Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,031)

Search Parameters:
Keywords = hydrogen distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1654 KB  
Article
Computational Fluid Dynamic Modeling and Parametric Optimization of Hydrogen Adsorption in Stationary Hydrogen Tanks
by A. Ousegui and B. Marcos
Hydrogen 2025, 6(4), 95; https://doi.org/10.3390/hydrogen6040095 (registering DOI) - 1 Nov 2025
Abstract
This study investigates hydrogen storage enhancement through adsorption in porous materials by coupling the Dubinin–Astakhov (D-A) adsorption model with H2 conservation equations (mass, momentum, and energy). The resulting system of partial differential equations (PDEs) was solved numerically using the finite element method [...] Read more.
This study investigates hydrogen storage enhancement through adsorption in porous materials by coupling the Dubinin–Astakhov (D-A) adsorption model with H2 conservation equations (mass, momentum, and energy). The resulting system of partial differential equations (PDEs) was solved numerically using the finite element method (FEM). Experimental work using activated carbon as an adsorbent was carried out to validate the model. The comparison showed good agreement in terms of temperature distribution, average pressure of the system, and the amount of adsorbed hydrogen (H2). Further simulations with different adsorbents indicated that compact metal–organic framework 5 (MOF-5) is the most effective material in terms of H2 adsorption. Additionally, the pair (273 K, 800 s) remains the optimal combination of injection temperature and time. The findings underscore the prospective advantages of optimized MOF-5-based systems for enhanced hydrogen storage. These systems offer increased capacity and safety compared to traditional adsorbents. Subsequent research should investigate multi-objective optimization of material properties and system geometry, along with evaluating dynamic cycling performance in practical operating conditions. Additionally, experimental validation on MOF-5-based storage prototypes would further reinforce the model’s predictive capabilities for industrial applications. Full article
Show Figures

