1435 KB  
Article
Robust Sliding Mode Motion Control for an Integrated Hydromechatronic Actuator
by Dom Wilson, Andrew Plummer and Ioannis Georgilas
Actuators 2025, 14(9), 435; https://doi.org/10.3390/act14090435 - 3 Sep 2025
Viewed by 332
Abstract
Electro-hydraulic servoactuators have great potential in mobile robotics due to their robustness, high bandwidth and power density, but compared with electromechanical actuators, they can be inefficient and more difficult to integrate into systems. The Integrated Smart Actuator (ISA) developed by Moog Controls Ltd. [...] Read more.
Electro-hydraulic servoactuators have great potential in mobile robotics due to their robustness, high bandwidth and power density, but compared with electromechanical actuators, they can be inefficient and more difficult to integrate into systems. The Integrated Smart Actuator (ISA) developed by Moog Controls Ltd. is a hydromechatronic device that aims to address these issues by combining a novel efficient servovalve, cylinder, sensors and control electronics into a single component. The aim of this work was to develop a robust motion control algorithm that can make integration of the ISA into a robotic system straightforward by requiring minimal controller set-up despite variations in the load characteristics. The proposed controller is a sliding mode controller with a varying boundary layer that contains two robustness parameters and a single bandwidth parameter that defines the response. The controller outperforms a conventional high-performance linear controller in terms of tracking performance and its robustness to variations in the load mass and fluid bulk modulus. The response when the system was subject to some unachievable demand trajectories, such as large step demands, was found to be poor, and an online velocity, acceleration and jerk limited trajectory filter was demonstrated to rectify this issue. The successful implementation of a robust motion controller enables this highly novel integrated actuator to live up to its ‘smart’ epithet. Full article
Show Figures

Figure 1

20 pages, 6244 KB  
Article
Decentralized Compliance Control for Multi-Axle Heavy Vehicles Equipped with Electro-Hydraulic Actuator Suspension Systems
by Mengke Yang, Chunbo Xu and Min Yan
Sensors 2025, 25(17), 5456; https://doi.org/10.3390/s25175456 - 3 Sep 2025
Viewed by 451
Abstract
This article introduces a novel decentralized compliance control technique designed to manage the behavior of multi-axle heavy vehicles equipped with electro-hydraulic actuator suspension systems on uneven terrains. To address the challenges of controller design complexity and network communication burden in large-scale active suspension [...] Read more.
This article introduces a novel decentralized compliance control technique designed to manage the behavior of multi-axle heavy vehicles equipped with electro-hydraulic actuator suspension systems on uneven terrains. To address the challenges of controller design complexity and network communication burden in large-scale active suspension systems for multi-axle heavy vehicles, the decentralized scheme proposed in this paper decomposes the overall vehicle control problem into decentralized compliance control tasks for multiple electro-hydraulic actuator suspension subsystems (MEHASS), each responding to road disturbances. The position-based compliance control strategy consists of an outer-loop generalized impedance controller (GIC) and an inner-loop position controller. The GIC, which offers explicit force-tracking performance, is employed to define the dynamic interaction between each wheel and the uneven road surface, thereby generating the vertical trajectory for the MEHASS. This design effectively reduces vertical vibration transmission to the vehicle chassis, improving ride comfort. To handle external disturbances and enhance control accuracy, the position control employs a nonsingular fast integral terminal sliding mode controller. Furthermore, a three-axle heavy vehicle prototype with electro-hydraulic actuator suspension is developed for on-road driving experiments. The effectiveness of the proposed control method in enhancing ride comfort is demonstrated through comparative experiments. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

24 pages, 3537 KB  
Article
Deep Reinforcement Learning Trajectory Tracking Control for a Six-Degree-of-Freedom Electro-Hydraulic Stewart Parallel Mechanism
by Yigang Kong, Yulong Wang, Yueran Wang, Shenghao Zhu, Ruikang Zhang and Liting Wang
Eng 2025, 6(9), 212; https://doi.org/10.3390/eng6090212 - 1 Sep 2025
Viewed by 539
Abstract
The strong coupling of the six-degree-of-freedom (6-DoF) electro-hydraulic Stewart parallel mechanism manifests as adjusting the elongation of one actuator potentially inducing motion in multiple degrees of freedom of the platform, i.e., a change in pose; this pose change leads to time-varying and unbalanced [...] Read more.
The strong coupling of the six-degree-of-freedom (6-DoF) electro-hydraulic Stewart parallel mechanism manifests as adjusting the elongation of one actuator potentially inducing motion in multiple degrees of freedom of the platform, i.e., a change in pose; this pose change leads to time-varying and unbalanced load forces (disturbance inputs) on the six hydraulic actuators; unbalanced load forces exacerbate the time-varying nature of the acceleration and velocity of the six hydraulic actuators, causing instantaneous changes in the pressure and flow rate of the electro-hydraulic system, thereby enhancing the pressure–flow nonlinearity of the hydraulic actuators. Considering the advantage of artificial intelligence in learning hidden patterns within complex environments (strong coupling and strong nonlinearity), this paper proposes a reinforcement learning motion control algorithm based on deep deterministic policy gradient (DDPG). Firstly, the static/dynamic coordinate system transformation matrix of the electro-hydraulic Stewart parallel mechanism is established, and the inverse kinematic model and inverse dynamic model are derived. Secondly, a DDPG algorithm framework incorporating an Actor–Critic network structure is constructed, designing the agent’s state observation space, action space, and a position-error-based reward function, while employing experience replay and target network mechanisms to optimize the training process. Finally, a simulation model is built on the MATLAB 2024b platform, applying variable-amplitude variable-frequency sinusoidal input signals to all 6 degrees of freedom for dynamic characteristic analysis and performance evaluation under the strong coupling and strong nonlinear operating conditions of the electro-hydraulic Stewart parallel mechanism; the DDPG agent dynamically adjusts the proportional, integral, and derivative gains of six PID controllers through interactive trial-and-error learning. Simulation results indicate that compared to the traditional PID control algorithm, the DDPG-PID control algorithm significantly improves the tracking accuracy of all six hydraulic cylinders, with the maximum position error reduced by over 40.00%, achieving high-precision tracking control of variable-amplitude variable-frequency trajectories in all 6 degrees of freedom for the electro-hydraulic Stewart parallel mechanism. Full article
Show Figures

