Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = hydrogrossular

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9190 KB  
Article
Mineralogical and Gemological Characteristics and Color Genesis of Zibai Jade
by Linhui Song, Mingyue He, Ziyun Zhang and Ling Yang
Crystals 2025, 15(10), 871; https://doi.org/10.3390/cryst15100871 - 8 Oct 2025
Viewed by 336
Abstract
Zibai Jade is a recently identified hydrogrossular-dominant jade originating from Shaanxi Province, China. It constitutes a polymineralic aggregate composed predominantly of hydrogrossular, with minor proportions of vesuvianite, diopside, chlorite, uvarovite, and calcite. A multi-method analytical approach was employed to characterize this jade, incorporating [...] Read more.
Zibai Jade is a recently identified hydrogrossular-dominant jade originating from Shaanxi Province, China. It constitutes a polymineralic aggregate composed predominantly of hydrogrossular, with minor proportions of vesuvianite, diopside, chlorite, uvarovite, and calcite. A multi-method analytical approach was employed to characterize this jade, incorporating conventional gemological testing, polarizing microscopy, SEM, XRD, BSE, XRF, and EPMA, as well as UV-Vis and infrared (IR). These techniques enabled a detailed examination of its mineralogy, surface features, and color origin. The stone displays a heterogeneous color distribution, featuring a base hue of light green to yellowish-green, accompanied by distinct occurrences of emerald-green spots, dark green spots, mossy green inclusions, white patches, white veinlets, and a black dot with a green ring. Microanalytical results indicate that the emerald-green spots are principally composed of uvarovite; the dark green spots are dominated by hydrogrossular, diopside, and chlorite; fibrous green inclusions consist mainly of chlorite and Cr-bearing grossular; white patches and veinlets are primarily composed of calcite; and the black dot with a green ring predominantly comprises chromite and uvarovite. Coloration is attributed to the combined influence of Fe and Cr3+. The formation of Zibai Jade involved three mineralization stages: deposition of a carbonate protolith, high-temperature metasomatism, and retrograde alteration. The metasomatism was driven by hydrothermal fluids derived from granodioritic and ultramafic rocks, which provided Si, Al, and the essential Cr, respectively. The interplay of these processes resulted in the development of Zibai Jade, which exhibits a dense texture and attractive coloration. Full article
Show Figures

Figure 1

22 pages, 4859 KB  
Article
Engineered Ceramic Composites from Electrolytic Manganese Residue and Fly Ash: Fabrication Optimization and Additive Modification Mechanisms
by Zhaohui He, Shuangna Li, Zhaorui Li, Di Zhang, Guangdong An, Xin Shi, Xin Sun and Kai Li
Sustainability 2025, 17(14), 6647; https://doi.org/10.3390/su17146647 - 21 Jul 2025
Viewed by 768
Abstract
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite [...] Read more.
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite with 85 g FA exhibits the highest mechanical strength, lowest porosity, and minimal water absorption, the formulation consisting of 45 wt% EMR, 40 wt% FA, and 15 wt% kaolin is identified as a balanced composition that achieves an effective compromise between mechanical performance and solid waste utilization efficiency. Sintering temperature studies revealed temperature-dependent property enhancement, with controlled sintering at 1150 °C preventing the over-firing phenomena observed at 1200 °C while promoting phase evolution. XRD-SEM analyses confirmed accelerated anorthite formation and the morphological transformations of FA spherical particles under thermal activation. Additive engineering demonstrated that 8 wt% CaO addition enhanced structural densification through hydrogrossular crystallization, whereas Na2SiO3 induced sodium-rich calcium silicate phases that suppressed anorthite development. Contrastingly, ZrO2 facilitated zircon nucleation, while TiO2 enabled progressive performance enhancement through amorphous phase modification. This work establishes fundamental phase–structure–property relationships and provides actionable engineering parameters for sustainable ceramic production from industrial solid wastes. Full article
Show Figures