Figure 1

25 pages, 3795 KB  
Article
Effect of Antimicrobial Filler on Ethylene-Vinyl Acetate (EVA) Composites Property
by Kamil Kwieciński, Marta Chrószcz-Porębska, Izabela Barszczewska-Rybarek, Jarosław Żmudzki, Anna Mertas, Sebastian Jurczyk, Paweł Popielski and Grzegorz Chladek
Materials 2025, 18(21), 4993; https://doi.org/10.3390/ma18214993 (registering DOI) - 31 Oct 2025
Abstract
Ethylene–vinyl acetate (EVA) is a versatile polymer for applications in dental devices; however, its vulnerability to microbial colonization increases with long-term use. This study evaluates EVA composites modified with silver–sodium–hydrogen–zirconium phosphate (SP) particles, aimed at enhancing antimicrobial performance while preserving key functional properties. [...] Read more.
Ethylene–vinyl acetate (EVA) is a versatile polymer for applications in dental devices; however, its vulnerability to microbial colonization increases with long-term use. This study evaluates EVA composites modified with silver–sodium–hydrogen–zirconium phosphate (SP) particles, aimed at enhancing antimicrobial performance while preserving key functional properties. Composites containing 1–16 wt.% SP were prepared via solvent-based and mechanical compounding routes, with scanning electron microscopy confirming correct filler distribution across processing methods. Antimicrobial assays revealed a pronounced reduction in Streptococcus mutans and Candida albicans levels, reaching 88% and 98% antimicrobial efficacy, respectively, at 16 wt.% SP. Cytotoxicity testing with L-929 fibroblasts demonstrated maintained cell viability above the 70% threshold, confirming non-cytotoxicity. Mechanical characterization indicated marginal increases in hardness, slight tensile strength reduction at higher filler loadings, while other physicochemical and thermal analyses showed minimal impact on polymer performance. These findings indicate balanced antimicrobial activity with other biofunctional properties. Full article
(This article belongs to the Special Issue Advances in the Synthesis and Properties of Novel Polymer Materials)
26 pages, 1079 KB  
Article
Energy Management of Hybrid Energy System Considering a Demand-Side Management Strategy and Hydrogen Storage System
by Nadia Gouda and Hamed Aly
Energies 2025, 18(21), 5759; https://doi.org/10.3390/en18215759 (registering DOI) - 31 Oct 2025
Abstract
A hybrid energy system (HES) integrates various energy resources to attain synchronized energy output. However, HES faces significant challenges due to rising energy consumption, the expenses of using multiple sources, increased emissions due to non-renewable energy resources, etc. This study aims to develop [...] Read more.
A hybrid energy system (HES) integrates various energy resources to attain synchronized energy output. However, HES faces significant challenges due to rising energy consumption, the expenses of using multiple sources, increased emissions due to non-renewable energy resources, etc. This study aims to develop an energy management strategy for distribution grids (DGs) by incorporating a hydrogen storage system (HSS) and demand-side management strategy (DSM), through the design of a multi-objective optimization technique. The primary focus is on optimizing operational costs and reducing pollution. These are approached as minimization problems, while also addressing the challenge of achieving a high penetration of renewable energy resources, framed as a maximization problem. The third objective function is introduced through the implementation of the demand-side management strategy, aiming to minimize the energy gap between initial demand and consumption. This DSM strategy is designed around consumers with three types of loads: sheddable loads, non-sheddable loads, and shiftable loads. To establish a bidirectional communication link between the grid and consumers by utilizing a distribution grid operator (DGO). Additionally, the uncertain behavior of wind, solar, and demand is modeled using probability distribution functions: Weibull for wind, PDF beta for solar, and Gaussian PDF for demand. To tackle this tri-objective optimization problem, this work proposes a hybrid approach that combines well-known techniques, namely, the non-dominated sorting genetic algorithm II and multi-objective particle swarm optimization (Hybrid-NSGA-II-MOPSO). Simulation results demonstrate the effectiveness of the proposed model in optimizing the tri-objective problem while considering various constraints. Full article
25 pages, 4526 KB  
Article
The Tantawy Technique for Modeling Fractional Kinetic Alfvén Solitary Waves in an Oxygen–Hydrogen Plasma in Earth’s Upper Ionosphere
by Shaukat Ali Shan, Wedad Albalawi, Rania A. Alharbey and Samir A. El-Tantawy
Fractal Fract. 2025, 9(11), 705; https://doi.org/10.3390/fractalfract9110705 (registering DOI) - 31 Oct 2025
Abstract
Kinetic Alfvén waves (KAWs) are investigated in an Oxygen–Hydrogen plasma with electrons following the behavior of rq-distribution in an upper ionosphere. We aim to study low-frequency and long wavelengths at 1700 kms in the upper ionosphere of Earth as detected by [...] Read more.
Kinetic Alfvén waves (KAWs) are investigated in an Oxygen–Hydrogen plasma with electrons following the behavior of rq-distribution in an upper ionosphere. We aim to study low-frequency and long wavelengths at 1700 kms in the upper ionosphere of Earth as detected by Freja satellite. The fluid model and reductive perturbation method are combined to obtain the evolutionary wave equations that can be used to describe both fractional and non-fractional KAWs in an Oxygen–Hydrogen ion plasma. This procedure is used to obtain the integer-order Korteweg–de Vries (KdV) equation and then analyze its solitary wave solution. In addition, this study is carried out to evaluate the fractional KdV (FKdV) equation using a new approach called the “Tantawy technique” in order to generate more stable and highly accurate approximations that will be utilized to accurately depict physical events. This investigation also helps locate the existence regions of the solitary waves (SWs), and in turn displays that the characteristics of KAWs are affected by a number of physical factors, such as the nonthermal parameters/spectral indices “r”, “q”, and obliqueness (characterized by lz). Depending on the parameter governing the distribution, especially the nonthermality of inertialess electrons, the rq-distribution of electrons has a major impact on the properties of KAWs. Full article
(This article belongs to the Special Issue Time-Fractal and Fractional Models in Physics and Engineering)
Show Figures

