Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = ice model basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8105 KB  
Article
Monitoring Critical Mountain Vertical Zonation in the Surkhan River Basin Based on a Comparative Analysis of Multi-Source Remote Sensing Features
by Wenhao Liu, Hong Wan, Peng Guo and Xinyuan Wang
Remote Sens. 2025, 17(15), 2612; https://doi.org/10.3390/rs17152612 - 27 Jul 2025
Viewed by 568
Abstract
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is [...] Read more.
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is located in the transitional zone between the arid inland regions of Central Asia and the mountain systems, where its unique physical and geographical conditions have shaped distinct patterns of vertical zonation. Utilizing Landsat imagery, this study applies a hierarchical classification approach to derive land cover classifications within the Surkhan River Basin. By integrating the NDVI (normalized difference vegetation index) and DEM (digital elevation model (30 m SRTM)), an “NDVI-DEM-Land Cover” scatterplot is constructed to analyze zonation characteristics from 1980 to 2020. The 2020 results indicate that the elevation boundary between the temperate desert and mountain grassland zones is 1100 m, while the boundary between the alpine cushion vegetation zone and the ice/snow zone is 3770 m. Furthermore, leveraging DEM and LST (land surface temperature) data, a potential energy analysis model is employed to quantify potential energy differentials between adjacent zones, enabling the identification of ecological transition areas. The potential energy analysis further refines the transition zone characteristics, indicating that the transition zone between the temperate desert and mountain grassland zones spans 1078–1139 m with a boundary at 1110 m, while the transition between the alpine cushion vegetation and ice/snow zones spans 3729–3824 m with a boundary at 3768 m. Cross-validation with scatterplot results confirms that the scatterplot analysis effectively delineates stable zonation boundaries with strong spatiotemporal consistency. Moreover, the potential energy analysis offers deeper insights into ecological transition zones, providing refined boundary identification. The integration of these two approaches addresses the dimensional limitations of traditional vertical zonation studies, offering a transferable methodological framework for mountain ecosystem research. Full article
(This article belongs to the Special Issue Temporal and Spatial Analysis of Multi-Source Remote Sensing Images)
Show Figures

Figure 1

26 pages, 5129 KB  
Article
HEC-RAS-Based Evaluation of Water Supply Reliability in the Dry Season of a Cold-Region Reservoir in Mudanjiang, Northeast China
by Peng-Fei Lu, Chang-Lei Dai, Yuan-Ming Wang, Xiao Yang and Xin-Yu Wang
Sustainability 2025, 17(14), 6302; https://doi.org/10.3390/su17146302 - 9 Jul 2025
Cited by 1 | Viewed by 609
Abstract
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking [...] Read more.
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking Linhai Reservoir as the core, it integrates the HEC-RAS hydrodynamic model with multi-source data such as basin topography, hydro-meteorological data, and water conservancy project parameters to construct a multi-scenario water supply scheduling model during the dry season. The aim is to provide scientific recommendations for different reservoir operation strategies in response to varying frequencies of upstream inflow, based on simulations conducted after the reservoir’s completion. Taking into account winter runoff reduction characteristics and engineering parameters, we simulated the relationships between water level and flow, ecological flow requirements, and urban water shortages. The results indicate that in both flood and normal years, dynamic coordination of storage and discharge can achieve a daily water supply of 120,000 cubic meters, with 100% compliance for the ecological flow rate. For mild and moderate drought years, additional water diversion becomes necessary to achieve 93.5% and 89% supply reliability, respectively. During severe and extreme droughts, significantly reduced reservoir inflows lower ecological compliance rates, necessitating emergency measures, such as utilizing dead storage capacity and exploring alternative water sources. The study proposes operational strategies tailored to different drought intensities: initiating storage adjustments in September for mild droughts and implementing peak-shifting measures by mid-October for extreme droughts. These approaches enhance storage efficiency and mitigate ice blockage risks. This research supports the water supply security and river ecological health of urban and rural areas in Mudanjiang City and Hailin City and provides a certain scientific reference basis for the multi-objective coordinated operation of reservoirs in the same type of high-latitude cold regions. Full article
Show Figures

