Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (734)

Search Parameters:
Keywords = hydrodynamic environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3925 KB  
Review
Recent Advances in the Hydrodynamic Characteristics of Industrial Recirculating Aquaculture Systems and Their Interactions with Fish
by Yanfei Wu, Jianeng Chen, Chengxia Jia, Fukun Gui, Jianuo Xu, Xiaolong Yin, Dejun Feng and Qingjing Zhang
Sustainability 2025, 17(17), 7946; https://doi.org/10.3390/su17177946 - 3 Sep 2025
Viewed by 108
Abstract
Industrial recirculating aquaculture systems (RAS) constitute an energy-saving and environmentally friendly approach to modern aquaculture production. The hydrodynamic characteristics within these systems, coupled with the ecological environment of the fish, are essential for the efficient operation of the system and for promoting optimal [...] Read more.
Industrial recirculating aquaculture systems (RAS) constitute an energy-saving and environmentally friendly approach to modern aquaculture production. The hydrodynamic characteristics within these systems, coupled with the ecological environment of the fish, are essential for the efficient operation of the system and for promoting optimal fish growth and welfare. These systems provide several advantages, such as high intensification, efficient water resource utilization, enhanced environmental control, and minimal environmental pollution. Consequently, it has emerged as prominent avenue for advancing aquaculture development in China. This paper begins with an examination of the fundamental concepts and primary tank structures underpinning industrial RAS. It then proceeds to elucidate the hydrodynamic characteristics within RAS and their interrelationship with fish growth and welfare. Furthermore, it offers a thorough review of tank hydrodynamic characteristics and fish interactions from various perspectives, including operational parameters, hydrodynamic drive equipment, fish behavior, and the aquaculture environment. Finally, the limitations of current studies are assessed, and potential future research directions are proposed. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

18 pages, 4523 KB  
Article
The Influence of a Multi-Layer Porous Plate Structure on a Horizontally Moored Very Large Floating Structure: An Experimental Study
by Mingwei Feng, Minghao Guo, Zhipeng Leng, Xin Li and Haisheng Zhao
J. Mar. Sci. Eng. 2025, 13(9), 1702; https://doi.org/10.3390/jmse13091702 - 3 Sep 2025
Viewed by 137
Abstract
Due to their unique structural configuration, Very Large Floating Structures (VLFS) exhibit significant hydroelastic responses during their motion in the water. These responses, which are a result of the interaction between the structure and the waves, can lead to undesirable vibrations and deformations, [...] Read more.
Due to their unique structural configuration, Very Large Floating Structures (VLFS) exhibit significant hydroelastic responses during their motion in the water. These responses, which are a result of the interaction between the structure and the waves, can lead to undesirable vibrations and deformations, potentially compromising the stability and performance of the VLFS. Reducing the hydroelastic response in VLFS has become a critical research focus for scholars worldwide. In the field of marine engineering, various methods are employed to address this issue, with the use of porous structures being one of the most effective solutions. These porous structures help to dissipate the energy of propagating waves, thereby reducing the magnitude of hydroelastic responses. This paper introduces a multi-layer porous plate structure designed to mitigate the hydroelastic response of horizontally moored VLFS. The proposed structure consists of multiple layers of porous plates strategically arranged to optimize the dissipation of wave energy. To evaluate the performance of this structure, a series of physical model tests were conducted, focusing on the hydrodynamic behavior of the VLFS with the multi-layer porous plate structure. The experimental results indicate that within a specific wavelength range, the properly configured multi-layer porous plate structure can significantly reduce the hydroelastic response of the VLFS. This reduction is especially noticeable in the attenuation of wave-induced forces, leading to a decrease in the structural vibrations and enhancing the stability of the floating system. The findings demonstrate that this innovative design can provide a reliable method for improving the performance of VLFS in challenging marine environments. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