Figure 1

20 pages, 1790 KB  
Article
Identification of SNP Markers in the Glutamate Dehydrogenase (GDH) and Aspartate Aminotransferase 2 (AST2) Associated with Ammonia Nitrogen Tolerance in Penaeus monodon
by Yangyang Ding, Jinsong Chen, Song Jiang, Qibin Yang, Yundong Li, Jianhua Huang, Lishi Yang, Jianzhi Shi, Yebing Yu, Shigui Jiang and Falin Zhou
Biology 2025, 14(11), 1532; https://doi.org/10.3390/biology14111532 (registering DOI) - 31 Oct 2025
Abstract
Black tiger shrimp (Penaeus monodon) is the largest species of penaeid, being commercially cultured globally, ranking as the second most farmed species in the shrimp industry. However, with the transformation of shrimp aquaculture from semi-intensive to high-density farming, the concentration of [...] Read more.
Black tiger shrimp (Penaeus monodon) is the largest species of penaeid, being commercially cultured globally, ranking as the second most farmed species in the shrimp industry. However, with the transformation of shrimp aquaculture from semi-intensive to high-density farming, the concentration of ammonia nitrogen in the aquatic environment has increased, severely affecting the growth and survival of shrimps. To increase production efficiency, breeding new strains of shrimp with the trait of tolerance to high ammonia nitrogen is desired in the black tiger shrimp aquaculture. Previous studies have shown that glutamate dehydrogenase (GDH) and aspartate aminotransferase 2 (AST2) play important roles in the metabolism of ammonia nitrogen in crustaceans. In the present study, we conducted synteny analysis of PmGDH and PmAST2 in different species. The interactions of PmGDH with ammonium (NH4+) and PmAST2 with aspartate were analyzed by docking. To develop molecule markers associated with ammonia nitrogen tolerance, SNPs of PmGDH and PmAST2 were identified by direct sequencing, genotyped by the SNaPshot technique, and characterized through genotype-phenotype association analysis by PLINK software version 1.9 in the three geographical populations, two families with different ammonia tolerance, and 120 susceptible and resistant individuals of black tiger shrimp. The results indicate that the GDH and AST2 genes are evolutionarily conserved in vertebrates, except for the black tiger shrimp, which suggests divergence in selective pressure between invertebrates and vertebrates. Notably, PmGDH may interact with NH4+ via the residue Asp178 within loop 1 in the GdhA domain through a hydrogen bonding interaction, and PmAST2 may interact with aspartate via helix 1, sheet 1, loop 1, and loop 2, through both hydrogen bonding interactions and a salt bridge interaction. A total of 12 SNPs were detected in the exons of PmGDH and PmAST2. Among these candidate SNPs, the distributions of PmGDH-1227 and PmAST2-132 showed both significant differences in the genotype and allele association analysis between susceptible and resistant groups. Haplotype association analysis showed that three haplotypes exhibited significantly different distributions between susceptible and resistant groups. In conclusion, PmGDH-1227 and PmAST2-132 were associated with ammonia nitrogen tolerance, and these SNP markers are expected to contribute to marker-assisted selection (MAS) breeding programs to obtain new strains of Penaeus monodon. Full article
12 pages, 3484 KB  
Article
Computational Modelling of Imidazole Protection of Coordinated Gadolinium Tetraphenylporphyrine Against Molecular Oxygen Attack
by Vladimir Pomogaev, Daniil Lukyanov and Elena Solovyeva
Molecules 2025, 30(21), 4246; https://doi.org/10.3390/molecules30214246 (registering DOI) - 31 Oct 2025
Abstract
Promising photophysical properties and the enhanced sensitivity to molecular oxygen of porphyrins metalated with Gd(III) generate a need for their detailed description on an atomic level with the account of coordinated ligands, which also influence the properties. Herein, the complexation of tetraphenylporphyrin with [...] Read more.
Promising photophysical properties and the enhanced sensitivity to molecular oxygen of porphyrins metalated with Gd(III) generate a need for their detailed description on an atomic level with the account of coordinated ligands, which also influence the properties. Herein, the complexation of tetraphenylporphyrin with gadolinium chloride in imidazole medium was analyzed using density functional theory in the framework of ωB97XD functional with hybrid diffused polarization-consistent basis sets. The complexes with different number of coordinated imidazole ligands (k = 0–2) were calculated to compare their structural parameters, electrostatic potential distribution, and interaction with molecular oxygen. Thermodynamic functions of complex formation were estimated for a set of possible reactions, including various side products (hydrogen chloride or imidazole hydrochloride) and different number of imidazole molecules involved. Weak interactions in the coordination sphere of chlorogadolinium tetraphenylporphyrin with attached imidazole ligands were also assessed. Performed analysis proved the presence of imidazole protection against the molecular oxygen attack. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