Figure 1

21 pages, 14839 KB  
Article
Application of Cold Sintering Process for Stabilizing Heavy Metals in Municipal Solid Waste Incineration Fly Ash
by Shih-Kai Liao, Zhong-En Wu and Yun-Hwei Shen
Sustainability 2023, 15(19), 14110; https://doi.org/10.3390/su151914110 - 23 Sep 2023
Cited by 2 | Viewed by 2350
Abstract
Municipal solid waste incineration fly ash (MSWI FA) consists predominantly of compounds comprising elements such as calcium, aluminum, silicon, sodium, and others. Additionally, it encompasses a complex mixture of heavy metals, chlorides, sulfates, organic pollutants, and other constituents. The effective and economically viable [...] Read more.
Municipal solid waste incineration fly ash (MSWI FA) consists predominantly of compounds comprising elements such as calcium, aluminum, silicon, sodium, and others. Additionally, it encompasses a complex mixture of heavy metals, chlorides, sulfates, organic pollutants, and other constituents. The effective and economically viable treatment of MSWI FA poses a formidable challenge for resource cycling at the current stage. In this research report, we adopt a novel low-temperature sintering method called the “Cold Sintering Process” (CSP) as a means to immobilize heavy metals within the fly ash. By utilizing a Taguchi orthogonal array method, we will adjust five control factors in the CSP, including sintering temperature, uniaxial pressure, sintering time, initial water addition, and sodium carbonate dosage. The leaching of cadmium from the fly ash, as measured by the Toxicity Characteristic Leaching Procedure (TCLP), will serve as the quality indicator of products. Through the application of CSP, MSWI FA was transformed into structurally stable ceramic blocks, and the heavy metals within the blocks were effectively immobilized. The results of the experiments showed that MSWI FA under the conditions of a temperature of 300 °C, uniaxial pressure of 312 MPa, sintering time in 60 min, 25 wt% water addition, and 9 wt% Na2CO3 addition could effectively reduce the leaching of cadmium by 77.71%, lead by 21.14%, zinc by 42.37%, and chromium by 99.99%, as compared to the original MSWI FA TCLP results. The X-ray Diffraction (XRD) results indicate that during the CSP, fly ash forms phases such as calcium silicate, rankinite, hydrogrossular, anorthite, and marilite. These phase transformations are considered beneficial for preventing the leaching of internal heavy metals. Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS) results reveal that CSP is advantageous for compacting the overall structure, and EDS results further demonstrate that some of the Pb and Zn are carried out from the interior of the blocks, with uneven distribution on the surface of fly ash particles. The aforementioned experimental results serve as preliminary indications of CSP’s capability to stabilize detrimental components within high-purity fly ash. Future research endeavors may entail the refinement of material proportions, modification of experimental parameters, and other methodologies, thus facilitating potential scalability to industrial applications. Such developments align with the overarching goal of resource utilization. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

15 pages, 3100 KB  
Article
Effects of Ambient Humidity on Water Migration and Hydrate Change in Early-Age Hardened Cement Paste
by Dafu Li, Bo Tian, Kaimin Niu, Lihui Li, Lei Quan and Xuwei Zhu
Materials 2022, 15(24), 8803; https://doi.org/10.3390/ma15248803 - 9 Dec 2022
Cited by 2 | Viewed by 2034
Abstract
Ultra-low humidity environments will lead to changes in the microstructure of C–S–H, which will reduce the mechanical properties and service life of cement-based concrete. Thus, to further explore the mechanism on the microscale, this paper studied the water migration and the changes in [...] Read more.
Ultra-low humidity environments will lead to changes in the microstructure of C–S–H, which will reduce the mechanical properties and service life of cement-based concrete. Thus, to further explore the mechanism on the microscale, this paper studied the water migration and the changes in the hydration products in white cement that was cured for 7 days at 20 °C and at different ambient relative humidities (RHs). The migration and transformation of different types of water in cement paste were studied by low-field nuclear magnetic resonance (NMR). At the same time, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to analyze semi-quantitatively the crystal phase in the hydration products. The results showed that in the first 7 days of the curing process, the content of the different types of water and the hydration products in the cement samples were influenced by the ambient RH. The total water content of the samples will decrease with the decrease in the RH; when the RH decreases to 54% or below, the chemically bound water in the samples will increase with the decline in the RH. Additionally, when the ambient RH is lower than 54%, the grossular will gradually transform into hydrogrossular crystals with the decrease in the RH, and the hibschite with less chemically bound water will transform into katoite with more chemically bound water. In future research, the water migration and hydrate changes under different curing ages, drying processes, and coupling effects should be explored. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 6548 KB  
Article
Mineralogical, Geochemical, and Rock Mechanic Characteristics of Zeolite-Bearing Rocks of the Hatrurim Basin, Israel
by Łukasz Kruszewski, Vyacheslav Palchik, Yevgeny Vapnik, Katarzyna Nowak, Kamila Banasik and Irina Galuskina
Minerals 2021, 11(10), 1062; https://doi.org/10.3390/min11101062 - 28 Sep 2021
Cited by 11 | Viewed by 4028
Abstract
The Hatrurim Basin, Israel, is located on the western border of the Dead Sea Transform. This is one of the localities of a unique pyrometamorphic complex whose genesis remains problematic. This paper deals with zeolite-bearing rock that is known in the Hatrurim Basin [...] Read more.
The Hatrurim Basin, Israel, is located on the western border of the Dead Sea Transform. This is one of the localities of a unique pyrometamorphic complex whose genesis remains problematic. This paper deals with zeolite-bearing rock that is known in the Hatrurim Basin only. The strata subjected to zeolitization is called the “olive unit” and consists of anorthite–pyroxene (diopside–esseneite) hornfels. Zeolitization occurred in an alkaline environment provided by the interaction of meteoric water with Portland-cement-like rocks of the Hatrurim Complex. The resulting zeolite-bearing rocks contain 20–30% zeolitic material. The main zeolitic minerals are calcic: thomsonite-Ca ± Sr, phillipsite-Ca, gismondine-Ca, and clinoptilolite-Ca. The remainder is calcite, diopsidic pyroxene, garnets (either Ti-andradite and/or hydrogrossular), and less frequently, fluorapatite, opal, and others. Their major mineralogical and chemical compositions resemble carbonated zeolite-blended Portland mortar. Rocks show different values of porosity. Their mechanical characteristics are much better for samples with porosity values below 24%. The related parameters are like those of blended concretes. The minimal age of zeolitization is 5 Ka. The natural zeolite-bearing rocks are resistant to weathering in the Levant desert climate. Full article
(This article belongs to the Topic Industrial Application of Clays and Clay Minerals)
Show Figures