Figure 1

18 pages, 5615 KB  
Article
Experimental Investigation on IceBreaking Resistance and Ice Load Distribution for Comparison of Icebreaker Bows
by Xuhao Gang, Yukui Tian, Chaoge Yu, Ying Kou and Weihang Zhao
J. Mar. Sci. Eng. 2025, 13(6), 1190; https://doi.org/10.3390/jmse13061190 - 18 Jun 2025
Viewed by 3617
Abstract
During icebreaker navigation in ice-covered waters, icebreaking resistance and dynamic ice loads acting on the bow critically determine the vessel’s icebreaking performance. Quantitative characterization of the icebreaking resistance behavior and ice load distribution on the bow is essential for elucidating ship-ice interaction mechanisms, [...] Read more.
During icebreaker navigation in ice-covered waters, icebreaking resistance and dynamic ice loads acting on the bow critically determine the vessel’s icebreaking performance. Quantitative characterization of the icebreaking resistance behavior and ice load distribution on the bow is essential for elucidating ship-ice interaction mechanisms, assessing icebreaking capability, and optimizing structural design. This study conducted comparative icebreaking tests on two icebreaker bow models with distinct geometries in the small ice model basin of China Ship Scientific Research Center (CSSRC SIMB). Systematic measurements were performed to quantify icebreaking resistance, capture spatiotemporal ice load distributions, and document ice failure patterns under level ice conditions. The analysis reveals that bow geometry profoundly influences icebreaking efficiency: the stem angle governs the proportion of bending failure during vertical ice penetration, while the flare angle modulates circumferential failure modes along the hull-ice interface. Notably, the sunken keel configuration enhances ice clearance by mechanically expelling fractured ice blocks. Ice load distributions exhibit pronounced nonlinearity, with localized pressure concentrations and stochastic load center migration driven by ice fracture dynamics. Furthermore, icebreaking patterns—such as fractured ice dimensions and kinematic behavior during ship-ice interaction—are quantitatively correlated with the bow designs. These experimentally validated findings provide critical insights into ice-structure interaction physics, offering an empirical foundation for performance prediction and bow-form optimization in the preliminary design of icebreakers. Full article
Show Figures

Figure 1

21 pages, 6509 KB  
Article
Assessing Increased Glacier Ablation Sensitivity to Climate Warming Using Degree-Day Method in the West Nyainqentanglha Range, Qinghai–Tibet Plateau
by Shuhong Wang, Jintao Liu, Hamish D. Pritchard, Xiao Qiao, Jie Zhang, Xuhui Shen and Wenyan Qi
Sustainability 2025, 17(11), 5143; https://doi.org/10.3390/su17115143 - 3 Jun 2025
Viewed by 626
Abstract
Limited surface energy and mass flux data hinder the understanding of glacier retreat mechanisms on the Qinghai–Tibet Plateau (QTP). Glaciers in the west Nyainqentanglha Range (WNR) supply meltwater to the densely populated Lhasa River basin (LRB) and Nam Co, the QTP’s second-largest endorheic [...] Read more.
Limited surface energy and mass flux data hinder the understanding of glacier retreat mechanisms on the Qinghai–Tibet Plateau (QTP). Glaciers in the west Nyainqentanglha Range (WNR) supply meltwater to the densely populated Lhasa River basin (LRB) and Nam Co, the QTP’s second-largest endorheic lake. In this study, we used a glacier mass balance model based on the degree-day method (GMB-DDM) to understand the response of glacier changes to climate warming. The spatiotemporal variation in degree-day factors for ice (DDFice; plural form: DDFsice) was assessed to characterize the sensitivity of glacier melt to warming over 44 years in the WNR. Our results demonstrate that the GMB_DDM effectively captured the accelerated mass loss and regional heterogeneity of WNR glaciers from 2000 to 2020, particularly the intensified negative balance after 2014. Moreover, glacier ablation was more sensitive to warming in the WNR during 2000–2020 than 1976–2000, with DDFice increases of 21% ± 8% in the LRB and 31% ± 10% in the Nam Co basin (NCB). Increased precipitation during the ablation season and reduced glacier surface albedo can explain the increased sensitivity to warming during 2000–2020. These findings could support sustainable water resource management in the LRB, NCB, and the surrounding areas of the QTP. Full article
Show Figures