16 pages, 3936 KB  
Article
Nanosecond Laser-Fabricated Titanium Meshes and Their Chemical Modification for Photocatalytic and SERS Applications
by Piotr Krzemiński, Algirdas Lazaukas, Sarunas Meskinis, Renata Wojnarowska-Nowak, Bogumił Cieniek, Yaroslav Bobitski and Joanna Kisała
Appl. Sci. 2025, 15(21), 11579; https://doi.org/10.3390/app152111579 - 29 Oct 2025
Abstract
This study presents the fabrication and chemical modification of titanium meshes produced by nanosecond laser drilling, tailored for advanced photocatalytic and surface-enhanced Raman scattering (SERS) applications. Titanium meshes were fabricated via pulsed laser ablation (TM_1) and subsequently modified either by deposition of silver [...] Read more.
This study presents the fabrication and chemical modification of titanium meshes produced by nanosecond laser drilling, tailored for advanced photocatalytic and surface-enhanced Raman scattering (SERS) applications. Titanium meshes were fabricated via pulsed laser ablation (TM_1) and subsequently modified either by deposition of silver nanoparticles through irradiation (TM_2) and sonication (TM_3) or by surface oxidation using hydrogen peroxide (TM_4). Morphological and compositional analyses revealed that these modifications lead to distinct Ag nanoparticle morphologies and significant increases in surface oxygen content, notably enhancing photocatalytic performance. Photocatalytic tests demonstrated that the TM_4 mesh achieved the highest degradation rate of methylene blue, underscoring the critical role of surface oxygen enrichment. In contrast, TM_2 and TM_3 exhibit strong potential as surface-enhanced Raman scattering (SERS) substrates due to the well-distributed plasmonic silver nanostructures that enhance local electromagnetic fields. Their three-dimensional porous architecture facilitates high surface area and efficient analyte adsorption (MB), further improving SERS sensitivity. These findings establish nanosecond laser-processed titanium meshes, particularly those that are chemically modified, as promising, scalable materials for efficient water purification and effective SERS substrates for molecular sensing. Full article
(This article belongs to the Special Issue The Applications of Laser-Based Manufacturing for Material Science)
Show Figures

Figure 1

19 pages, 7899 KB  
Article
Development of DC–DC Converters for Fuel-Cell Hybrid Power Systems in a Lift–Cruise Unmanned Aerial Vehicle
by Min-Gwan Gwon, Ki-Chang Lee and Jang-Mok Kim
Energies 2025, 18(21), 5688; https://doi.org/10.3390/en18215688 - 29 Oct 2025
Abstract
Lift–cruise-type unmanned aerial vehicles (UAVs) powered by hydrogen fuel cells often integrate secondary energy storage devices to improve responsiveness to load fluctuations during different flight phases, which necessitates an efficient energy management strategy that optimizes power allocation among multiple power sources. This paper [...] Read more.
Lift–cruise-type unmanned aerial vehicles (UAVs) powered by hydrogen fuel cells often integrate secondary energy storage devices to improve responsiveness to load fluctuations during different flight phases, which necessitates an efficient energy management strategy that optimizes power allocation among multiple power sources. This paper presents an innovative fuel cell DC–DC converter (FDC) design for the hybrid power system of a lift–cruise-type UAV comprising a multi-stack fuel cell system and a battery. The novelty of this work lies in the development of an FDC suitable for a multi-stack fuel cell system through a dual-input single-output converter structure and a control algorithm. To integrate inputs supplied from two hydrogen fuel cell stacks into a single output, a controller with a single voltage controller–dual current controller structure was applied, and its performance was verified through simulations and experiments. Load balancing was maintained even under input asymmetry, and fault-tolerant performance was evaluated by analyzing the FDC output waveform under a simulated single-stack input failure. Furthermore, under the assumed flight scenarios, the results demonstrate that stable and efficient power supply is achieved through power-supply mode switching and application of a power distribution algorithm. Full article
Show Figures

Figure 1

21 pages, 2013 KB  
Review
Interactions Between Microplastics and Marine-Derived Polysaccharides: Binding Mechanisms and Bioavailability in Aquatic Systems
by Marcin H. Kudzin, Martyna Gloc, Natalia Festinger-Gertner, Monika Sikora and Magdalena Olak-Kucharczyk
Toxics 2025, 13(11), 928; https://doi.org/10.3390/toxics13110928 - 29 Oct 2025
Abstract
Microplastics (MPs) are increasingly recognized as persistent pollutants in marine and freshwater systems. Their small size, widespread distribution, and ability to adsorb chemical contaminants raise concerns about ecological impacts and human exposure through aquatic food webs. In parallel, marine polysaccharides such as alginate, [...] Read more.
Microplastics (MPs) are increasingly recognized as persistent pollutants in marine and freshwater systems. Their small size, widespread distribution, and ability to adsorb chemical contaminants raise concerns about ecological impacts and human exposure through aquatic food webs. In parallel, marine polysaccharides such as alginate, chitosan, and carrageenan have drawn interest as natural biopolymers with the capacity to interact with MPs. These interactions occur via electrostatic forces, hydrophobic effects, hydrogen bonding, and physical entrapment, influencing the fate and mobility of MPs in aquatic environments. This review critically examines the current state of knowledge on the binding mechanisms between MPs and marine-derived polysaccharides, emphasizing their role in modulating the transport, aggregation, and bioavailability of plastic particles. Recent efforts to modify these biopolymers for improved performance in sorption and stabilization applications are also discussed. Furthermore, analytical strategies for investigating MP–polysaccharide systems are outlined, and the practical limitations associated with scaling up these approaches are considered. The potential use of such materials in environmentally sustainable remediation technologies is explored, along with future research needs related to safety evaluation, lifecycle impact, and feasibility in real-world conditions. Full article
(This article belongs to the Special Issue Occurrence and Toxicity of Microplastics in the Aquatic Compartment)
Show Figures