Figure 1

21 pages, 6240 KB  
Article
Real-Time Gain Scheduling Controller for Axial Piston Pump Based on LPV Model
by Alexander Mitov, Tsonyo Slavov and Jordan Kralev
Actuators 2025, 14(9), 421; https://doi.org/10.3390/act14090421 - 29 Aug 2025
Viewed by 660
Abstract
This article is devoted to the design of a real-time gain scheduling (adaptive) proportional–integral (PI) controller for the displacement volume regulation of a swash plate-type axial piston pump. The pump is intended for open circuit hydraulic drive applications without “secondary control”. In this [...] Read more.
This article is devoted to the design of a real-time gain scheduling (adaptive) proportional–integral (PI) controller for the displacement volume regulation of a swash plate-type axial piston pump. The pump is intended for open circuit hydraulic drive applications without “secondary control”. In this type of pump, the displacement volume depends on the swash plate swivel angle. The swash plate is actuated by a hydraulic-driven mechanism. The classical control device is a hydro-mechanical type, which can realize different control laws (by pressure, flow rate, or power). In the present development, it is replaced by an electro-hydraulic proportional spool valve, which controls the swash plate-actuating mechanism. The designed digital gain scheduling controller evaluates control signal values applied to the proportional valve. The digital controller is based on the new linear parameter-varying mathematical model. This model is estimated and validated from experimental data for various loading modes by an identification procedure. The controller is implemented by a rapid prototyping system, and various real-time loading experiments are performed. The obtained results with the gain scheduling PI controller are compared with those obtained by other classical PI controllers. The developed control system achieves appropriate control performance for a wide working mode of the axial piston pump. The comparison analyses of the experimental results showed the advantages of the adaptive PI controller and confirmed the possibility for its implementation in a real-time control system of different types of variable displacement pumps. Full article
(This article belongs to the Special Issue Advances in Fluid Power Systems and Actuators)
Show Figures

Figure 1

26 pages, 6872 KB  
Article
Enhancing Performance of Digital Hydraulic Motors: Pulsation Mitigation and Efficient Control Strategies
by Hao Zhang and Xiaochao Liu
Machines 2025, 13(9), 756; https://doi.org/10.3390/machines13090756 - 24 Aug 2025
Viewed by 506
Abstract
Hydraulic motors are increasingly pivotal in high-power drive systems for heavy-duty vehicles and industrial machinery due to their high power density. Radial piston hydraulic motors are commonly employed in heavy-load applications, while digital hydraulic motors have surfaced as a potential substitute for traditional [...] Read more.
Hydraulic motors are increasingly pivotal in high-power drive systems for heavy-duty vehicles and industrial machinery due to their high power density. Radial piston hydraulic motors are commonly employed in heavy-load applications, while digital hydraulic motors have surfaced as a potential substitute for traditional hydraulic motors. Yet challenges such as torque pulsation and inefficient flow distribution persist in traditional designs. To improve performance and reliability, this paper proposed a digital radial piston hydraulic motor using several switching valves to distribute hydraulic oil, along with a comprehensive strategy to mitigate flow pulsation and enhance hydraulic transmission efficiency in digital hydraulic motors. The inherent torque pulsation characteristics are systematically investigated, revealing their dependence on valve actuation patterns and load dynamics. A novel torque pulsation mitigation design is introduced. Then, valve modeling and efficiency evaluation are developed; the phase-correction-based flow distribution method is conducted by optimizing valve sequencing; and simulations and experiments are carried out to demonstrate the feasibility. In conclusion, insights have been drawn to direct the design and control of radial piston digital hydraulic motors. This paper presents a potential solution for heavy-duty traction applications. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

Back to TopTop