Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (866)

Search Parameters:
Keywords = hydro energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2356 KB  
Article
Constrained Nonlinear Control of Semi-Active Hydro-Pneumatic Suspension System
by Biao Qiu and Chaiyan Jettanasen
Computation 2025, 13(9), 206; https://doi.org/10.3390/computation13090206 - 1 Sep 2025
Abstract
Aiming at the characteristics of limited actuation capability of the semi-active control system and strong nonlinearity of the hydro-pneumatic suspension, a constrained nonlinear control strategy of a semi-active hydro-pneumatic suspension system is proposed. According to the mathematical model of nonlinear hydro-pneumatic suspension, the [...] Read more.
Aiming at the characteristics of limited actuation capability of the semi-active control system and strong nonlinearity of the hydro-pneumatic suspension, a constrained nonlinear control strategy of a semi-active hydro-pneumatic suspension system is proposed. According to the mathematical model of nonlinear hydro-pneumatic suspension, the static stiffness and linear damping coefficient based on the equivalent energy are calculated, and then the control-oriented dynamic equation whose expression minimizes the nonlinear term is constructed. Combined with actuation capacity constraints, an optimization model with constraints is established to minimize the deviation between the actual overall control force and the expected optimal control force, and the optimal approximation from nonlinear control to linear quadratic optimal control is realized. The control simulation results of various methods show that the nonlinear control with constraints of the semi-active hydro-pneumatic suspension system, which effectively combines the actuation capacity constraints and nonlinear characteristics of the system, achieves a good comprehensive control effect for the nonlinear suspension control with constraints. Full article
Show Figures

Figure 1

21 pages, 4010 KB  
Article
Transient Stability Analysis and Enhancement Strategies for AC Side of Hydro-Wind-PV VSC-HVDC Transmission System
by Xinwei Li, Yanjun Ma, Jie Fang, Kai Ma, Han Jiang, Zheren Zhang and Zheng Xu
Appl. Sci. 2025, 15(17), 9456; https://doi.org/10.3390/app15179456 - 28 Aug 2025
Viewed by 108
Abstract
To analyze and enhance the transient stability of a hydro-wind-PV VSC-HVDC transmission system, this paper establishes a transient stability analytical model and proposes strategies for stability improvement. Based on the dynamic interaction mechanisms of multiple types of power sources, an analytical model integrating [...] Read more.
To analyze and enhance the transient stability of a hydro-wind-PV VSC-HVDC transmission system, this paper establishes a transient stability analytical model and proposes strategies for stability improvement. Based on the dynamic interaction mechanisms of multiple types of power sources, an analytical model integrating GFM converters, GFL converters, and SGs is first developed. The EAC is employed to investigate how the factors such as current-limiting thresholds and fault locations influence transient stability. Subsequently, a parameter tuning method based on optimal phase angle calculation and delayed control of current-limiting modes is proposed. Theoretical analysis and PSCAD simulations demonstrate that various factors affect transient stability by influencing the PLL of converters and the electromagnetic power of synchronous machines. The energy transfer path during transient processes is related to fault locations, parameter settings of current-limiting modes in converters, and the operational states of equipment. The proposed strategy significantly improves the transient synchronization stability of multi-source coupled systems. The research findings reveal the transient stability mechanisms of hydro-wind-PV VSC-HVDC transmission systems, and the proposed stability enhancement method combines theoretical innovation with engineering practicality, providing valuable insights for the planning and design of such scenarios. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