Graphical abstract

28 pages, 8323 KB  
Article
Optimization of Novel Variable-Channel-Width Solid Oxide Electrolysis Cell (SOEC) Design for Enhanced Hydrogen Production
by Mahmoud Makki Abadi, Udayabhaskararao Thumu, Mohammad Mehdi Rashidi and Payam Mohammadi Dashtaki
Processes 2025, 13(11), 3472; https://doi.org/10.3390/pr13113472 - 29 Oct 2025
Viewed by 35
Abstract
This study presents a novel solid oxide electrolysis cell (SOEC) design with variable channel widths to optimize thermal management and electrochemical performance for enhanced hydrogen production. Using high-fidelity computational modeling in COMSOL Multiphysics 6.1, five distinct channel width configurations were analyzed, with a [...] Read more.
This study presents a novel solid oxide electrolysis cell (SOEC) design with variable channel widths to optimize thermal management and electrochemical performance for enhanced hydrogen production. Using high-fidelity computational modeling in COMSOL Multiphysics 6.1, five distinct channel width configurations were analyzed, with a baseline model validated against experimental data. The simulations showed that modifying the channel geometry, particularly in Scenario 2, significantly improved hydrogen production rates by 6.8% to 29% compared to a uniform channel design, with the effect becoming more pronounced at higher voltages. The performance enhancement was found to be primarily due to improved fluid velocity regulation, which increased reactant residence time and enhanced mass transport, rather than a significant thermal effect, as temperature distribution remained largely uniform across the cell. Additionally, the inclusion of a dedicated heat transfer channel was shown to improve current density and overall efficiency, particularly at lower voltages. While a small increase in voltage raised internal cell pressure, the variable-width designs, especially those with widening channels, led to greater hydrogen output, albeit with a corresponding increase in system energy consumption due to higher pressure. Overall, the findings demonstrate that strategically designed variable-width channels offer a promising approach to optimizing SOEC performance for industrial-scale hydrogen production. Full article
(This article belongs to the Special Issue Green Hydrogen Production: Advances and Prospects)
Show Figures

Figure 1

32 pages, 8357 KB  
Article
Multiscale Damage and Failure Behavior of Drainage Asphalt Mixture Under Multifactor
by Xiong Tao, Tao Bai, Jianwei Fan, Haiwei Shen and Hao Cheng
Materials 2025, 18(21), 4924; https://doi.org/10.3390/ma18214924 - 28 Oct 2025
Viewed by 185
Abstract
Macroscopic fatigue tests, mesoscopic finite element simulations, and microscopic molecular dynamics simulations were composed to study the damage and failure of drainage asphalt mixtures in multiscale. The applicability of the fatigue models fit by strain, stress, and the linear fitting slope of the [...] Read more.
Macroscopic fatigue tests, mesoscopic finite element simulations, and microscopic molecular dynamics simulations were composed to study the damage and failure of drainage asphalt mixtures in multiscale. The applicability of the fatigue models fit by strain, stress, and the linear fitting slope of the indirect tensile modulus curves were compared. The mesoscopic damage and failure distribution and evolution characteristics were studied, considering the single or coupling effect of traffic loading, hydrodynamic pressure, mortar aging, and interfacial attenuation. The microscopic molecular mechanism of the interface adhesion failure between the aggregate and mortar under water-containing conditions was analyzed. Results show that the fatigue model based on the linear fitting slopes of the indirect tensile modulus curves has significant applicability for drainage asphalt mixtures with different void rates and gradations. The damage and failure have an obvious leap development when traffic loading increases from 0.7 MPa to 0.8 MPa. The hydrodynamic pressure significantly increases the stress of the mortar around the voids and close to the aggregate, promoting damage development and crack extension, especially when it is greater than 0.3 MPa. With the aging deepening of the mortar, the increase rate of the damage degree gradually decreases from the top to the bottom of the mixture. With the development of interfacial attenuation, the damage and failure of interfaces continue increasing, while that of the mortar increases first and then decreases, which is related to the loading concentration in the interface and the stress decrease in the mortar. Under the coupling effects, whether the cracks mainly generate in the mortar or interface depends on their damage degrees, thus causing the stripping of the aggregate wrapped or not wrapped by the mortar, respectively. The van del Waals force is the main molecular effect of interface adhesion, and both acidic and alkaline aggregate components significantly tend to form hydrogen bonds with water rather than asphalt, thus attenuating the interface adhesion. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 914 KB  
Article
Assessment of Regional Hydrogen Refueling Station Layout Planning and Carbon Reduction Benefits Based on Multi-Dimensional Factors of Population, Land, and Demand
by Chang Ge, Sui Gu, Lanlan Zhang, Xia Luo, Mengwei Liu and Xiaozhong Yu
Sustainability 2025, 17(21), 9573; https://doi.org/10.3390/su17219573 - 28 Oct 2025
Viewed by 78
Abstract
The urgent global transition toward low-carbon energy systems has highlighted the need for systematic planning of hydrogen refueling stations (HRS) to facilitate clean energy adoption. This study develops an integrated framework for regional HRS layout optimization and carbon emission assessment, considering population distribution, [...] Read more.
The urgent global transition toward low-carbon energy systems has highlighted the need for systematic planning of hydrogen refueling stations (HRS) to facilitate clean energy adoption. This study develops an integrated framework for regional HRS layout optimization and carbon emission assessment, considering population distribution, land area, and hydrogen demand. Using Hainan Province as a case study, the model estimates regional hydrogen demand, determines optimal HRS deployment, evaluates spatial coverage and refueling distances, and quantifies potential carbon emission reductions under various renewable energy scenarios. Model validation with Haikou demonstrates its reliability and applicability at the regional scale. Results indicate pronounced spatial disparities in hydrogen demand and infrastructure requirements, emphasizing that prioritizing station deployment in densely populated urban areas can enhance accessibility and maximize emission reduction. The framework offers a practical, data-efficient tool for policymakers and planners to guide early-stage hydrogen infrastructure development and supports strategies for regional decarbonization and sustainable energy transitions. Full article
Show Figures

