Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,528)

Search Parameters:
Keywords = immersive technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3062 KB  
Article
Modeling Learning Outcomes in Virtual Reality Through Cognitive Factors: A Case Study on Underwater Engineering
by Andrei-Bogdan Stănescu, Sébastien Travadel, Răzvan-Victor Rughiniș and Rocsana Bucea-Manea-Țoniș
Electronics 2025, 14(17), 3369; https://doi.org/10.3390/electronics14173369 (registering DOI) - 25 Aug 2025
Abstract
Virtual reality offers unique opportunities to personalize learning by adapting instructions to individual learning styles. This study explores the relationships between learning styles, cognitive load, and learning outcomes in a virtual reality environment designed for engineering education. Drawing on Kolb’s experiential learning theory, [...] Read more.
Virtual reality offers unique opportunities to personalize learning by adapting instructions to individual learning styles. This study explores the relationships between learning styles, cognitive load, and learning outcomes in a virtual reality environment designed for engineering education. Drawing on Kolb’s experiential learning theory, the research investigates how immersion and flow, in relation to learning styles, influence learning outcomes within the Submarine Simulator, an educational tool for underwater engineering. To enhance instructional design in virtual reality, this study proposes to aggregate existing and validated models, such as Kolb’s framework, to develop new models tailored specifically for learning environments in virtual reality. This research aims to highlight the interplay of these variables in a learning process focused on acquiring knowledge in the Science, Technology, Engineering, and Mathematics fields, specifically hydrodynamics, through designing and operating a simulated submarine model in virtual reality. A cohort of 26 students from MINES Paris—PSL participated in a three-phase testing process to evaluate the effectiveness of original virtual reality software designed to support learning in underwater engineering. The findings enhance our understanding of how learning styles influence learner engagement and performance and how virtual reality environments can be optimized through adaptive instructional design guided by these novel models tailored specifically for such immersive settings. Full article
(This article belongs to the Special Issue Virtual Reality Technology, Systems and Applications)
Show Figures

Figure 1

20 pages, 2568 KB  
Article
Towards Spatial Awareness: Real-Time Sensory Augmentation with Smart Glasses for Visually Impaired Individuals
by Nadia Aloui
Electronics 2025, 14(17), 3365; https://doi.org/10.3390/electronics14173365 (registering DOI) - 25 Aug 2025
Abstract
This research presents an innovative Internet of Things (IoT) and artificial intelligence (AI) platform designed to provide holistic assistance and foster autonomy for visually impaired individuals within the university environment. Its main novelty is real-time sensory augmentation and spatial awareness, integrating ultrasonic, LiDAR, [...] Read more.
This research presents an innovative Internet of Things (IoT) and artificial intelligence (AI) platform designed to provide holistic assistance and foster autonomy for visually impaired individuals within the university environment. Its main novelty is real-time sensory augmentation and spatial awareness, integrating ultrasonic, LiDAR, and RFID sensors for robust 360° obstacle detection, environmental perception, and precise indoor localization. A novel, optimized Dijkstra algorithm calculates optimal routes; speech and intent recognition enable intuitive voice control. The wearable smart glasses are complemented by a platform providing essential educational functionalities, including lesson reminders, timetables, and emergency assistance. Based on gamified principles of exploration and challenge, the platform includes immersive technology settings, intelligent image recognition, auditory conversion, haptic feedback, and rapid contextual awareness, delivering a sophisticated, effective navigational experience. Exhaustive technical evaluation reveals that a more autonomous and fulfilling university experience is made possible by notable improvements in navigation performance, object detection accuracy, and technical capabilities for social interaction features, according to a thorough technical audit. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