19 pages, 1634 KB  
Article
Multi-Objective Optimized Fuzzy Fractional-Order PID Control for Frequency Regulation in Hydro–Wind–Solar–Storage Systems
by Yuye Li, Chenghao Sun, Jun Yan, An Yan, Shaoyong Liu, Jinwen Luo, Zhi Wang, Chu Zhang and Chaoshun Li
Water 2025, 17(17), 2553; https://doi.org/10.3390/w17172553 - 28 Aug 2025
Viewed by 268
Abstract
In the integrated hydro–wind–solar–storage system, the strong output fluctuations of wind and solar power, along with prominent system nonlinearity and time-varying characteristics, make it difficult for traditional PID controllers to achieve high-precision and robust dynamic control. This paper proposes a fuzzy fractional-order PID [...] Read more.
In the integrated hydro–wind–solar–storage system, the strong output fluctuations of wind and solar power, along with prominent system nonlinearity and time-varying characteristics, make it difficult for traditional PID controllers to achieve high-precision and robust dynamic control. This paper proposes a fuzzy fractional-order PID control strategy based on a multi-objective optimization algorithm, aiming to enhance the system’s frequency regulation, power balance, and disturbance rejection capabilities. The strategy combines the adaptive decision-making ability of fuzzy control with the high-degree-of-freedom tuning features of fractional-order PID. The multi-objective optimization algorithm AGE-MOEA-II is employed to jointly optimize five core parameters of the fuzzy fractional-order PID controller (Kp, Ki, Kd, λ, and μ), balancing multiple objectives such as system dynamic response speed, steady-state accuracy, suppression of wind–solar fluctuations, and hydropower regulation cost. Simulation results show that compared to traditional PID, single fractional-order PID, or fuzzy PID controllers, the proposed method significantly reduces system frequency deviation by 35.6%, decreases power overshoot by 42.1%, and improves renewable energy utilization by 17.3%. This provides an effective and adaptive solution for the stable operation of hydro–wind–solar–storage systems under uncertain and variable conditions. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

18 pages, 2184 KB  
Article
Efficiency of Soda-Technology Carbothermal Smelting of Thermoactivated Ilmenite Concentrate with Aluminosilicate Mineralization
by Kuralai Akhmetova, Sergey Gladyshev, Rinat Abdulvaliev, Leila Imangaliyeva, Alfiyam Manapova and Asya Kasymzhanova
Minerals 2025, 15(9), 906; https://doi.org/10.3390/min15090906 - 26 Aug 2025
Viewed by 320
Abstract
The article presents the material composition of the titanium- and iron-rich ilmenite concentrate from the Satpayev deposit in Eastern Kazakhstan, which is unacceptable for processing by commercial hydro- and pyrometallurgical enrichment methods due to the presence of rutile, soluble only in hydrofluoric acid, [...] Read more.
The article presents the material composition of the titanium- and iron-rich ilmenite concentrate from the Satpayev deposit in Eastern Kazakhstan, which is unacceptable for processing by commercial hydro- and pyrometallurgical enrichment methods due to the presence of rutile, soluble only in hydrofluoric acid, and many refractory aluminosilicate associations: kaolinite, kyanite, pyrophyllite and mullite, cementing titanium minerals. The solution to the problem of reducing the cost of titanium sponge production was developed by developing an economically efficient and environmentally safe technology for the conversion of clayey ilmenite sand concentrate, including thermal activation of particularly resistant raw materials in an air atmosphere, soda-carbothermic smelting of cinder, hydrothermal refining of titanium slag with water, then hydrochloric acid and regeneration of reagents. Oxidative roasting ensures disintegration of intergrowths and destruction of mineral grains of the concentrate. The addition of soda ash to the concentrate cinder batch accelerates the reduction and agglomeration of over 98% of the iron, prevents the formation of lower refractory titanium oxides, facilitates the stratification of the thin-flowing titanium slag melt and cast iron and significantly reduces energy costs and the duration of the carbothermic smelting process. Refining primary titanium slag with water provides the production of modified slag with a mass fraction of TiO2 of at least 83% and FeO of no more than 0.4%, suitable for the production of high-quality titanium sponge. Subsequent refining of modified titanium slag with 20% hydrochloric acid yields synthetic rutile of 96% purity, surpassing in the content of the main substance the branded titanium pigments of the American company DuPont. The resource-saving and environmental significance of this innovative technology is increased by the possibility of recycling easily regenerated soda, hydrochloric acid and recyclable carbon dioxide released during the decomposition of the alkaline reagent during the carbothermic smelting of the concentrate. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 3627 KB  
Article
Structural Optimization of a Pipeline Savonius Hydro Turbine Based on Broad Learning
by Xingxiang Liu, Jing Hu, Yao Zhang, He Yu, Wenfeng Shen, Yiming Xu and Jieqing Zheng
Appl. Sci. 2025, 15(16), 9181; https://doi.org/10.3390/app15169181 - 20 Aug 2025
Viewed by 365
Abstract
Utilizing pipeline Savonius hydro turbines driven by the pressure difference in water flow in the irrigation pipelines to generate electricity can achieve stable and reliable charging of the sensor battery, thereby addressing autonomous energy supply concerns. However, due to the low energy capture [...] Read more.
Utilizing pipeline Savonius hydro turbines driven by the pressure difference in water flow in the irrigation pipelines to generate electricity can achieve stable and reliable charging of the sensor battery, thereby addressing autonomous energy supply concerns. However, due to the low energy capture efficiency of the Savonius turbine with a small pressure difference, it is necessary to optimally design the internal flow channel structure to improve its efficiency and achieve a more miniaturized overall equipment, which has extremely high engineering application value. This study investigates the Savonius turbine, installed within the irrigation pipeline operating under specific conditions (diameter: 60 mm; flow rate: 15 m3/h; inlet pressure: 0.2 MPa; outlet pressure ≤ 0.05 MPa). A validated Computational Fluid Dynamics numerical model was developed to generate 200 datasets for a subsequent structural optimization process utilizing a Bayesian-optimized broad learning technique. The optimal structural parameters for maximum efficiency are a deflector angle of 10°, an aspect ratio of 0.775, and three blades, resulting in a maximum efficiency of 21.73% at a rotational speed of 1098 r/min. For the maximum power coefficient, the optimal combination is a deflector angle of 10°, a height-to-diameter ratio of 0.9, and three blades, yielding a peak power coefficient of 0.1859 at a rotational speed of 600 r/min. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