Graphical abstract

13 pages, 3225 KB  
Article
Glacier Retreat and Groundwater Recharge in Central Chile: Analysis to Inform Decision-Making for Sustainable Water Resources Management
by Verónica Urbina, Roberto Pizarro, Solange Jara, Paulina López, Alfredo Ibáñez, Claudia Sangüesa, Cristóbal Toledo, Madeleine Guillen, Héctor L. Venegas-Quiñones, Francisco Alejo, John E. McCray and Pablo A. Garcia-Chevesich
Sustainability 2025, 17(11), 4993; https://doi.org/10.3390/su17114993 - 29 May 2025
Viewed by 1657
Abstract
Glaciers worldwide are in retreat, and their meltwater can modulate mountain aquifers. We examined whether mass loss of the Juncal Norte Glacier (central Chile) has affected groundwater storage in the Juncal River basin between 1990 and 2022. Recession-curve modeling of daily streamflow shows [...] Read more.
Glaciers worldwide are in retreat, and their meltwater can modulate mountain aquifers. We examined whether mass loss of the Juncal Norte Glacier (central Chile) has affected groundwater storage in the Juncal River basin between 1990 and 2022. Recession-curve modeling of daily streamflow shows no statistically significant trend in basin-scale groundwater reserves (τ = 0.06, p > 0.05). In contrast, glacier volume declined significantly (−3.8 hm3/yr, p < 0.05), and precipitation at the nearby Riecillos station fell sharply during the 2008–2017 megadrought (p < 0.05) but exhibited no significant change beforehand. Given the simultaneous decreases in meteoric inputs (rain + snow) and glacier mass, one would expect groundwater storage to decline; its observed stability therefore suggests that enhanced glacier-melt recharge may be temporarily offsetting drier conditions. Isotopic evidence from comparable Andean catchments supports such glacio-groundwater coupling, although time lags of months to years complicate detection with recession models alone. Hence, while our results do not yet demonstrate a direct glacier–groundwater link, they are consistent with the hypothesis that ongoing ice loss is buffering aquifer storage. Longer records and tracer studies are required to verify this mechanism and to inform sustainable water resources planning. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

22 pages, 9142 KB  
Article
Downscaling and Gap-Filling GRACE-Based Terrestrial Water Storage Anomalies in the Qinghai–Tibet Plateau Using Deep Learning and Multi-Source Data
by Jun Chen, Linsong Wang, Chao Chen and Zhenran Peng
Remote Sens. 2025, 17(8), 1333; https://doi.org/10.3390/rs17081333 - 8 Apr 2025
Cited by 1 | Viewed by 1369
Abstract
The Qinghai–Tibet Plateau (QTP), a critical hydrological regulator for Asia through its extensive glacier systems, high-altitude lakes, and intricate network of rivers, exhibits amplified sensitivity to climate-driven alterations in precipitation regimes and ice mass balance. While the Gravity Recovery and Climate Experiment (GRACE) [...] Read more.
The Qinghai–Tibet Plateau (QTP), a critical hydrological regulator for Asia through its extensive glacier systems, high-altitude lakes, and intricate network of rivers, exhibits amplified sensitivity to climate-driven alterations in precipitation regimes and ice mass balance. While the Gravity Recovery and Climate Experiment (GRACE) and its Follow-On (GRACE-FO) missions have revolutionized monitoring of terrestrial water storage anomalies (TWSAs) across this hydrologically sensitive region, spatial resolution limitations (3°, equivalent to ~300 km) constrain process-scale analysis, compounded by mission temporal discontinuity (data gaps). In this study, we present a novel downscaling framework integrating temporal gap compensation and spatial refinement to a 0.25° resolution through Gated Recurrent Unit (GRU) neural networks, an architecture optimized for univariate time series modeling. Through the assimilation of multi-source hydrological parameters (glacier mass flux, cryosphere–precipitation interactions, and land surface processes), the GRU-based result resolves nonlinear storage dynamics while bridging inter-mission observational gaps. Grid-level implementation preserves mass conservation principles across heterogeneous topographies, successfully reconstructing seasonal-to-interannual TWSA variability and also its long-term trends. Comparative validation against GRACE mascon solutions and process-based hydrological models demonstrates enhanced capacity in resolving sub-basin heterogeneity. This GRU-derived high-resolution TWSA is especially valuable for dissecting local variability in areas such as the Brahmaputra Basin, where complex water cycling can affect downstream water security. Our study provides transferable methodologies for mountainous hydrogeodesy analysis under evolving climate regimes. Future enhancements through physics-informed deep learning and next-generation climatology–hydrology–gravimetry synergy (e.g., observations and models) could further constrain uncertainties in extreme elevation zones, advancing the predictive understanding of Asia’s water tower sustainability. Full article
Show Figures