23 pages, 4893 KB  
Article
Mobilization of PAHs by Wave-Induced Resuspension and Liquefaction in Silty Sediment
by Fang Lu, Qian Song and Wenquan Liu
J. Mar. Sci. Eng. 2025, 13(9), 1661; https://doi.org/10.3390/jmse13091661 - 29 Aug 2025
Viewed by 282
Abstract
Silty seabed sediments in the subaqueous delta of the Yellow River are heavily contaminated with petroleum-derived polycyclic aromatic hydrocarbons (PAHs). Storm-induced sediment resuspension and liquefaction are key mechanisms responsible for the remobilization of PAHs into the overlying water column. In this study, laboratory-scale [...] Read more.
Silty seabed sediments in the subaqueous delta of the Yellow River are heavily contaminated with petroleum-derived polycyclic aromatic hydrocarbons (PAHs). Storm-induced sediment resuspension and liquefaction are key mechanisms responsible for the remobilization of PAHs into the overlying water column. In this study, laboratory-scale wave flume experiments were conducted to simulate PAH release under three hydrodynamic scenarios: (i) static diffusion (Stage I), (ii) low-intensity wave action (5 cm wave height, Stage II), and (iii) high-intensity wave action (12 cm wave height, Stage III). Results revealed a strong positive correlation between suspended particulate matter (SPM) and PAH concentrations in the aqueous phase during sediment disturbance. In particular, sediment liquefaction significantly enhanced PAH release, with concentrations up to five times higher than those under static conditions. Furthermore, liquefaction facilitated vertical migration of PAHs within sediments, resulting in reductions in PAH levels below the original background concentrations. The release dynamics varied notably among PAH species: low-molecular-weight (2–3 ring) PAHs, with lower hydrophobicity, were primarily detected in the aqueous phase, while medium- and high-molecular-weight PAHs remained predominantly associated with sediment particles. These findings underscore the critical role of hydrodynamic disturbances—especially sediment liquefaction—in influencing PAH mobility and offer important implications for pollution risk assessment and coastal management in storm-impacted deltaic environments. Full article
Show Figures

