Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = hydroponic fodder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3819 KB  
Article
Isolation, Identification, and Application of Endophytic Fungi from Lavandula stoechas L.: Mitigating Salinity Stress in Hydroponic Winter Cereal Fodder
by Carlos García-Latorre and María José Poblaciones
Agronomy 2024, 14(11), 2501; https://doi.org/10.3390/agronomy14112501 - 25 Oct 2024
Cited by 3 | Viewed by 1403
Abstract
Soil and irrigation water salinity is a growing global problem affecting farmland, due to poor agricultural practices and climate change, leading to reduced crop yields. Given the limited amount of arable land and the need to boost production, hydroponic systems offer a viable [...] Read more.
Soil and irrigation water salinity is a growing global problem affecting farmland, due to poor agricultural practices and climate change, leading to reduced crop yields. Given the limited amount of arable land and the need to boost production, hydroponic systems offer a viable solution. Additionally, endophytic fungi have been shown to mitigate salinity effects through symbiosis with plants. This study evaluated three endophytic fungi isolated from Lavandula stoechas L. in the grasslands of Extremadura (i.e., Diplodia corticola L11, Leptobacillium leptobactrum L15, and Cladosporium cladosporioides L16) for their ability to improve hydroponic forage production under saline conditions. In vitro experiments were conducted assessing plant growth promotion and fungal growth under salinity, followed by research evaluating the impact of fungal inoculation on hydroponic wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) forages irrigated with NaCl solutions (0, 100, and 200 mM). The results showed improved fungal growth and production of plant growth-promoting substances, which could explain the improved plant germination, shoot and root length, fresh and dry weight, and yield of inoculated plants growing under salinity. Plants inoculated with L15 or L16 showed the best performance overall. L15 demonstrated broader bioactivity in vitro, potentially explaining its superior performance in both wheat and barley growth. Conversely, L16 was more effective in barley, while L11 was beneficial in wheat but detrimental in barley. This study provides a preliminary exploration of the capabilities of these fungi and their optimization for hydroponic forage production. Full article
(This article belongs to the Special Issue Advances in Agricultural Engineering for a Sustainable Tomorrow)
Show Figures

Figure 1

17 pages, 3518 KB  
Article
Light Intensity Affects Growth and Nutrient Value of Hydroponic Barley Fodder
by Jinyu Yang, Jiusheng Sun, Xihe Wang and Bo Zhang
Agronomy 2024, 14(6), 1099; https://doi.org/10.3390/agronomy14061099 - 22 May 2024
Cited by 3 | Viewed by 4373
Abstract
Light intensity significantly influences plant growth in hydroponic green fodder systems, yet research exploring the growth dynamics and nutrient accumulation in hydroponically grown barley under various light conditions has been limited. This study investigated the impact of different light intensities—0, 100, 200, and [...] Read more.
Light intensity significantly influences plant growth in hydroponic green fodder systems, yet research exploring the growth dynamics and nutrient accumulation in hydroponically grown barley under various light conditions has been limited. This study investigated the impact of different light intensities—0, 100, 200, and 300 μmol/m2/s—on the nutritional composition and quality of hydroponic barley fodder. Assessments were made on biomass production, physiological responses including photosynthetic parameters, and nutritional components such as essential amino acids five days post-treatment. The findings indicated that increasing light intensity boosted photosynthetic activity, expanded leaf area, enhanced root length, and promoted biomass accumulation. However, the highest intensity tested, 300 μmol/m2/s, led to significant chlorophyll degradation, increased water loss, and induced oxidative stress, adversely affecting fodder quality and reducing essential amino acids. In contrast, an intensity of 200 μmol/m2/s was identified as optimal for promoting robust barley growth through principal component analysis. This optimal setting supported vigorous growth and ensured the production of nutrient-rich, high-quality fodder, providing a basis for scaling up production efficiently. This research offers crucial insights into optimizing light conditions to maximize both the yield and nutritional quality of hydroponically grown barley fodder, presenting a significant step forward in enhancing hydroponic farming practices. Full article
Show Figures

Figure 1

14 pages, 1620 KB  
Article
The Effect of the Mixing Ratio of Barley and Mung Bean Seeds on the Quality of Sprouted Green Fodder and Silage in a Hydroponic System
by Walid Soufan
Agronomy 2023, 13(9), 2301; https://doi.org/10.3390/agronomy13092301 - 31 Aug 2023
Cited by 3 | Viewed by 3388
Abstract
Securing good feed and sustaining production is one of the main pillars of the livestock production sector. However, this is difficult to achieve in many different environments or circumstances. The production of fodder in a hydroponic system allows for sustainable production throughout the [...] Read more.
Securing good feed and sustaining production is one of the main pillars of the livestock production sector. However, this is difficult to achieve in many different environments or circumstances. The production of fodder in a hydroponic system allows for sustainable production throughout the year and provides many benefits to the animal. However, ways must be found to improve the quality of hydroponic fodder and extend its shelf life. In this study, hydroponic barley fodder was produced by mixing it with mung bean seeds at different mixing ratios. In addition, silage was prepared from the resulting fodder by mixing it with barley straw to reduce the high moisture. The results of this study showed that the proportions of the components of nutritional value in the produced fodder were increased, especially the proportion of proteins, when the percentage of mung beans in the mixture was increased. In addition, the preservation of hydroponic fodder using the silage method resulted in obtaining a higher percentage of dry matter compared to fresh fodder and increased the preservation time. This brings many advantages to farmers and livestock producers, as well as researchers in the field, to expand the scope of experiments to other fodder mixtures and the sustainable production of good fodder in hydroponic systems. Full article
(This article belongs to the Special Issue Prospects for the Development of Silage and Green Fodder)
Show Figures

Figure 1

16 pages, 4964 KB  
Article
The Influence of Different Irrigation Scenarios on the Yield and Sustainability of Wheat Fodder under Hydroponic Conditions
by Andrius Grigas, Dainius Savickas, Dainius Steponavičius, Žygimantas Niekis and Jonas Balčiūnas
Agronomy 2023, 13(3), 860; https://doi.org/10.3390/agronomy13030860 - 15 Mar 2023
Cited by 2 | Viewed by 3311
Abstract
Agriculture uses more water than any other resource to produce animal feed and wastes much of it through inefficiency. One possible alternative to solve this problem is hydroponically grown animal fodder, which under hydroponic conditions can achieve optimal results and, most importantly, use [...] Read more.
Agriculture uses more water than any other resource to produce animal feed and wastes much of it through inefficiency. One possible alternative to solve this problem is hydroponically grown animal fodder, which under hydroponic conditions can achieve optimal results and, most importantly, use expensive resources, such as water, more efficiently. In the conducted research, different irrigation scenarios (IR1–IR6) were investigated when the water flow rate, irrigation frequency, and duration (IR1—1 l min−1, 4 times day−1, 120 s; IR2—2 l min−1, 4 times day−1, 120 s; IR3—3 l min−1, 4 times day−1, 120 s; IR4—1 l min−1, 8 times day−1, 60 s; IR5—2 l min−1, 8 times day−1, 60 s; and IR6—3 l min−1, 8 times day−1, 60 s) were changed during the hydroponic wheat fodder cultivation using a 7-day growth cycle. The results showed that the highest yield from the used seed was obtained in scenarios IR5 (5.95 ± 0.14 kg kg−1) and IR6 (5.91 ± 0.19 kg kg−1). In terms of frequency and irrigation duration, in IR1, IR2, and IR3, the average yield reached 4.7 ± 1.85 kg kg−1, and in scenarios IR4, IR5, and IR6, the average yield was 15.4% higher—5.55 ± 1.63 kg kg−1. The results obtained showed that by increasing the flow rate (from 1 l min−1 to 3 l min−1) and the frequency of irrigation (from 4 times day−1 to 8 times day−1), the yield increased by 32.5%, but the mass of the grown fodder per liter of water used simultaneously decreased by 50.6%. The life cycle assessment showed that although irrigation scenario IR4 had the most efficient use of water, the CO2 footprint per functional unit (FU) was the highest due to the lowest yield compared to the other five irrigation scenarios. The lowest environmental impacts per FU were obtained in scenarios IR5 and IR6 (100.5 ± 3.3 and 100.6 ± 2.4 kg CO2eq t−1, respectively). Full article
(This article belongs to the Special Issue Agricultural Automation and Innovative Agricultural Systems)
Show Figures

Figure 1

13 pages, 1318 KB  
Article
Water Use Efficiency and Economic Evaluation of the Hydroponic versus Conventional Cultivation Systems for Green Fodder Production in Saudi Arabia
by Nagat Ahmed Elmulthum, Faisal Ibrahim Zeineldin, Suliman Ali Al-Khateeb, Khalid Mohammed Al-Barrak, Tagelsir Ahmed Mohammed, Muhammad Naeem Sattar and Akbar S. Mohmand
Sustainability 2023, 15(1), 822; https://doi.org/10.3390/su15010822 - 3 Jan 2023
Cited by 19 | Viewed by 8203
Abstract
The current study is aimed to assess water use efficiency and evaluate economic viability of hydroponic and conventional production of barley green fodder by keeping in view the water scarcity challenges in Saudi Arabia. A hydroponic system and open field experimental plot was [...] Read more.
The current study is aimed to assess water use efficiency and evaluate economic viability of hydroponic and conventional production of barley green fodder by keeping in view the water scarcity challenges in Saudi Arabia. A hydroponic system and open field experimental plot was used to evaluate the water use efficiency for different irrigation regimes. Economic indicators for both production systems are estimated and compared to accomplish economic assessment. Estimated indicators include returns from inputs and net profit; benefit-cost ratio; break-even levels of prices, production, and yield; returns over variable cost; and returns on investment. Results indicated that the yield of barley green fodder produced under hydroponic conditions overtopped the yield under conventional cultivation. Under hydroponic and conventional conditions, WUE was decreased with increasing the harvesting date. However, WUE for the hydroponic technique was much higher than the conventional one. The returns and net profits supported the conventional cultivation methods, where lower dry matter content coupled with higher fixed and variable costs incurred by the hydroponic technique outweighed returns leading to economic loss. Cost-benefit ratios, returns over investment, and break-even prices and yield suggested that growing barley fodder under the hydroponic technique is economically not suitable for small-scale farming. However, regarding water conservation, hydroponic barley cultivation showed superiority over conventional field cultivation. Further research on the adoption of hydroponic fodder cultivation is highly recommended for water-scarce arid regions, such as the Kingdom of Saudi Arabia. Full article
Show Figures