Graphical abstract

17 pages, 2706 KB  
Article
Multi-Objective Optimization of Two Cascade Reservoirs on the Upper Yellow River During Different Intra-Annual Periods
by Kunhui Hong, Aixing Ma, Wei Zhang and Mingxiong Cao
Sustainability 2025, 17(5), 2238; https://doi.org/10.3390/su17052238 - 4 Mar 2025
Viewed by 957
Abstract
Due to water scarcity in the Yellow River basin, the existing operations for the Longyangxia and Liujiashan cascade reservoirs are insufficient to meet the demands of multiple objectives. This study establishes a coupled coordination model considering hydropower generation, water supply, and storage capacity [...] Read more.
Due to water scarcity in the Yellow River basin, the existing operations for the Longyangxia and Liujiashan cascade reservoirs are insufficient to meet the demands of multiple objectives. This study establishes a coupled coordination model considering hydropower generation, water supply, and storage capacity at different periods during the year. At the same time, the model quantifies the impact of scheduling strategies on multiple objectives and determines the optimal operation for reservoirs at different periods. The results indicate that the scheduling strategy of the Longyangxia reservoir dominates the changes in hydropower generation, water supply, and storage capacity. Specifically, during the ice flood control period, the scenario of continuous release from Longyangxia and continuous storage at Liujiaxia achieves 1.26 billion kWh of hydropower generation, with a water supply shortage rate of 8.67%; During the non-flood period, releasing water from Longyangxia in April and May and storing it in June while Liujiaxia continuously releases water results in 4.68 billion kWh of hydropower generation and a shortage rate of 1.61%. During the flood control period, continuous storage at Longyangxia and controlling the water level of Liujiashan within flood control limits, with storage in September and release in October, achieves 5.65 billion kWh of hydropower generation and a shortage rate of 0%. Full article
Show Figures

Figure 1

14 pages, 8944 KB  
Article
Computation of the Digital Elevation Model and Ice Dynamics of Talos Dome and the Frontier Mountain Region (North Victoria Land/Antarctica) by Synthetic-Aperture Radar (SAR) Interferometry
by Paolo Sterzai, Nicola Creati and Antonio Zanutta
Glacies 2025, 2(1), 3; https://doi.org/10.3390/glacies2010003 - 12 Feb 2025
Cited by 1 | Viewed by 867
Abstract
In Antarctica, SAR interferometry has largely been used in coastal glacial areas, while in rare cases this method has been used on the Antarctic plateau. In this paper, the authors present a digital elevation and ice flow map based on SAR interferometry for [...] Read more.
In Antarctica, SAR interferometry has largely been used in coastal glacial areas, while in rare cases this method has been used on the Antarctic plateau. In this paper, the authors present a digital elevation and ice flow map based on SAR interferometry for an area encompassing Talos Dome (TD) and the Frontier Mountain (FM) meteorite site in North Victoria Land/Antarctica. A digital elevation model (DEM) was calculated using a double SAR interferometry method. The DEM of the region was calculated by extracting approximately 100 control points from the Reference Elevation Model of Antarctica (REMA). The two DEMs differ slightly in some areas, probably due to the penetration of the SAR-C band signal into the cold firn. The largest differences are found in the western area of TD, where the radar penetration is more pronounced and fits well with the layer structures calculated by the georadar and the snow accumulation observations. By differentiating a 70-day interferogram with the calculated DEM, a displacement interferogram was calculated that represents the ice dynamics. The resulting ice flow pattern clearly shows the catchment areas of the Priestley and Rennick Glaciers as well as the ice flow from the west towards Wilkes Basin. The ice velocity field was analysed in the area of FM. This area has become well known due to the search for meteorites. The velocity field in combination with the calculated DEM confirms the generally accepted theories about the accumulation of meteorites over the Antarctic Plateau. Full article
Show Figures

