Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = hydroclastic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5054 KB  
Review
Review of Explosive Hydrovolcanism
by Károly Németh and Szabolcs Kósik
Geosciences 2020, 10(2), 44; https://doi.org/10.3390/geosciences10020044 - 24 Jan 2020
Cited by 82 | Viewed by 14854
Abstract
Hydrovolcanism is a type of volcanism where magma and water interact either explosively or non-explosively. The less frequently used term, hydromagmatism, includes all the processes responsible for magma and water interaction in a magmatic system. Hydrovolcanism is commonly used as a synonym for [...] Read more.
Hydrovolcanism is a type of volcanism where magma and water interact either explosively or non-explosively. The less frequently used term, hydromagmatism, includes all the processes responsible for magma and water interaction in a magmatic system. Hydrovolcanism is commonly used as a synonym for phreatomagmatism. However, in recent years phreatomagmatism appears more in association with volcanic eruptions that occur in shallow subaqueous or terrestrial settings and commonly involves molten fuel-coolant interaction (MFCI) driven processes. Here a revised and reviewed classification scheme is suggested on the basis of the geo-environment in which the magma-water interaction takes place and the explosivity plus mode of energy transfer required to generate kinetic energy to produce pyroclasts. Over the past decade researchers have focused on the role hydrovolcanism/phreatomagmatism plays in the formation of maar craters, the evolution of diatremes and the signatures of magma—water interaction in the geological record. In the past five years, lithofacies-characterization is the most common approach to studying hydrovolcanism. By far mafic monogenetic volcanic fields generated the greatest number of research results. Significant knowledge gaps are identified, especially in developing tools to identify the textural signatures hydrovolcanism leave behind on eruptive products and exploring the role of hydrovolcanism in the growth of intermediate and silicic small volume volcanoes. Full article
Show Figures

Figure 1

Back to TopTop