Figure 1

22 pages, 7105 KB  
Article
Design of Control System for Underwater Inspection Robot in Hydropower Dam Structures
by Bing Zhao, Shuo Li, Xiangbin Wang, Mingyu Yang, Xin Yu, Zhaoxu Meng and Gang Wan
J. Mar. Sci. Eng. 2025, 13(9), 1656; https://doi.org/10.3390/jmse13091656 - 29 Aug 2025
Viewed by 225
Abstract
As critical infrastructure, hydropower dams require efficient and accurate detection of underwater structural surface defects to ensure their safety. This paper presents the design and implementation of a robotic control system specifically developed for underwater dam inspection in hydropower stations, aiming to enhance [...] Read more.
As critical infrastructure, hydropower dams require efficient and accurate detection of underwater structural surface defects to ensure their safety. This paper presents the design and implementation of a robotic control system specifically developed for underwater dam inspection in hydropower stations, aiming to enhance the robot’s operational capability under harsh hydraulic conditions. The study includes the hardware design of the control system and the development of a surface human–machine interface unit. At the software level, a modular architecture is adopted to ensure real-time performance and reliability. The solution employs a hierarchical architecture comprising hardware sensing, real-time interaction protocols, and an adaptive controller, and the integrated algorithm combining a fixed-time disturbance observer with adaptive super-twisting controller compensates for complex hydrodynamic forces. To validate the system’s effectiveness, field tests were conducted at the Baihetan Hydropower Station. Experimental results demonstrate that the proposed control system enables stable and precise dam inspection, with standard deviations of multi-degree-of-freedom automatic control below 0.5 and hovering control below 0.1. These findings confirm the system’s feasibility and superiority in performing high-precision, high-stability inspection tasks in complex underwater environments of real hydropower dams. The developed system provides reliable technical support for intelligent underwater dam inspection and holds significant practical value for improving the safety and maintenance of major hydraulic infrastructure. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 3062 KB  
Article
Modeling Learning Outcomes in Virtual Reality Through Cognitive Factors: A Case Study on Underwater Engineering
by Andrei-Bogdan Stănescu, Sébastien Travadel, Răzvan-Victor Rughiniș and Rocsana Bucea-Manea-Țoniș
Electronics 2025, 14(17), 3369; https://doi.org/10.3390/electronics14173369 - 25 Aug 2025
Viewed by 347
Abstract
Virtual reality offers unique opportunities to personalize learning by adapting instructions to individual learning styles. This study explores the relationships between learning styles, cognitive load, and learning outcomes in a virtual reality environment designed for engineering education. Drawing on Kolb’s experiential learning theory, [...] Read more.
Virtual reality offers unique opportunities to personalize learning by adapting instructions to individual learning styles. This study explores the relationships between learning styles, cognitive load, and learning outcomes in a virtual reality environment designed for engineering education. Drawing on Kolb’s experiential learning theory, the research investigates how immersion and flow, in relation to learning styles, influence learning outcomes within the Submarine Simulator, an educational tool for underwater engineering. To enhance instructional design in virtual reality, this study proposes to aggregate existing and validated models, such as Kolb’s framework, to develop new models tailored specifically for learning environments in virtual reality. This research aims to highlight the interplay of these variables in a learning process focused on acquiring knowledge in the Science, Technology, Engineering, and Mathematics fields, specifically hydrodynamics, through designing and operating a simulated submarine model in virtual reality. A cohort of 26 students from MINES Paris—PSL participated in a three-phase testing process to evaluate the effectiveness of original virtual reality software designed to support learning in underwater engineering. The findings enhance our understanding of how learning styles influence learner engagement and performance and how virtual reality environments can be optimized through adaptive instructional design guided by these novel models tailored specifically for such immersive settings. Full article
(This article belongs to the Special Issue Virtual Reality Technology, Systems and Applications)
Show Figures

Figure 1

13 pages, 2898 KB  
Article
Vertical Distribution Profiling of E. coli and Salinity in Tokyo Coastal Waters Following Rainfall Events Under Various Tidal Conditions
by Chomphunut Poopipattana, Manish Kumar and Hiroaki Furumai
J. Mar. Sci. Eng. 2025, 13(8), 1581; https://doi.org/10.3390/jmse13081581 - 18 Aug 2025
Viewed by 388
Abstract
Urban estuarine environments face increasing water safety risks due to microbial contamination from combined sewer overflows (CSOs), particularly during heavy rainfall events. In megacities like Tokyo, where waterfronts are widely used for recreation, such contamination poses significant public health risks. The challenge is [...] Read more.
Urban estuarine environments face increasing water safety risks due to microbial contamination from combined sewer overflows (CSOs), particularly during heavy rainfall events. In megacities like Tokyo, where waterfronts are widely used for recreation, such contamination poses significant public health risks. The challenge is compounded by the variability in both intensity and spatial distribution of rainfall across the catchment, combined with complex tidal dynamics making effective water quality management difficult. To address this challenge, we conducted a series of hydrodynamic–microbial fate simulations to examine the spatial and vertical behavior of Escherichia coli (E. coli) under different rainfall–tide conditions. Focusing on the Sumida River estuary, rainfall data from eight drainage areas were classified into six event types using cluster analysis. Two contrasting events were selected for detailed analysis: a light rainfall (G2, 15 mm over 13 h) and an intense event (G6, 272 mm over 34 h). Vertical water quality profiling was performed along an 8.5 km transect from the Kanda–Sumida River confluence to the Tokyo Bay Tunnel, illustrating E. coli and salinity. The results showed that the rainfall intensity and tidal phase at the event onset are critical in shaping both the magnitude and vertical distribution of microbial contamination. The intense event (G6) led to deep microbial intrusion (up to 6–7 m) and major salinity disruption, while the lighter event (G2) showed surface-layer confinement. Salinity gradients were more strongly affected during G6, indicating freshwater intrusion. Tidal phase also influenced transport: the flood-high condition retained E. coli, whereas ebb-low tides facilitated downstream flushing. These findings highlight the influence of rainfall intensity and tidal timing on microbial distribution and support the use of vertical profiling in estuarine water quality management. They also support the development of dynamic, event-based water quality risk assessment tools. With appropriate local calibration, the modeling framework is transferable to other urban estuarine systems to support proactive and adaptive water quality management. Full article
(This article belongs to the Special Issue Coastal Water Quality Observation and Numerical Modeling)
Show Figures