22 pages, 608 KB  
Systematic Review
Effects of Cognitive Training with Virtual Reality in Older Adults: A Systematic Review
by Christian Daniel Navarro-Ramos, Joselinn Murataya-Gutiérrez, Christian Oswaldo Acosta-Quiroz, Raquel García-Flores and Sonia Beatriz Echeverría-Castro
Brain Sci. 2025, 15(9), 910; https://doi.org/10.3390/brainsci15090910 - 23 Aug 2025
Viewed by 62
Abstract
Background/Objective: The use of immersive virtual reality (VR) for cognitive training in older adults has shown promising results in recent years. However, the number of well-designed studies remains limited, and variability in methodologies makes it difficult to draw generalizable conclusions. This systematic review [...] Read more.
Background/Objective: The use of immersive virtual reality (VR) for cognitive training in older adults has shown promising results in recent years. However, the number of well-designed studies remains limited, and variability in methodologies makes it difficult to draw generalizable conclusions. This systematic review aims to examine the effects of VR-based cognitive training in older adults, describe the technological characteristics of these interventions, identify current gaps in the literature, and suggest future research directions. Methods: Following PRISMA guidelines, a search was conducted across major databases (PubMed, PsycINFO, Scopus, ProQuest, ACM, and Web of Science) from 2018 to 2025. The database search identified 156 studies, of which 12 met the inclusion criteria after screening and eligibility assessment. Across these studies, a total of 3202 older adult participants (aged 60 years or older) were included. Interventions varied in duration from 4 to 36 sessions, targeting domains such as memory, executive function, attention, and global cognition. Most interventions were based on cognitive training, with a few employing cognitive stimulation or cognitive rehabilitation approaches. Quality was assessed using the Effective Public Health Practice Project tool. Results: Most studies reported positive effects of VR interventions on cognitive domains such as attention, executive functions, and global cognition. Fewer studies showed improvements in memory. The majority used head-mounted displays connected to computers and custom-built software, often without public access. Sample sizes were generally small, and blinding procedures were often unclear. The average methodological quality was moderate. Conclusions: Immersive VR has potential as an effective tool for cognitive training in older adults. Future research should include larger randomized controlled trials, long-term follow-up, standardized intervention protocols, and the development of accessible software to enable replication and broader application in clinical and community settings. Full article
Show Figures

Figure 1

21 pages, 3029 KB  
Article
Immersive Urban Planning: Evaluating Park Safety Perception with Digital Twins and Metaverse Simulation
by Liliana Cecere, Michele Grimaldi, Angelo Lorusso, Alessandra Marra and Federica Stoia
Sustainability 2025, 17(17), 7608; https://doi.org/10.3390/su17177608 - 23 Aug 2025
Viewed by 169
Abstract
The objective of this study is to explore the use of emerging technologies such as the Metaverse and Digital Twin to highlight how these can be used to analyse and improve the perception of security in urban parks. Through the proposed methodological approach, [...] Read more.
The objective of this study is to explore the use of emerging technologies such as the Metaverse and Digital Twin to highlight how these can be used to analyse and improve the perception of security in urban parks. Through the proposed methodological approach, which combines real data collection, 3D modelling, immersive simulations, and user feedback, a virtual environment representative of the Quartieri Spagnoli Park in Naples, chosen as a case study, was developed and tested. The experimentation involved a heterogeneous group of users and consisted of two phases of questionnaire administration, one in person and one in a virtual environment, to compare the individual and collective perceptions of users in relation to issues such as disorientation, lighting, and maintenance. The results obtained made it possible to identify a correspondence between the data collected in the two environments, and to highlight any critical issues that emerged. Undoubtedly, the virtual experience proved to be useful, accessible, and immersive, demonstrating the potential of these tools not only in identifying issues but especially in supporting participatory design and urban planning with a view to a smart city. In urban design, as in many other fields, being able to intervene and test changes in a virtual environment before actually implementing them is a valuable opportunity, as it allows the feasibility to be assessed without compromising the real space. It is precisely this aspect that makes this type of approach extremely interesting and important. The distinctive feature of the proposed approach lies in the implementation of digital twins in the metaverse, which can perform a dual function: simulation and verification. In the first case, simulations within the virtual environment allow project planning to be tested in order to predict the outcome; in the second case, it is possible to investigate the state of affairs, thus assessing whether the planning put in place has achieved the desired results. Full article
Show Figures

Figure 1

18 pages, 3987 KB  
Article
Interactive Application with Virtual Reality and Artificial Intelligence for Improving Pronunciation in English Learning
by Gustavo Caiza, Carlos Villafuerte and Adriana Guanuche
Appl. Sci. 2025, 15(17), 9270; https://doi.org/10.3390/app15179270 - 23 Aug 2025
Viewed by 113
Abstract
Technological advances have enabled the development of innovative educational tools, particularly those aimed at supporting English as a Second Language (ESL) learning, with a specific focus on oral skills. However, pronunciation remains a significant challenge due to the limited availability of personalized learning [...] Read more.
Technological advances have enabled the development of innovative educational tools, particularly those aimed at supporting English as a Second Language (ESL) learning, with a specific focus on oral skills. However, pronunciation remains a significant challenge due to the limited availability of personalized learning opportunities that offer immediate feedback and contextualized practice. In this context, the present research proposes the design, implementation, and validation of an immersive application that leverages virtual reality (VR) and artificial intelligence (AI) to enhance English pronunciation. The proposed system integrates a 3D interactive environment developed in Unity, voice classification models trained using Teachable Machine, and real-time communication with Firebase, allowing users to practice and assess their pronunciation in a simulated library-like virtual setting. Through its integrated AI module, the application can analyze the pronunciation of each word in real time, detecting correct and incorrect utterances, and then providing immediate feedback to help users identify and correct their mistakes. The virtual environment was designed to be a welcoming and user-friendly, promoting active engagement with the learning process. The application’s distributed architecture enables automated feedback generation via data flow between the cloud-based AI, the database, and the visualization interface. Results demonstrate that using 400 samples per class and a confidence threshold of 99.99% for training the AI model effectively eliminated false positives, significantly increasing system accuracy and providing users with more reliable feedback. This directly contributes to enhanced learner autonomy and improved ESL acquisition outcomes. Furthermore, user surveys conducted to understand their perceptions of the application’s usefulness as a support tool for English learning yielded an average acceptance rate of 93%. This reflects the acceptance of these immersive technologies in educational contexts, as the combination of these technologies offers a realistic and user-friendly simulation environment, in addition to detailed word analysis, facilitating self-assessment and independent learning among students. Full article
Show Figures