27 pages, 1605 KB  
Article
Using Hydro-Pneumatic Energy Storage for Improving Offshore Wind-Driven Green Hydrogen Production—A Preliminary Feasibility Study in the Central Mediterranean Sea
by Oleksii Pirotti, Diane Scicluna, Robert N. Farrugia, Tonio Sant and Daniel Buhagiar
Energies 2025, 18(16), 4344; https://doi.org/10.3390/en18164344 - 14 Aug 2025
Viewed by 489
Abstract
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant [...] Read more.
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant concept without energy storage, both under central Mediterranean wind conditions. Numerical simulations were conducted at high temporal resolution, capturing 10-min fluctuations of open field measured wind speeds at an equivalent offshore wind turbine (WT) hub height over a full 1-year, seasonal cycle. Key findings demonstrate that the HPES system of choice, namely the Floating Liquid Piston Accumulator with Sea Water under Compression (FLASC) system, significantly reduces Proton Exchange Membrane (PEM) electrolyser (PEMEL) On/Off cycling (with a 66% reduction in On/Off events), while maintaining hydrogen production levels, despite the integration of the energy storage system, which has a projected round-trip efficiency of 75%. The FLASC-integrated HGE solution also marginally reduces renewable energy curtailment by approximately 0.3% during the 12-month timeframe. Economic analysis reveals that while the FLASC HPES system does introduce an additional capital cost into the energy chain, it still yields substantial operational savings exceeding EUR 3 million annually through extended PEM electrolyser lifetime and improved operational efficiency. The Levelized Cost of Hydrogen (LCOH) for the FLASC-integrated HGE system, which is estimated to be EUR 18.83/kg, proves more economical than a direct wind-to-hydrogen approach with a levelized cost of EUR 21.09/kg of H2 produced. This result was achieved through more efficient utilisation of wind energy interfaced with energy storage as it mitigated the natural intermittency of the wind and increased the lifecycle of the equipment, especially that of the PEM electrolysers. Three scenario models were created to project future costs. As electrolyser technologies advance, cost reductions would be expected, and this was one of the scenarios envisaged for the future. These scenarios reinforce the technical and economic viability of the HGE concept for offshore green hydrogen production, particularly in the Mediterranean, and in regions having similar moderate wind resources and deeper seas for offshore hybrid sustainable energy systems. Full article
Show Figures

Figure 1

20 pages, 772 KB  
Review
Treatment of Refractory Oxidized Nickel Ores (ONOs) from the Shevchenkovskoye Ore Deposit
by Chingis A. Tauakelov, Berik S. Rakhimbayev, Aliya Yskak, Khusain Kh. Valiev, Yerbulat A. Tastanov, Marat K. Ibrayev, Alexander G. Bulaev, Sevara A. Daribayeva, Karina A. Kazbekova and Aidos A. Joldassov
Metals 2025, 15(8), 876; https://doi.org/10.3390/met15080876 - 6 Aug 2025
Viewed by 518
Abstract
The increasing depletion of high-grade nickel sulfide deposits and the growing demand for nickel have intensified global interest in oxidized nickel ores (ONOs), particularly those located in Kazakhstan. This study presents a comprehensive review of the mineralogical and chemical characteristics of ONOs from [...] Read more.
The increasing depletion of high-grade nickel sulfide deposits and the growing demand for nickel have intensified global interest in oxidized nickel ores (ONOs), particularly those located in Kazakhstan. This study presents a comprehensive review of the mineralogical and chemical characteristics of ONOs from the Shevchenkovskoye cobalt–nickel ore deposit and other Kazakhstan deposits, highlighting the challenges they pose for conventional beneficiation and metallurgical processing. Current industrial practices are analyzed, including pyrometallurgical, hydrometallurgical, and pyro-hydrometallurgical methods, with an emphasis on their efficiency, environmental impact, and economic feasibility. Special attention is given to the potential of hydro-catalytic leaching as a flexible, energy-efficient alternative for treating low-grade ONOs under atmospheric conditions. The results underscore the necessity of developing cost-effective and sustainable technologies tailored to the unique composition of Kazakhstani ONOs, particularly those rich in iron and magnesium. This work provides a strategic framework for future research and the industrial application of advanced leaching techniques to unlock the full potential of Kazakhstan’s nickel resources. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 571 KB  
Article
Exploring the Material Feasibility of a LiFePO4-Based Energy Storage System
by Caleb Scarlett and Vivek Utgikar
Energies 2025, 18(15), 4102; https://doi.org/10.3390/en18154102 - 1 Aug 2025
Viewed by 345
Abstract
This paper analyzes the availability of lithium resources required to support a global decarbonized energy system featuring electrical energy storage based on lithium iron phosphate (LFP) batteries. A net-zero carbon grid consisting of existing nuclear and hydro capacity, with the balance being a [...] Read more.
This paper analyzes the availability of lithium resources required to support a global decarbonized energy system featuring electrical energy storage based on lithium iron phosphate (LFP) batteries. A net-zero carbon grid consisting of existing nuclear and hydro capacity, with the balance being a 50/50 mix of wind and solar power generation, is assumed to satisfy projected world electrical demand in 2050, incorporating the electrification of transportation. The battery electrical storage capacity needed to support this grid is estimated and translated into the required number of nominal 10 MWh LFP storage plants similar to the ones currently in operation. The total lithium required for the global storage system is determined from the number of nominal plants and the inventory of lithium in each plant. The energy required to refine this amount of lithium is accounted for in the estimation of the total lithium requirement. Comparison of the estimated lithium requirements with known global lithium resources indicates that a global storage system consisting only of LFP plants would require only around 12.3% of currently known lithium reserves in a high-economic-growth scenario. The overall cost for a global LFP-based grid-scale energy storage system is estimated to be approximately USD 17 trillion. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