Figure 1

18 pages, 4221 KB  
Article
Phase Composition of Silica Fume—Portland Cement Systems Formed under Hydrothermal Curing Evaluated by FTIR, XRD, and TGA
by Eva Kuzielová, Michal Slaný, Matúš Žemlička, Jiří Másilko and Martin Tchingnabé Palou
Materials 2021, 14(11), 2786; https://doi.org/10.3390/ma14112786 - 24 May 2021
Cited by 40 | Viewed by 4669
Abstract
Two substitution levels of Portland cement by silica fume (SF; 30 and 50 mass%) and three hydrothermal treatment regimes (0.5, 1.2, and 2 MPa and 165, 195, and 220 °C for 7 days, respectively) were selected for the investigation of high-temperature phase formation. [...] Read more.
Two substitution levels of Portland cement by silica fume (SF; 30 and 50 mass%) and three hydrothermal treatment regimes (0.5, 1.2, and 2 MPa and 165, 195, and 220 °C for 7 days, respectively) were selected for the investigation of high-temperature phase formation. A combination of thermogravimetric, X-ray diffraction, and Fourier transform infrared analyses in the mid-IR region was used to overcome the shortcomings of individual techniques for the identification of these complex systems. Changes in molecular water amounts, the polymerization degree of silicate chains, or their decomposition due to transformations and crystallization of phases at hydrothermal conditions were observed and discussed concerning composition. Contrary to the calciochondrite, hydrogrossular phases, α-C2SH, and jaffeite detected in the systems without SF, a decrease in CaO/SiO2 ratio resulted in the formation of stable tobermorite in the case of 30 mass% SF, whilst calcium hydrogen silicate, gyrolite, and cowlesite were identified as more thermally stable phases in the samples with 50 mass% SF. Full article
(This article belongs to the Special Issue Advances in Processing and Characterization of Mineral Materials)
Show Figures

Figure 1

17 pages, 7361 KB  
Article
Garnet-Vesuvianite Equilibrium in Rodingites from Dobšiná (Western Carpathians)
by Juraj Butek, Ján Spišiak and Stanislava Milovská
Minerals 2021, 11(2), 189; https://doi.org/10.3390/min11020189 - 11 Feb 2021
Cited by 7 | Viewed by 3437
Abstract
Intensively metasomatized rocks from serpentinized ultramafic tectonic fragments in Dobšiná, Western Carpathians, consist of typical rodingite mineral association: hydrated garnet, vesuvianite, diopside and clinochlore. Electron microprobe analysis (EMPA) and Micro-Raman analyses of the main minerals evidence complex mineralogical evolution and variable mineral chemistry. [...] Read more.
Intensively metasomatized rocks from serpentinized ultramafic tectonic fragments in Dobšiná, Western Carpathians, consist of typical rodingite mineral association: hydrated garnet, vesuvianite, diopside and clinochlore. Electron microprobe analysis (EMPA) and Micro-Raman analyses of the main minerals evidence complex mineralogical evolution and variable mineral chemistry. Garnet solid solution is dominated by grossular-andradite series, which demonstrates a significant degree of hydration, mainly for grossular rich garnet cores. Garnet is locally enriched in TiO2 (up to 13 wt%), possibly indicating a chemical relic of a Ti-oxide mineral. Younger, andradite-richer garnet rims demonstrate a low degree of hydration, suggesting a harder incorporation of an (OH) anion into its crystal structure. Garnet chemical variations display an ideal negative correlation between Al and (Fe3+ + Ti). The most recent mineral phase is represented by euhedral vesuvianite (± chlorite), which crystallizes at the expense of the garnet solid solution. This reaction shows a well-equilibrated character and indicates a high extent of rodingitization process. Chlorite thermometry models suggest an average temperature of late rodingite (trans) formation of about 265 °C. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop