Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hydrotropic treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1699 KB  
Article
ATP, the 31P Spectral Modulus, and Metabolism
by Jack V. Greiner and Thomas Glonek
Metabolites 2024, 14(8), 456; https://doi.org/10.3390/metabo14080456 - 18 Aug 2024
Cited by 2 | Viewed by 2156
Abstract
Adenosine triphosphate (ATP) has a high intracellular millimolar concentration (ca. 2.4 mM) throughout the phylogenetic spectrum of eukaryotes, archaea, and prokaryotes. In addition, the function of ATP as a hydrotrope in the prevention of protein aggregation and maintenance of protein solubilization [...] Read more.
Adenosine triphosphate (ATP) has a high intracellular millimolar concentration (ca. 2.4 mM) throughout the phylogenetic spectrum of eukaryotes, archaea, and prokaryotes. In addition, the function of ATP as a hydrotrope in the prevention of protein aggregation and maintenance of protein solubilization is essential to cellular, tissue, and organ homeostasis. The 31P spectral modulus (PSM) is a measure of the health status of cell, tissue, and organ systems, as well as of ATP, and it is based on in vivo 31P nuclear magnetic resonance (31P NMR) spectra. The PSM is calculated by dividing the area of the 31P NMR integral curve representing the high-energy phosphates by that of the low-energy phosphates. Unlike the difficulties encountered in measuring organophosphates such as ATP or any other phosphorylated metabolites in a conventional 31P NMR spectrum or in processed tissue samples, in vivo PSM measurements are possible with NMR surface-coil technology. The PSM does not rely on the resolution of individual metabolite signals but uses the total area derived from each of the NMR integral curves of the above-described spectral regions. Calculation is based on a simple ratio of the high- and low-energy phosphate bands, which are conveniently arranged in the high- and low-field portions of the 31P NMR spectrum. In practice, there is essentially no signal overlap between these two regions, with the dividing point being ca. −3 δ. ATP is the principal contributor to the maintenance of an elevated PSM that is typically observed in healthy systems. The purpose of this study is to demonstrate that (1) in general, the higher the metabolic activity, the higher the 31P spectral modulus, and (2) the modulus calculation does not require highly resolved 31P spectral signals and thus can even be used with reduced signal-to-noise spectra such as those detected as a result of in vivo analyses or those that may be obtained during a clinical MRI examination. With increasing metabolic stress or maturation of metabolic disease in cells, tissues, or organ systems, the PSM index declines; alternatively, with decreasing stress or resolution of disease states, the PSM increases. The PSM can serve to monitor normal homeostasis as a diagnostic tool and may be used to monitor disease processes with and without interventional treatment. Full article
Show Figures

Figure 1

16 pages, 2472 KB  
Article
Cellulosic Ethanol Production Using Waste Wheat Stillage after Microwave-Assisted Hydrotropic Pretreatment
by Grzegorz Kłosowski, Dawid Mikulski, Prashant Bhagwat and Santhosh Pillai
Molecules 2022, 27(18), 6097; https://doi.org/10.3390/molecules27186097 - 18 Sep 2022
Cited by 5 | Viewed by 2601
Abstract
One of the key elements influencing the efficiency of cellulosic ethanol production is the effective pretreatment of lignocellulosic biomass. The aim of the study was to evaluate the effect of microwave-assisted pretreatment of wheat stillage in the presence of sodium cumene sulphonate (NaCS) [...] Read more.
One of the key elements influencing the efficiency of cellulosic ethanol production is the effective pretreatment of lignocellulosic biomass. The aim of the study was to evaluate the effect of microwave-assisted pretreatment of wheat stillage in the presence of sodium cumene sulphonate (NaCS) hydrotrope used for the production of second-generation bioethanol. As a result of microwave pretreatment, the composition of the wheat stillage biomass changed significantly when compared with the raw material used, before treatment. Microwave-assisted pretreatment with NaCS effectively reduced the lignin content and hemicellulose, making cellulose the dominant component of biomass, which accounted for 42.91 ± 0.10%. In post pretreatment, changes in biomass composition were also visible on FTIR spectra. The peaks of functional groups and bonds characteristic of lignins (C–O vibration in the syringyl ring, asymmetric bending in CH3, and aromatic skeleton C–C stretching) decreased. The pretreatment of the analyzed lignocellulosic raw material with NaCS resulted in the complete conversion of glucose to ethanol after 48 h of the process, with yield (in relation to the theoretical one) of above 91%. The highest observed concentration of ethanol, 23.57 ± 0.10 g/L, indicated the high effectiveness of the method used for the pretreatment of wheat stillage that did not require additional nutrient supplementation. Full article
(This article belongs to the Topic Sustainable Approaches for Biofuels from Waste Materials)
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

12 pages, 3468 KB  
Article
Characterization of Microstructure, Chemical, and Physical Properties of Delignified and Densified Poplar Wood
by Jiajun Wang, Junliang Liu, Jianzhang Li and J. Y. Zhu
Materials 2021, 14(19), 5709; https://doi.org/10.3390/ma14195709 - 30 Sep 2021
Cited by 34 | Viewed by 3838
Abstract
Wood is an attractive and inherently sustainable alternative to many conventional materials. Recent research on improving wood mechanical strength emphasizes wood densification through the partial removal of lignin and hemicelluloses, therefore the chemical and physical properties of delignified and densified wood require further [...] Read more.
Wood is an attractive and inherently sustainable alternative to many conventional materials. Recent research on improving wood mechanical strength emphasizes wood densification through the partial removal of lignin and hemicelluloses, therefore the chemical and physical properties of delignified and densified wood require further investigation. In this study, poplar wood samples were subjected to alkali and maleic acid hydrotropic delignification with varying degrees of lignin and hemicellulose removal followed by hot pressing, and the microstructure, chemical properties, and dimensional stability of densified wood through delignification were evaluated. The results showed that the complete wood cell collapse was observed near the surface of all the delignified wood blocks, as well as some micro-cracks in the cell walls. The chemical analysis indicated that delignification occurred mainly near the surface of the wood blocks and enhanced hydrogen bonding among the aligned cellulose fibers. For dimensional stability, the set recovery decreased with the increase in alkali dosage, and the considerable fixation of compressive deformation was obtained by a post-densification hydrothermal treatment at 180 °C. These results have demonstrated that the densified wood with delignification can be easily fabricated using the proposed method, and the densified wood exhibited great potential to be used as a sustainable material. Full article
Show Figures

Figure 1

11 pages, 2490 KB  
Article
Valorization of Alkaline Peroxide Mechanical Pulp by Metal Chloride-Assisted Hydrotropic Pretreatment for Enzymatic Saccharification and Cellulose Nanofibrillation
by Huiyang Bian, Xinxing Wu, Jing Luo, Yongzhen Qiao, Guigan Fang and Hongqi Dai
Polymers 2019, 11(2), 331; https://doi.org/10.3390/polym11020331 - 14 Feb 2019
Cited by 15 | Viewed by 4562
Abstract
Developing economical and sustainable fractionation technology of lignocellulose cell walls is the key to reaping the full benefits of lignocellulosic biomass. This study evaluated the potential of metal chloride-assisted p-toluenesulfonic acid (p-TsOH) hydrolysis at low temperatures and under acid concentration [...] Read more.
Developing economical and sustainable fractionation technology of lignocellulose cell walls is the key to reaping the full benefits of lignocellulosic biomass. This study evaluated the potential of metal chloride-assisted p-toluenesulfonic acid (p-TsOH) hydrolysis at low temperatures and under acid concentration for the co-production of sugars and lignocellulosic nanofibrils (LCNF). The results indicated that three metal chlorides obviously facilitated lignin solubilization, thereby enhancing the enzymatic hydrolysis efficiency and subsequent cellulose nanofibrillation. The CuCl2-assisted hydrotropic pretreatment was most suitable for delignification, resulting in a relatively higher enzymatic hydrolysis efficiency of 53.2%. It was observed that the higher residual lignin absorbed on the fiber surface, which exerted inhibitory effects on the enzymatic hydrolysis, while the lower lignin content substrates resulted in less entangled LCNF with thinner diameters. The metal chloride-assisted rapid and low-temperature fractionation process has a significant potential in achieving the energy-efficient and cost-effective valorization of lignocellulosic biomass. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Engineered Green Materials)
Show Figures

Graphical abstract

Back to TopTop