28 pages, 4460 KB  
Article
New Protocol for Hydrogen Refueling Station Operation
by Carlos Armenta-Déu
Future Transp. 2025, 5(3), 96; https://doi.org/10.3390/futuretransp5030096 - 1 Aug 2025
Viewed by 542
Abstract
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the [...] Read more.
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore, the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic, wind farms, or micro-hydro plants. Additionally, the cascade method supplies higher pressure to the dispenser throughout the day, thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45%, depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function, providing a practical tool to predict the hydrogen demand for any vehicle attendance, allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles. Full article
Show Figures

Figure 1

19 pages, 2137 KB  
Article
Optimal Configuration and Empirical Analysis of a Wind–Solar–Hydro–Storage Multi-Energy Complementary System: A Case Study of a Typical Region in Yunnan
by Yugong Jia, Mengfei Xie, Ying Peng, Dianning Wu, Lanxin Li and Shuibin Zheng
Water 2025, 17(15), 2262; https://doi.org/10.3390/w17152262 - 29 Jul 2025
Viewed by 518
Abstract
The increasing integration of wind and photovoltaic energy into power systems brings about large fluctuations and significant challenges for power absorption. Wind–solar–hydro–storage multi-energy complementary systems, especially joint dispatching strategies, have attracted wide attention due to their ability to coordinate the advantages of different [...] Read more.
The increasing integration of wind and photovoltaic energy into power systems brings about large fluctuations and significant challenges for power absorption. Wind–solar–hydro–storage multi-energy complementary systems, especially joint dispatching strategies, have attracted wide attention due to their ability to coordinate the advantages of different resources and enhance both flexibility and economic efficiency. This paper develops a capacity optimization model for a wind–solar–hydro–storage multi-energy complementary system. The objectives are to improve net system income, reduce wind and solar curtailment, and mitigate intraday fluctuations. We adopt the quantum particle swarm algorithm (QPSO) for outer-layer global optimization, combined with an inner-layer stepwise simulation to maximize life cycle benefits under multi-dimensional constraints. The simulation is based on the output and load data of typical wind, solar, water, and storage in Yunnan Province, and verifies the effectiveness of the proposed model. The results show that after the wind–solar–hydro–storage multi-energy complementary system is optimized, the utilization rate of new energy and the system economy are significantly improved, which has a wide range of engineering promotion value. The research results of this paper have important reference significance for the construction of new power systems and the engineering design of multi-energy complementary projects. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

24 pages, 5866 KB  
Article
Multiscale Characterization of Thermo-Hydro-Chemical Interactions Between Proppants and Fluids in Low-Temperature EGS Conditions
by Bruce Mutume, Ali Ettehadi, B. Dulani Dhanapala, Terry Palisch and Mileva Radonjic
Energies 2025, 18(15), 3974; https://doi.org/10.3390/en18153974 - 25 Jul 2025
Viewed by 428
Abstract
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were [...] Read more.
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were evaluated: an ultra-low-density ceramic (ULD), a resin-coated sand (RCS), and two quartz-based silica sands. Experiments were conducted under simulated EGS conditions at 130 °C with daily thermal cycling over a 25-day period, using diluted site-specific Utah FORGE geothermal fluids. Static batch reactions were followed by comprehensive multi-modal characterization, including scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and micro-computed tomography (micro-CT). Proppants were tested in both granular and powdered forms to evaluate surface area effects and potential long-term reactivity. Results indicate that ULD proppants experienced notable resin degradation and secondary mineral precipitation within internal pore networks, evidenced by a 30.4% reduction in intragranular porosity (from CT analysis) and diminished amorphous peaks in the XRD spectra. RCS proppants exhibited a significant loss of surface carbon content from 72.98% to 53.05%, consistent with resin breakdown observed via SEM imaging. While the quartz-based sand proppants remained morphologically intact at the macro-scale, SEM-EDS revealed localized surface alteration and mineral precipitation. The brown sand proppant, in particular, showed the most extensive surface precipitation, with a 15.2% increase in newly detected mineral phases. These findings advance understanding of proppant–fluid interactions under low-temperature EGS conditions and underscore the importance of selecting proppants based on thermo-chemical compatibility. The results also highlight the need for continued development of chemically resilient proppant formulations tailored for long-term geothermal applications. Full article
Show Figures