Figure 1

12 pages, 3165 KB  
Article
Unraveling the Intrinsic Mechanisms Controlling the Variations in Density, Sensitivity, and Thermal Decomposition of Typical Nitroguanidine Derivatives
by Pengshan Geng, Songsong Guo, Xiaohong Wang, Chao Xing, Chenxi Qu, Jieyu Luan and Kewei Ding
Molecules 2025, 30(21), 4204; https://doi.org/10.3390/molecules30214204 - 28 Oct 2025
Viewed by 197
Abstract
Nitroguanidine-type energetic materials have broad application prospects in the propellant field, and their derivative structures are numerous, with intricate changes in macro-level properties. However, due to the unclear inherent evolution mechanisms of these macro-level properties, the structural optimization of compounds and the iteration [...] Read more.
Nitroguanidine-type energetic materials have broad application prospects in the propellant field, and their derivative structures are numerous, with intricate changes in macro-level properties. However, due to the unclear inherent evolution mechanisms of these macro-level properties, the structural optimization of compounds and the iteration of application systems face difficulties. This work systematically investigates the variations in density, thermal decomposition, and sensitivity among nitroguanidine (NQ), 1-amino-2-nitroguanidine (ANQ), and 1-amino-2-nitroguanidinium nitrate (ANGN). Hirshfeld surface and bond dissociation energy analyses reveal that strengthened electrostatic and inductive interactions enhance the hydrogen bonding network in ANGN, leading to its higher density compared to NQ. In contrast, weakened electrostatic interactions in ANQ result in a less robust hydrogen bonding network and a correspondingly lower density. The sensitivity trend is consistently explained from both molecular and crystalline perspectives: an increasingly inhomogeneous electrostatic potential distribution, coupled with a higher frequency of O···O contacts, provides a coherent explanation for the experimental observations. Furthermore, the electron-withdrawing -NH3+ group in ANGN weakens the N–NO2 bond, reducing its bond dissociation energy and leading to the most intense NO2 mass spectral signal during thermal decomposition. ANQ exhibits the opposite behavior. A linear correlation (R2 = 0.92) is observed between the N–NO2 BDE and NO2 mass spectral intensity across NQ, ANQ, and ANGN. This study provides unique insights into the intrinsic mechanisms governing variations in the properties of nitroguanidine derivatives. Full article
Show Figures