Figure 1

20 pages, 3583 KB  
Article
Assessment of Radionuclide Contamination in Foreshore Sands of the Baltic Sea near Juodkrante in Lithuania
by Artūras Jukna and Gražina Grigaliūnaitė-Vonsevičienė
Sustainability 2025, 17(16), 7441; https://doi.org/10.3390/su17167441 - 18 Aug 2025
Viewed by 495
Abstract
This study presents a methodological approach to assess radionuclide contamination in the Baltic Sea near Juodkrante, Lithuania, based on measurements of β- and γ-emissions in seawater, foreshore sand, and dune top sand. Existing assessments often lack sufficient site-specific detail and multicompartment analysis, limiting [...] Read more.
This study presents a methodological approach to assess radionuclide contamination in the Baltic Sea near Juodkrante, Lithuania, based on measurements of β- and γ-emissions in seawater, foreshore sand, and dune top sand. Existing assessments often lack sufficient site-specific detail and multicompartment analysis, limiting the understanding of localized contamination and radionuclide behavior in coastal environments. Sampling was carried out between 2019 and 2024 at approximately the same geographical coordinates, along transects orientated normally to the shoreline. Given that the dune top remains unaffected by seawater intrusion, while the foreshore sand is subject to regular inundation, the foreshore environment is considered a natural filter that is capable of accumulating radionuclides from seawater. The proposed methodology supports the hypothesis that radionuclide retention in sandy substrates may persist beyond episodic contamination events in seawater, with retention dynamics influenced by environmental factors such as hydrodynamic conditions and aeolian processes. Simultaneous β- and γ-emission analysis enhances the precision of radionuclide quantification, while comparative evaluation of γ-spectra improves the detection of both natural and anthropogenic radionuclides, providing insight into both contemporary and historical contamination processes. The sustainability of the proposed approach lies in its efficient use of time, resources, and effort to monitor radionuclide contamination. Unlike conventional techniques that require energy-intensive seawater processing, this approach uses foreshore sand, which passively accumulates radionuclides through natural wave-driven deposition. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

25 pages, 4874 KB  
Article
Hydrodynamic Responses and Machine Learning-Based Shape Classification of Harbor Seal Whiskers in the Wake of Bluff Bodies
by Xianghe Li, Zhimeng Zhang, Hanghao Zhao, Yaling Qin, Muyuan Du, Taolin Huang and Chunning Ji
Biomimetics 2025, 10(8), 534; https://doi.org/10.3390/biomimetics10080534 - 14 Aug 2025
Viewed by 408
Abstract
Harbor seals, equipped with their uniquely structured whiskers, demonstrate remarkable proficiency in tracking the trajectories of prey within dark and turbid marine environments. This study experimentally investigates the wake-induced vibrations of an elastically supported whisker model placed in the wakes of circular, square, [...] Read more.
Harbor seals, equipped with their uniquely structured whiskers, demonstrate remarkable proficiency in tracking the trajectories of prey within dark and turbid marine environments. This study experimentally investigates the wake-induced vibrations of an elastically supported whisker model placed in the wakes of circular, square, and equilateral triangular cylinders of varying dimensions. Thereafter, a machine learning model is trained to identify and classify these intrinsic responses. The findings reveal a positive correlation between the amplitude of vibration and the total circulation shed by the bluff bodies. In the wake flow fields of triangular and circular cylinders, the mean drag is quite similar. Meanwhile, the whisker’s vibration amplitude and drag fluctuation show that the triangular cylinder is comparable to the square cylinder, and both are higher than the circular cylinder. To classify the wake-generating body shapes based on the hydrodynamic characteristics, hydrodynamic features encompassing vibration amplitudes, fluid forces, and frequency-related information were extracted to train an LSTM-based model, and it was found that the mean drag significantly enhances the model’s flow velocity generalization performance. Full article
Show Figures