Figure 1

18 pages, 8032 KB  
Article
Liquefaction Response and Reinforcement Effect of Saturated Soil Treated by Dynamic Compaction Based on Hydro-Mechanically Coupled Explicit Analysis
by Sihan Ma, Guo Zhao, Xiaoyuan Yang, Run Xu, Zhiqiang Weng, Jiawei Liu, Chong Zhou and Chao Li
Buildings 2025, 15(14), 2527; https://doi.org/10.3390/buildings15142527 - 18 Jul 2025
Viewed by 351
Abstract
In order to accurately analyze the liquefaction and the reinforcement effect of saturated silty and sandy soils treated by dynamic compaction, a hydro-mechanically coupled explicit analysis method was proposed. The method, in combination with the cap model, was carried out using the Abaqus [...] Read more.
In order to accurately analyze the liquefaction and the reinforcement effect of saturated silty and sandy soils treated by dynamic compaction, a hydro-mechanically coupled explicit analysis method was proposed. The method, in combination with the cap model, was carried out using the Abaqus finite element software. Then, parametric analysis was carried out by means of the development and dissipation of excess pore water pressure, effective soil stress and the relative reinforcement degree. And the effects of the drop energy, tamper radius and soil permeability on the liquefaction zone and soil improvement of saturated soil were examined. The results demonstrated that the liquefaction zone and the effective reinforcement were determined by the drop energy rather than the permeability or tamper radius. A 2.5-times increase in drop energy can increase the maximum liquefaction depth by 1.1 m (4.6 m to 5.7 m) and the effective reinforcement depth (Ir ≥ 0.08) by 0.6 m (1.2 m to 1.8 m). It is recommended that the reinforcement effect should be improved by a lower drop energy with a low drop height and a heavy tamper in actual projects. It should also be noted that a smaller tamper radius was conducive to local soil improvement but also generated higher localized excess pore water pressures. Soil permeability critically controls liquefaction potential and excess pore water pressure dissipation. Low permeability soils experienced significant liquefaction depths and slower consolidation, whereas high permeability gravels (k = 10−2 m/s) showed minimal liquefaction and great improvements in depth. To diminish the effect of the underground water, the gravel cushions should be used to drain pore water out before dynamic compaction. Full article
Show Figures

Figure 1

25 pages, 5428 KB  
Article
Multi-Objective Optimal Dispatch of Hydro-Wind-Solar Systems Using Hyper-Dominance Evolutionary Algorithm
by Mengfei Xie, Bin Liu, Ying Peng, Dianning Wu, Ruifeng Qian and Fan Yang
Water 2025, 17(14), 2127; https://doi.org/10.3390/w17142127 - 17 Jul 2025
Viewed by 330
Abstract
In response to the challenge of multi-objective optimal scheduling and efficient solution of hydropower stations under large-scale renewable energy integration, this study develops a multi-objective optimization model with the dual goals of maximizing total power generation and minimizing the variance of residual load. [...] Read more.
In response to the challenge of multi-objective optimal scheduling and efficient solution of hydropower stations under large-scale renewable energy integration, this study develops a multi-objective optimization model with the dual goals of maximizing total power generation and minimizing the variance of residual load. Four complementarity evaluation indicators are used to analyze the wind–solar complementarity characteristics. Building upon this foundation, Hyper-dominance Evolutionary Algorithm (HEA)—capable of efficiently solving high-dimensional problems—is introduced for the first time in the context of wind–solar–hydropower integrated scheduling. The case study results show that the HEA performs better than the benchmark algorithms, with the best mean Hypervolume and Inverted Generational Distance Plus across nine Walking Fish Group (WFG) series test functions. For the hydro-wind-solar scheduling problem, HEA obtains Pareto frontier solutions with both maximum power generation and minimal residual load variance, thus effectively solving the multi-objective scheduling problem of the hydropower system. This work provides a valuable reference for modeling and efficiently solving the multi-objective scheduling problem of hydropower in the context of emerging power systems. This work provides a valuable reference for the modeling and efficient solution of hydropower multi-objective scheduling problems in the context of emerging power systems. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