Figure 1

16 pages, 5925 KB  
Article
Revealing Water Storage Changes and Ecological Water Conveyance Benefits in the Tarim River Basin over the Past 20 Years Based on GRACE/GRACE-FO
by Weicheng Sun and Xingfu Zhang
Remote Sens. 2024, 16(23), 4355; https://doi.org/10.3390/rs16234355 - 22 Nov 2024
Cited by 3 | Viewed by 1511
Abstract
As China’s largest inland river basin and one of the world’s most arid regions, the Tarim River Basin is home to an extremely fragile ecological environment. Therefore, monitoring the water storage changes is critical for enhancing water resources management and improving hydrological policies [...] Read more.
As China’s largest inland river basin and one of the world’s most arid regions, the Tarim River Basin is home to an extremely fragile ecological environment. Therefore, monitoring the water storage changes is critical for enhancing water resources management and improving hydrological policies to ensure sustainable development. This study reveals the spatiotemporal changes of water storage and its driving factors in the Tarim River Basin from 2002 to 2022, utilizing data from GRACE, GRACE-FO (GFO), GLDAS, the glacier model, and measured hydrological data. In addition, we validate GRACE/GFO data as a novel resource that can monitor the ecological water conveyance (EWC) benefits effectively in the lower reaches of the basin. The results reveal that (1) the northern Tarim River Basin has experienced a significant decline in terrestrial water storage (TWS), with an overall deficit that appears to have accelerated in recent years. From April 2002 to December 2009, the groundwater storage (GWS) anomaly accounted for 87.5% of the TWS anomaly, while from January 2010 to January 2020, the ice water storage (IWS) anomaly contributed 57.1% to the TWS anomaly. (2) The TWS changes in the Tarim River Basin are primarily attributed to the changes of GWS and IWS, and they have the highest correlation with precipitation and evapotranspiration, with grey relation analysis (GRA) coefficients of 0.74 and 0.68, respectively, while the human factors mainly affect GWS, with an average GRA coefficient of 0.64. (3) In assessing ecological water conveyance (EWC) benefits, the GRACE/GFO-derived TWS anomaly in the lower reaches of the Tarim River exhibits a good correspondence with the changes of EWC, NDVI, and groundwater levels. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Graphical abstract

20 pages, 8835 KB  
Article
Origin of Intercrystalline Brine Formation in the Balun Mahai Basin, Qaidam: Constraints from Geochemistry and H-O-Sr Isotopes
by Ning Feng, Xiwei Qin, Yuliang Ma, Tong Pan, Jianzhou Chen, Chengwang Ding, Ziwen Jiang, Dong Zhang, Chenglin Liu, Qingkuan Li, Erfeng Ren and Fan Zhang
Water 2024, 16(22), 3286; https://doi.org/10.3390/w16223286 - 15 Nov 2024
Viewed by 1229
Abstract
The Balun Mahai Basin (BLMH), located in the northern Qaidam Basin (QB), is endowed with substantial brine resources; however, the genetic mechanisms and potential of these brine resources remain inadequately understood. This study investigated the intercrystalline brine (inter-brine) in BLMH, performing a comprehensive [...] Read more.
The Balun Mahai Basin (BLMH), located in the northern Qaidam Basin (QB), is endowed with substantial brine resources; however, the genetic mechanisms and potential of these brine resources remain inadequately understood. This study investigated the intercrystalline brine (inter-brine) in BLMH, performing a comprehensive geochemical analysis of elemental compositions and H-O-Sr isotopes. It evaluated the water source, solute origin, evolutionary process, and genetic model associated with this brine. Moreover, a mass balance equation based on the 87Sr/86Sr isotopic ratio was developed to quantitatively evaluate the contributions of Ca-Cl water and river water to the inter-brine in the study area. The results suggest that the hydrochemical type of inter-brine in the north part of BLMH is Cl-SO4-type and in the south part is Ca-Cl-type. The solutes in brine are mainly derived from the dissolution of minerals such as halite, sylvite, and gypsum. The hydrochemical process of brine is controlled by evaporation concentration, water–rock interaction, and ion exchange interaction. Hydrogen and oxygen isotopes suggest that the inter-brine originates from atmospheric precipitation or ice melt water and has experienced intense evaporation concentration and water–rock interaction. The strontium isotopes suggest that the inter-brine was affected by the recharge and mixing of Ca-Cl water and river water, which controlled the spatial distribution and formation of brine hydrochemical types. The analysis of ionic ratios suggest that the inter-brine is derived from salt dissolution and filtration, characterized by poor sealing and short sealing time in the salt-bearing formation. The differences in hydrochemical types and spatial distribution between the north and the south are fundamentally related to the replenishment and mixing of these two sources, which can be summarized as mixed origin model of “dissolution and filtration replenishment + deep replenishment” in BLMH. Full article
(This article belongs to the Special Issue Saline Water and Brine Geochemistry)
Show Figures

Figure 1

19 pages, 20524 KB  
Article
Comparison of Multiple Methods for Supraglacial Melt-Lake Volume Estimation in Western Greenland During the 2021 Summer Melt Season
by Nathan Rowley, Wesley Rancher and Christopher Karmosky
Glacies 2024, 1(2), 92-110; https://doi.org/10.3390/glacies1020007 - 6 Nov 2024
Viewed by 1520
Abstract
Supraglacial melt-lakes form and evolve along the western edge of the Greenland Ice Sheet and have proven to play a significant role in ice sheet surface hydrology and mass balance. Prior methods to quantify melt-lake volume have relied upon Landsat-8 optical imagery, available [...] Read more.
Supraglacial melt-lakes form and evolve along the western edge of the Greenland Ice Sheet and have proven to play a significant role in ice sheet surface hydrology and mass balance. Prior methods to quantify melt-lake volume have relied upon Landsat-8 optical imagery, available at 30 m spatial resolution but with temporal resolution limited by satellite overpass times and cloud cover. We propose two novel methods to quantify the volume of meltwater stored in these lakes, including a high-resolution surface DEM (ArcticDEM) and an ablation model using daily averaged automated weather station data. We compare our methods to the depth-reflectance method for five supraglacial melt-lakes during the 2021 summer melt season. We find agreement between the depth-reflectance and DEM lake infilling methods, within +/−15% for most cases, but our ablation model underproduces by 0.5–2 orders of magnitude the volumetric melt needed to match our other methods, and with a significant lag in meltwater onset for routing into the lake basin. Further information regarding energy balance parameters, including insolation and liquid precipitation amounts, is needed for adequate ablation modelling. Despite the differences in melt-lake volume estimates, our approach in combining remote sensing and meteorological methods provides a framework for analysis of seasonal melt-lake evolution at significantly higher spatial and temporal scales, to understand the drivers of meltwater production and its influence on the spatial distribution and extent of meltwater volume stored on the ice sheet surface. Full article
Show Figures

Figure 1

23 pages, 5233 KB  
Article
Spatio-Temporal Evolution and Multi-Scenario Modeling Based on Terrestrial Carbon Stocks in Xinjiang
by Xiaohuang Liu, Zijing Xue, Jiufen Liu, Xiaofeng Zhao, Yujia Fu, Ran Wang, Xinping Luo, Liyuan Xing, Chao Wang and Honghui Zhao
Land 2024, 13(9), 1454; https://doi.org/10.3390/land13091454 - 7 Sep 2024
Cited by 6 | Viewed by 1231
Abstract
The increase in atmospheric CO2 leads to global warming and ecological environment deterioration. Carbon storage modeling and assessment can promote the sustainable development of the ecological environment. This paper took Xinjiang as the study area, analyzed the spatial and temporal evolution of [...] Read more.
The increase in atmospheric CO2 leads to global warming and ecological environment deterioration. Carbon storage modeling and assessment can promote the sustainable development of the ecological environment. This paper took Xinjiang as the study area, analyzed the spatial and temporal evolution of land use in four periods from 1990 to 2020, explored the spatial relationship of carbon stocks using the InVEST model, and coupled the GMOP model with the PLUS model to carry out multiple scenarios for the future simulation of land use in the study area. We found (1) Over time, the types with an increasing area were mainly impervious and cropland, and the types with a decreasing area were grassland, snow/ice, and barren; spatially, the types were predominantly barren and grassland, with the conversion of grassland to cropland being more evident in the south of Northern Xinjiang and north of Southern Xinjiang. (2) The evolutionary pattern of terrestrial carbon stocks is increasing and then decreasing in time, and the carbon sink areas are concentrated in the Tarim River Basin and the vicinity of the Ili River; spatially, there are differences in the aggregation between the northern, southern, and eastern borders. By analyzing the transfer in and out of various categories in Xinjiang over the past 30 years, it was obtained that the transfer out of grassland reduced the carbon stock by 5757.84 × 104 t, and the transfer out of Barren increased the carbon stock by 8586.12 × 104 t. (3) The land use layout of the sustainable development scenario is optimal under the conditions of satisfying economic and ecological development. The reduction in terrestrial carbon stocks under the 2020–2030 sustainable development scenario is 209.79 × 104 t, which is smaller than the reduction of 830.79 × 104 t in 2010–2020. Land optimization resulted in a lower loss of carbon stocks and a more rational land-use layout. Future planning in Xinjiang should be based on sustainable development scenarios, integrating land resources, and achieving sustainable economic and ecological development. Full article
(This article belongs to the Topic Low Carbon Economy and Sustainable Development)
Show Figures

Figure 1

23 pages, 4225 KB  
Article
Vertical Distribution Characteristics and Ecological Risk Assessment of Mercury and Arsenic in Ice, Water, and Sediment at a Cold-Arid Lake
by Zhimou Cui, Shengnan Zhao, Xiaohong Shi, Junping Lu, Yu Liu, Yinghui Liu and Yunxi Zhao
Toxics 2024, 12(8), 540; https://doi.org/10.3390/toxics12080540 - 26 Jul 2024
Cited by 4 | Viewed by 1921
Abstract
Mercury and arsenic are two highly toxic pollutants, and many researchers have explored the effects of the two substances on the environment. However, the research content of toxic substances in frozen periods is relatively small. To explore the spatial and vertical distribution of [...] Read more.
Mercury and arsenic are two highly toxic pollutants, and many researchers have explored the effects of the two substances on the environment. However, the research content of toxic substances in frozen periods is relatively small. To explore the spatial and vertical distribution of mercury and arsenic in the ice, water, and sediments of Wuliangsuhai Lake under ice conditions, and to assess the harm degree of the two toxic substances to human beings. We collected the ice, water, and sediments of the lake in December 2020, and tested the contents of Hg and As. The single-factor pollution index method, the local cumulative index method, and the ecological risk coding method were used to assess the pollution status in these three environmental media, and the Monte Carlo simulation combined with the quantitative model recommended by USEPA was used to assess the population health risk. The results showed that (1) The average single-factor pollution values of Hg and As in water were 0.367 and 0.114, both pollutants were at clean levels during the frozen period. (2) The mean Igeo values of Hg and As were 0.657 and −0.948. The bioavailability of Hg in the sediments of Wuliangsuhai Lake during the frozen period was high, and its average value was 7.8%, which belonged to the low-risk grade. The bioavailability of As ranged from 0.2% to 3.7%, with an average value of 1.3%. (3) Monte Carlo simulation results indicate acceptable levels of health risks in both water and ice. This study preliminarily investigated the distribution characteristics of toxic substances and their potential effects on human health in lakes in cold and arid regions during the frozen period. It not only clarified the pollution characteristics of lakes in cold and arid regions during the frozen period, but also provided beneficial supplements for the ecological protection of lake basins. This study lays a foundation for further environmental science research in the region in the future. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

15 pages, 7840 KB  
Article
Prediction of Permafrost Subgrade Thawing Settlement in the Qinghai–Tibet Engineering Corridor under Climate Warming
by Jine Liu, Xiaona Liu, Jianbing Chen, Yue Zhai, Yu Zhu and Fuqing Cui
Atmosphere 2024, 15(6), 730; https://doi.org/10.3390/atmos15060730 - 19 Jun 2024
Cited by 3 | Viewed by 1543
Abstract
As a result of global warming, the thawing settlement disasters of permafrost in the Qinghai–Tibet Engineering Corridor (QTEC) have intensified, which has serious effects on the safe operation of permafrost highway engineering. In this work, a prediction model for the thawing depth of [...] Read more.
As a result of global warming, the thawing settlement disasters of permafrost in the Qinghai–Tibet Engineering Corridor (QTEC) have intensified, which has serious effects on the safe operation of permafrost highway engineering. In this work, a prediction model for the thawing depth of permafrost subgrade in the QTEC under the climate warming scenario was established. Based on the survey results of permafrost ice content along the QTEC and the classification of thawing settlement risks, the zoning characteristics of thawing settlement of permafrost subgrade in the QTEC were obtained and analyzed. The results showed that the thawing depth of permafrost underlying the 26 m width subgrade in the QTEC will mainly remain below 9 m, and the area with a thawing depth of 6~9 m will have the widest spread within the next 20 years. The thawing settlement will be between 0.02 m and 5.45 m, with an average value of about 0.93 m after 20 years. Furthermore, after 50 years, the thawing depth of permafrost underlying the 26 m width subgrade will almost always be greater than 9 m, and the average thawing settlement will be about 1.12 m. Within the next 20 to 50 years, the risk of permafrost subgrade thawing settlement in the QTEC will be the most significant risk type, and this effect will mainly be distributed in the Kunlun Mountains, Chumar River Plain, Kekexili Mountains, Beiluhe Basin, Tanggula Mountains and intermountain Basins. Full article
(This article belongs to the Special Issue Research about Permafrost–Atmosphere Interactions)
Show Figures

Figure 1

18 pages, 9425 KB  
Article
Two-Decadal Glacier Changes in the Astak, a Tributary Catchment of the Upper Indus River in Northern Pakistan
by Muzaffar Ali, Qiao Liu and Wajid Hassan
Remote Sens. 2024, 16(9), 1558; https://doi.org/10.3390/rs16091558 - 27 Apr 2024
Cited by 1 | Viewed by 2738
Abstract
Snow and ice melting in the Upper Indus Basin (UIB) is crucial for regional water availability for mountainous communities. We analyzed glacier changes in the Astak catchment, UIB, from 2000 to 2020 using remote sensing techniques based on optical satellite images from Landsat [...] Read more.
Snow and ice melting in the Upper Indus Basin (UIB) is crucial for regional water availability for mountainous communities. We analyzed glacier changes in the Astak catchment, UIB, from 2000 to 2020 using remote sensing techniques based on optical satellite images from Landsat and ASTER digital elevation models. We used a surface feature-tracking technique to estimate glacier velocity. To assess the impact of climate variations, we examined temperature and precipitation anomalies using ERA5 Land climate data. Over the past two decades, the Astak catchment experienced a slight decrease in glacier area (−1.8 km2) and the overall specific mass balance was −0.02 ± 0.1 m w.e. a−1. The most negative mass balance of −0.09 ± 0.06 m w.e. a−1 occurred at elevations between 2810 to 3220 m a.s.l., with a lesser rate of −0.015 ± 0.12 m w.e. a−1 above 5500 m a.s.l. This variation in glacier mass balance can be attributed to temperature and precipitation gradients, as well as debris cover. Recent glacier mass loss can be linked to seasonal temperature anomalies at higher elevations during winter and autumn. Given the reliance of mountain populations on glacier melt, seasonal temperature trends can disturb water security and the well-being of dependent communities. Full article
Show Figures

Figure 1

Back to TopTop