Figure 1

15 pages, 2342 KB  
Article
Effect of Pre-Strain Induced Microstructure Evolution on Hydrogen Embrittlement Resistance of a CoCrNi Medium-Entropy Alloy
by Zening Wang, Sirui Jing and Yu Yan
Materials 2025, 18(21), 4915; https://doi.org/10.3390/ma18214915 - 27 Oct 2025
Viewed by 258
Abstract
The effect of pre-strain-induced microstructural evolution on the hydrogen embrittlement (HE) resistance of an equiatomic CoCrNi medium-entropy alloy was systematically investigated by mechanical property testing, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) characterization. Three pre-strain levels (0%, 30%, and 50%) were [...] Read more.
The effect of pre-strain-induced microstructural evolution on the hydrogen embrittlement (HE) resistance of an equiatomic CoCrNi medium-entropy alloy was systematically investigated by mechanical property testing, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) characterization. Three pre-strain levels (0%, 30%, and 50%) were applied to produce distinct microstructures: dislocation-free and twin-free (P0), high dislocation density with few deformation twins (P30), and high densities of both dislocations and deformation twins (P50). Mechanical tests combined with hydrogen charging revealed that the P50 specimen exhibited the highest yield strength (1163.88 MPa) and the lowest HE-induced elongation loss (2.74%), indicating an improvement in HE resistance. By using SEM, detailed observations of the fracture morphology and crack propagation paths revealed that deformation twins can effectively reduce stress concentration, delay the nucleation and propagation rates of cracks, and suppress brittle intergranular fracture, thereby improving mechanical properties and resistance to hydrogen embrittlement. A detailed analysis was conducted of the HE resistance mechanism associated with the influence of deformation twins on hydrogen transport and distribution. Full article
Show Figures

Figure 1

21 pages, 4637 KB  
Article
Hydrochemical Characteristics of Shallow Groundwater and Analysis of Vegetation Water Sources in the Ulan Buh Desert
by Xiaomeng Li, Jie Zhou, Wenhui Zhou, Lei Mao, Changyu Wang, Yi Hao and Peng Bian
Water 2025, 17(21), 3058; https://doi.org/10.3390/w17213058 - 24 Oct 2025
Viewed by 200
Abstract
The Ulan Buh Desert represents a quintessential desert ecosystem in the arid northwest of China. As the key factor to maintain the stability of ecosystem, the chemical characteristics of groundwater and its water relationship with vegetation need to be further studied. Through field [...] Read more.
The Ulan Buh Desert represents a quintessential desert ecosystem in the arid northwest of China. As the key factor to maintain the stability of ecosystem, the chemical characteristics of groundwater and its water relationship with vegetation need to be further studied. Through field sampling, hydrochemical analysis, hydrogen and oxygen isotope testing and the Bayesian mixing model (MixSIAR), this study systematically analyzed the chemical characteristics of groundwater, spatial distribution and vegetation water sources in the study area. The results show that the groundwater is predominantly of the Cl–SO42− type, with total dissolved solids (TDS) ranging from 0.34 to 9.56 g/L (mean: 2.03 g/L), indicating medium to high salinity and significant spatial heterogeneity. These characteristics are jointly controlled by rock weathering, evaporative concentration, and ion exchange. Soil water isotopes exhibited vertical differentiation: the surface layer (0–20 cm) was significantly affected by evaporative fractionation (δD: −72‰ to −45‰; δ18O: −9.3‰ to −6.2‰), while deep soil water (60–80 cm) showed isotopic enrichment (δD: −29‰ to −58‰; δ18O: −6.8‰ to 0.9‰), closely matching groundwater isotopic signatures. Vegetation water use strategies demonstrated depth stratification: shallow-rooted plants such as Reaumuria soongorica and Kalidium foliatum relied primarily on shallow soil water (0–20 cm, >30% contribution), whereas deep-rooted plants such as Nitraria tangutorum and Ammopiptanthus mongolicus predominantly extracted water from the 40–80 cm soil layer (>30% contribution), with no direct dependence on groundwater. Full article
Show Figures

Figure 1

Back to TopTop