Figure 1

25 pages, 5880 KB  
Article
Simulating the Coastal Protection Performance of Breakwaters in the Mekong Delta: Insights from the Western Coast of Ca Mau Province, Vietnam
by Dinh Van Duy, Tran Van Ty, Lam Tan Phat, Huynh Vuong Thu Minh, Nguyen Dinh Giang Nam, Nigel K. Downes, Ram Avtar and Hitoshi Tanaka
J. Mar. Sci. Eng. 2025, 13(8), 1559; https://doi.org/10.3390/jmse13081559 - 14 Aug 2025
Viewed by 584
Abstract
The Vietnamese Mekong Delta (VMD) is experiencing accelerated coastal erosion, driven by upstream sediment trapping, sea-level rise, and local anthropogenic pressures. This study evaluates the effectiveness of pilot breakwater structures in mitigating erosion and supporting mangrove regeneration along the western coast of Ca [...] Read more.
The Vietnamese Mekong Delta (VMD) is experiencing accelerated coastal erosion, driven by upstream sediment trapping, sea-level rise, and local anthropogenic pressures. This study evaluates the effectiveness of pilot breakwater structures in mitigating erosion and supporting mangrove regeneration along the western coast of Ca Mau Province—one of the delta’s most vulnerable shorelines. An integrated methodology combining field-based wave monitoring, remote sensing analysis of shoreline and mangrove changes (2000–2024), and high-resolution Flow-3D hydrodynamic modeling was employed to assess the performance of four breakwater typologies: semi-circular, pile-rock, Busadco, and floating structures. The results show that semi-circular breakwaters achieved the highest wave attenuation, reducing maximum wave height (Hmax) by up to 76%, followed by pile-rock (69%), Busadco (66%), and floating structures (50%). Sediment accretion and mangrove stabilization were most consistent around the semi-circular and pile-rock types. Notably, mangrove loss slowed significantly after breakwater installation, with the annual deforestation rate dropping from 7.67 ha/year (2000–2021) to 1.1 ha/year (2021–2024). Simulations further revealed that mangrove width strongly influences wave dissipation, with belts under 5 m offering minimal protection. The findings highlight the potential of hybrid coastal protection strategies that combine engineered structures with ecological buffers. Modular solutions such as floating breakwaters offer flexibility to adapt with evolving shoreline dynamics. These findings inform scalable coastal protection strategies under sediment-deficit conditions. This study contributes to Vietnam’s Coastal Development Master Plan and broader resilience efforts under Sustainable Development Goals (SDGs) 13 and 14, providing evidence to inform the design and scaling of adaptive, nature-based infrastructure in sediment-challenged deltaic environments. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 1619 KB  
Article
Impact of Water Velocity on Litopenaeus vannamei Behavior Using ByteTrack-Based Multi-Object Tracking
by Jiahao Zhang, Lei Wang, Zhengguo Cui, Hao Li, Jianlei Chen, Yong Xu, Haixiang Zhao, Zhenming Huang, Keming Qu and Hongwu Cui
Fishes 2025, 10(8), 406; https://doi.org/10.3390/fishes10080406 - 14 Aug 2025
Viewed by 348
Abstract
In factory-controlled recirculating aquaculture systems, precise regulation of water velocity is crucial for optimizing shrimp feeding behavior and improving aquaculture efficiency. However, quantitative analysis of the impact of water velocity on shrimp behavior remains challenging. This study developed an innovative multi-objective behavioral analysis [...] Read more.
In factory-controlled recirculating aquaculture systems, precise regulation of water velocity is crucial for optimizing shrimp feeding behavior and improving aquaculture efficiency. However, quantitative analysis of the impact of water velocity on shrimp behavior remains challenging. This study developed an innovative multi-objective behavioral analysis framework integrating detection, tracking, and behavioral interpretation. Specifically, the YOLOv8 model was employed for precise shrimp detection, ByteTrack with a dual-threshold matching strategy ensured continuous individual trajectory tracking in complex water environments, and Kalman filtering corrected coordinate offsets caused by water refraction. Under typical recirculating aquaculture system conditions, three water circulation rates (2.0, 5.0, and 10.0 cycles/day) were established to simulate varying flow velocities. High-frequency imaging (30 fps) was used to simultaneously record and analyze the movement trajectories of Litopenaeus vannamei during feeding and non-feeding periods, from which two-dimensional behavioral parameters—velocity and turning angle—were extracted. Key experimental results indicated that water circulation rates significantly affected shrimp movement velocity but had no significant effect on turning angle. Importantly, under only the moderate circulation rate (5.0 cycles/day), the average movement velocity during feeding was significantly lower than during non-feeding periods (p < 0.05). This finding reveals that moderate water velocity constitutes a critical hydrodynamic window for eliciting specific feeding behavior in shrimp. These results provide core parameters for an intelligent Litopenaeus vannamei feeding intensity assessment model based on spatiotemporal graph convolutional networks and offer theoretically valuable and practically applicable guidance for optimizing hydrodynamics and formulating precision feeding strategies in recirculating aquaculture systems. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Aquaculture)
Show Figures

Figure 1

20 pages, 2352 KB  
Article
Dynamic Interaction Mechanism Between Periphytic Algae and Flow in Open Channels
by Ming-Yang Xu, Wei-Jie Wang, Fei Dong, Yu Han, Jun-Li Yu, Feng-Cong Jia and Cai-Ling Zheng
Processes 2025, 13(8), 2551; https://doi.org/10.3390/pr13082551 - 13 Aug 2025
Viewed by 396
Abstract
Periphytic algae, as representative aquatic epiphytic communities, play a vital role in the material cycling and energy flow in rivers. Through physiological processes such as photosynthetic carbon fixation and nutrient absorption, they perform essential ecological functions in water self-purification, maintenance of primary productivity, [...] Read more.
Periphytic algae, as representative aquatic epiphytic communities, play a vital role in the material cycling and energy flow in rivers. Through physiological processes such as photosynthetic carbon fixation and nutrient absorption, they perform essential ecological functions in water self-purification, maintenance of primary productivity, and microhabitat formation. This study investigates the interaction mechanisms between these highly flexible organisms and the hydrodynamic environment, thereby addressing the limitations of traditional hydraulic theories developed for rigid vegetation. By incorporating the coupled effects of biological flexibility and water flow, an innovative nonlinear resistance model with velocity-dependent response is developed. Building upon this model, a coupled governing equation that integrates water flow dynamics, periphytic algae morphology, and layered Reynolds stress is formulated. An analytical solution for the vertical velocity distribution is subsequently derived using analytical methods. Through Particle Image Velocimetry (PIV) measurements conducted under varying flow velocity conditions in an experimental tank, followed by comprehensive error analysis, the accuracy and applicability of the model were verified. The results demonstrate strong agreement between predicted and measured values, with the coefficient of determination R2 greater than 0.94, thereby highlighting the model’s predictive capacity in capturing flow velocity distributions influenced by periphytic algae. The findings provide theoretical support for advancing the understanding of ecological hydrodynamics and establish mechanical and theoretical foundations for river water environment management and vegetation restoration. Future research will build upon the established nonlinear resistance model to investigate the dynamic coupling mechanisms between multi-species periphytic algae communities and turbulence-induced pulsations, aiming to enhance the predictive modelling of biotic–hydrodynamic feedback processes in aquatic ecosystems. Full article
(This article belongs to the Special Issue Advances in Hydrodynamics, Pollution and Bioavailable Transfers)
Show Figures

Figure 1

20 pages, 1300 KB  
Article
Techno-Economic Analysis and Power Take-Off Optimization of a Wave Energy Converter Adjacent to a Vertical Seawall
by Senthil Kumar Natarajan and Il Hyoung Cho
Energies 2025, 18(16), 4246; https://doi.org/10.3390/en18164246 - 9 Aug 2025
Viewed by 386
Abstract
Wave energy converters (WECs) that are installed in nearshore environments offer several practical advantages, including easier access, lower maintenance, reduced transmission costs, and potential integration with the existing coastal infrastructure, leading to cost savings and improved commercial viability. This study presents a techno-economic [...] Read more.
Wave energy converters (WECs) that are installed in nearshore environments offer several practical advantages, including easier access, lower maintenance, reduced transmission costs, and potential integration with the existing coastal infrastructure, leading to cost savings and improved commercial viability. This study presents a techno-economic analysis and power take-off (PTO) optimization for a vertical cylindrical WEC positioned adjacent to a vertical seawall under irregular wave conditions. The PTO system is connected via frames and hinges, with one end connected to the vertical seawall and the other end to the arm extending to the oscillating WEC. Hydrodynamic parameters were obtained from WAMIT, incorporating the seawall effect via the image method using linear potential theory. This analysis considers variations in WEC diameter, the lengths of frame segments supporting the PTO system, and the PTO damping. First, the geometric configuration is optimized. The results show that placing the WEC closer to the seawall and positioning the hinge joint of the PTO frame at the midpoint of the actuating arm significantly enhances power extraction, due to intensified hydrodynamic interactions near the seawall. A techno-economic analysis is then conducted using two techno-economic metrics, with one representing device cost and the other a newly introduced metric for PTO cost, combined through the weighted sum model (WSM) within a multi-criteria decision analysis (MCDA) framework. Our findings indicate that a smaller-diameter WEC is more cost-effective within a narrow range of PTO damping, while larger WECs, although requiring higher PTO damping capacity, become more cost-effective at higher PTO damping values, due to increased power absorption. Optimal PTO damping values were identified for each diameter of the WEC, demonstrating the trade-off between power output and system cost. These findings provide practical guidance for optimizing nearshore WEC designs to achieve a balance between performance and cost. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

19 pages, 745 KB  
Review
Sustainable Marine Coatings: Comparing the Costs, Benefits, and Impacts of Biocidal and Biocide-Free Paints
by Oskar Kontus and Jonne Kotta
Coatings 2025, 15(8), 931; https://doi.org/10.3390/coatings15080931 - 9 Aug 2025
Viewed by 570
Abstract
Biofouling presents a major challenge for maritime industries, leading to the widespread use of copper-based biocidal coatings that, while effective, release harmful substances into marine environments. Biocide-free alternatives, such as silicone-based, hydrogel, and natural product-derived coatings, offer more sustainable solutions. This systematic review [...] Read more.
Biofouling presents a major challenge for maritime industries, leading to the widespread use of copper-based biocidal coatings that, while effective, release harmful substances into marine environments. Biocide-free alternatives, such as silicone-based, hydrogel, and natural product-derived coatings, offer more sustainable solutions. This systematic review and meta-analysis assesses the functional, economic, and environmental performance of both coating types using PRISMA guidelines and literature from Scopus and ISI Web of Knowledge (2003–2025). Data from experimental, field, and modeling studies were synthesized, covering fouling intensity, coating durability, toxicity, cost-effectiveness, and regulatory compliance. Biocidal coatings generally performed better short-term, but biocide-free options showed comparable efficacy in some cases and clear environmental benefits. Although initial costs for biocide-free coatings are higher, they may yield savings over time. The meta-analysis found no significant differences in fouling or hydrodynamic performance, though quantitative evidence is limited. Research gaps remain, particularly in long-term studies, highlighting the need for standardized testing and lifecycle assessments to guide sustainable antifouling practices. The outcome of the review also showed that some evidence was excluded due to being in non-indexed sources. This highlights the importance of combining systematic and traditional review methods to ensure a more comprehensive assessment. Full article
Show Figures

Figure 1

29 pages, 6429 KB  
Article
Effects of Wave–Current Interaction on Hydrodynamic Performance and Motion Response of a Floating Tidal Stream Turbine
by Ming Kong, Xiaojie Zhang, Renwei Ji, He Wu, Minwei Yin, Hongzang Liu, Ke Sun and Ratthakrit Reabroy
J. Mar. Sci. Eng. 2025, 13(8), 1520; https://doi.org/10.3390/jmse13081520 - 8 Aug 2025
Viewed by 443
Abstract
Within real-world marine settings, the operational performance of floating tidal stream turbines is impacted by wave–current interaction effects and platform motion responses. Leveraging the improved delayed detached eddy simulation (IDDES) method, this research constructs a computational fluid dynamics (CFD) numerical analysis framework for [...] Read more.
Within real-world marine settings, the operational performance of floating tidal stream turbines is impacted by wave–current interaction effects and platform motion responses. Leveraging the improved delayed detached eddy simulation (IDDES) method, this research constructs a computational fluid dynamics (CFD) numerical analysis framework for floating turbines in wave–current environments. It further investigates the hydrodynamic behaviors and motion response features of the turbine under wave–current interactions. The results show that under the combined action of regular waves and steady currents, the fluctuation amplitudes of the power coefficient and thrust coefficient of the floating turbine exhibit a positive correlation with wave height, whereas the mean values of these coefficients remain relatively stable; in contrast, the mean values of the Cp and Ct are proportional to the wave period. Additionally, the motion amplitude of the platform shows a proportional relationship with both wave height and wave period. Flow field analysis demonstrates that elevations in wave height and period result in enhanced flow turbulence, disrupted wake vortex shedding patterns, non-uniform pressure distributions across the blades, and a larger pressure differential in the blade tip area. Such conditions may potentially induce cavitation erosion and fatigue loads. The results of the research have certain academic significance and value to the development and engineering of floating tidal current energy devices. Full article
(This article belongs to the Special Issue Floating Wave–Wind Energy Converter Plants)
Show Figures

Figure 1

35 pages, 8516 KB  
Article
Study on Stress Monitoring and Risk Early Warning of Flexible Mattress Deployment in Deep-Water Sharp Bend Reaches
by Chu Zhang, Ping Li, Zebang Cui, Kai Wu, Tianyu Chen, Zhenjia Tian, Jianxin Hao and Sudong Xu
Water 2025, 17(15), 2333; https://doi.org/10.3390/w17152333 - 6 Aug 2025
Viewed by 409
Abstract
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 [...] Read more.
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 m/s—the risk of structural failures such as displacement, flipping, or tearing of the mattress becomes significant. To improve construction safety and stability, the study integrates numerical modeling and on-site strain monitoring to analyze the mechanical response of flexible mattresses during deployment. A three-dimensional finite element model based on the catenary theory was developed to simulate stress distributions under varying flow velocities and angles, revealing stress concentrations at the mattress’s upper edge and reinforcement junctions. Concurrently, a real-time monitoring system using high-precision strain sensors was deployed on critical shipboard components, with collected data analyzed through a remote IoT platform. The results demonstrate strong correlations between mattress strain, flow velocity, and water depth, enabling the identification of high-risk operational thresholds. The proposed monitoring and early-warning framework offers a practical solution for managing construction risks in extreme riverine environments and contributes to the advancement of intelligent construction management for underwater revetment works. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

Back to TopTop