34 pages, 924 KB  
Systematic Review
Smart Microgrid Management and Optimization: A Systematic Review Towards the Proposal of Smart Management Models
by Paul Arévalo, Dario Benavides, Danny Ochoa-Correa, Alberto Ríos, David Torres and Carlos W. Villanueva-Machado
Algorithms 2025, 18(7), 429; https://doi.org/10.3390/a18070429 - 11 Jul 2025
Cited by 1 | Viewed by 965
Abstract
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, [...] Read more.
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, and optimization techniques. Hybrid storage solutions combining battery systems, hydrogen technologies, and pumped hydro storage were identified as effective approaches to mitigate RES intermittency and balance short- and long-term energy demands. The transition from centralized to distributed control architectures, supported by predictive analytics, digital twins, and AI-based forecasting, has improved operational planning and system monitoring. However, challenges remain regarding interoperability, data privacy, cybersecurity, and the limited availability of high-quality data for AI model training. Economic analyses show that while initial investments are high, long-term operational savings and improved resilience justify the adoption of advanced microgrid solutions when supported by appropriate policies and financial mechanisms. Future research should address the standardization of communication protocols, development of explainable AI models, and creation of sustainable business models to enhance resilience, efficiency, and scalability. These efforts are necessary to accelerate the deployment of decentralized, low-carbon energy systems capable of meeting future energy demands under increasingly complex operational conditions. Full article
(This article belongs to the Special Issue Algorithms for Smart Cities (2nd Edition))
Show Figures

Figure 1

11 pages, 2142 KB  
Proceeding Paper
Heatwaves and Power Peaks: Analyzing Croatia’s Record Electricity Consumption in July 2024
by Paolo Blecich, Igor Bonefačić, Tomislav Senčić and Igor Wolf
Eng. Proc. 2025, 87(1), 90; https://doi.org/10.3390/engproc2025087090 - 10 Jul 2025
Viewed by 1040
Abstract
This study examines the causes and implications of the unprecedented electricity consumption observed in Croatia during an intense heatwave in July 2024. On the evening of 17 July 2024, power demand reached an all-time high of 3381 MW, significantly surpassing the average demand [...] Read more.
This study examines the causes and implications of the unprecedented electricity consumption observed in Croatia during an intense heatwave in July 2024. On the evening of 17 July 2024, power demand reached an all-time high of 3381 MW, significantly surpassing the average demand of around 2000 MW. More concerningly, during these peak hours, 35% of the electricity had to be imported due to insufficient domestic generation capacity. As a result, average monthly electricity prices for July and August 2024 exceeded 250 EUR/MWh in the evening hours. Looking ahead, Croatia and Southern Europe are expected to face increasingly hotter summers, pushing power systems to accommodate even higher peak loads. As the energy transition progresses toward a greater reliance on intermittent renewable energy, enhancing power grid flexibility will become essential. Flexible power generation will play a critical role in bridging gaps in renewable energy output. Solutions such as pumped hydro storage and battery systems can store excess renewable energy and release it during peak demand periods. Additionally, demand response strategies—encouraging the shift of electricity usage to times of higher wind and solar availability—offer another effective way to adapt to the intermittent nature of renewable energy sources. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

Back to TopTop