Figure 1

17 pages, 3737 KB  
Article
Editing of a Novel Cd Uptake-Related Gene CUP1 Contributes to Reducing Cd Accumulations in Arabidopsis thaliana and Brassica napus
by Junyu Yao, Jiuyuan Bai, Sha Liu, Jingyan Fu, Ying Zhang, Tianshun Luo, Hongpei Ren, Rui Wang and Yun Zhao
Cells 2022, 11(23), 3888; https://doi.org/10.3390/cells11233888 - 1 Dec 2022
Cited by 13 | Viewed by 2771
Abstract
Brassica napus is a Cd hyperaccumulator, which is a serious threat to food and fodder safety. However, no related studies on developing Cd-safe B. napus have been reported yet. Here, we screened out a novel Cd uptake-related gene, AtCUP1, from the major facilitator [...] Read more.
Brassica napus is a Cd hyperaccumulator, which is a serious threat to food and fodder safety. However, no related studies on developing Cd-safe B. napus have been reported yet. Here, we screened out a novel Cd uptake-related gene, AtCUP1, from the major facilitator superfamily in Arabidopsis thaliana. The mutation of AtCUP1 decreased Cd accumulation, both in roots and shoots of A. thaliana. Furthermore, the disruption of the AtCUP1 gene by the CRISPR/Cas9 system significantly reduced Cd accumulation in A. thaliana. Interestingly, the disruption of the BnCUP1 gene, an orthologous gene of AtCUP1, by the CRISPR/Cas9 system also diminished Cd accumulation in both roots and shoots of B. napus based on the hydroponics assay. Furthermore, for the field experiment, the Cd accumulations of BnCUP1-edited lines were reduced by 52% in roots and 77% in shoots compared to that of wild-type (WT) lines, and the biomass and yield of BnCUP1-edited lines increased by 42% and 47% of that of WT, respectively. Noteworthily, agronomic characteristics of B. napus were not apparently affected by BnCUP1-editing. Thus, BnCUP1-edited lines are excellent non-transgenic germplasm resources for reducing Cd accumulation without a distinct compromise in yield, which could be applied to agricultural production in Cd-contaminated soils. Full article
(This article belongs to the Special Issue Plant Genome Editing: State-of-the-Art and Perspectives in China)
Show Figures

Figure 1

17 pages, 2633 KB  
Article
Impact of Slope of Growing Trays on Productivity of Wheat Green Fodder by a Nutrient Film Technique System
by Andrius Grigas, Aurelija Kemzūraitė, Dainius Steponavičius, Aušra Steponavičienė and Rolandas Domeika
Water 2020, 12(11), 3009; https://doi.org/10.3390/w12113009 - 27 Oct 2020
Cited by 13 | Viewed by 8120
Abstract
Application of hydroponic systems in feed production has not been extensively studied. Therefore, there is insufficient data on the effect of the slope of hydroponic growing trays used in the nutrient film technique on wheat fodder yield and its qualitative parameters. The slope [...] Read more.
Application of hydroponic systems in feed production has not been extensively studied. Therefore, there is insufficient data on the effect of the slope of hydroponic growing trays used in the nutrient film technique on wheat fodder yield and its qualitative parameters. The slope of the trays has only been studied for food crops. This study conducted experimental research using a nutrient film technique hydroponic fodder growing device to evaluate the impact of growing tray slope angle on hydroponic wheat fodder production. The slope angle of the growing trays was changed from 2.0% (1.15°) to 8.0% (4.57°) with increments of 1.5% (0.86°). This research used two different light sources for wheat sprout illumination: indoor lighting (fluorescent lamps) and light-emitting diode illumination. In addition, two nutrient solutions were used for sprout irrigation: tap water and a solution enriched with macro- and microelements. Experimental studies confirmed the hypothesis that the slope angle of growing trays significantly affects the yield of wheat fodder grown for seven days. Analyzing the results, we found that the highest yield of wheat fodder after seven days of cultivation was achieved with growing trays sloped by 6.5% and using indoor lighting. In addition, we achieved the highest wheat fodder dry matter content using a 6.5% slope angle. Experimental studies also confirmed the hypothesis that using macro- and micronutrients in the nutrient solution does not significantly affect the yield of wheat fodder grown hydroponically for seven days. Full article
(This article belongs to the Special Issue Hydroponics and Controlled Environment Agriculture)
Show Figures

Graphical abstract

Back to TopTop