Figure 1

15 pages, 4865 KB  
Article
Influence of Ultrasound Frequency as a Preliminary Treatment on the Physicochemical, Structural, and Sensory Properties of Fried Native Potato Chips
by Henry Palomino-Rincón, Betsy S. Ramos-Pacheco, Dianeth Buleje Campos, Rodrigo J. Guzmán Gutiérrez, Evelin M. Yauris-Navez and Elizabeth Alarcón-Quispe
Processes 2025, 13(8), 2668; https://doi.org/10.3390/pr13082668 - 21 Aug 2025
Viewed by 451
Abstract
Frying native potato chips produces snacks that are widely accepted, although they are associated with high fat content and the formation of potentially undesirable compounds. This study evaluated the effect of pretreatment with ultrasound at 28 and 40 kHz on the physicochemical, structural, [...] Read more.
Frying native potato chips produces snacks that are widely accepted, although they are associated with high fat content and the formation of potentially undesirable compounds. This study evaluated the effect of pretreatment with ultrasound at 28 and 40 kHz on the physicochemical, structural, and sensory properties of chips made from the Sempal and Agustina varieties. The chips were immersed in water and treated with ultrasound for 10 min before frying at 175 °C. Parameters such as moisture, fat content, water activity, color, reducing sugars, FTIR spectroscopy, SEM microscopy, and sensory acceptance by consumers were analyzed. Treatment with 40 kHz significantly reduced fat content (up to 22.07%), improved crispness, and promoted a more porous microstructure. A lower concentration of reducing sugars, greater brightness, and less darkening were also observed. Sensory evaluation showed that chips treated with 40 kHz were the most preferred and best rated in terms of texture and flavor. Finally, it was demonstrated that pretreatment with ultrasound at 40 kHz improved the technological and sensory quality of native potato chips, which would promote the value of these resources in healthy products. Full article
Show Figures

Graphical abstract

36 pages, 23215 KB  
Article
Development of a 6-DoF Driving Simulator with an Open-Source Architecture for Automated Driving Research and Standardized Testing
by Martin Meiners, Benedikt Isken and Edwin N. Kamau
Vehicles 2025, 7(3), 86; https://doi.org/10.3390/vehicles7030086 - 21 Aug 2025
Viewed by 221
Abstract
This study presents the development of an open-source Driver-in-the-Loop simulation platform, specifically designed to test and analyze advanced automated driving functions. We emphasize the creation of a versatile system architecture that ensures seamless integration and interchangeability of components, supporting diverse research needs. Central [...] Read more.
This study presents the development of an open-source Driver-in-the-Loop simulation platform, specifically designed to test and analyze advanced automated driving functions. We emphasize the creation of a versatile system architecture that ensures seamless integration and interchangeability of components, supporting diverse research needs. Central to the simulator’s configuration is a hexapod motion platform with six degrees of freedom, chosen through a detailed benchmarking process to ensure dynamic accuracy and fidelity. The simulator employs a half-vehicle cabin, providing an immersive environment where drivers can interact with authentic human–machine interfaces such as pedals, steering, and gear shifters. By projecting complex driving scenarios onto a curved screen, drivers engage with critical maneuvers in a controlled virtual environment. Key innovations include the integration of a motion cueing algorithm and an adaptable, cost-effective open-source framework, facilitating collaboration among researchers and industry experts. The platform enables standardized testing and offers a robust solution for the iterative development and validation of automated driving technologies. Functionality and effectiveness were validated through testing with the ISO lane change maneuver, affirming the simulator’s capabilities. Full article
(This article belongs to the Special Issue Advanced Vehicle Dynamics and Autonomous Driving Applications)
Show Figures

Figure 1

33 pages, 2089 KB  
Review
Virtual Reality in Speech Therapy Students’ Training: A Scoping Review
by Flavia Gentile, Mascha Wanke, Wolfgang Mueller and Evi Hochuli
Virtual Worlds 2025, 4(3), 37; https://doi.org/10.3390/virtualworlds4030037 - 21 Aug 2025
Viewed by 258
Abstract
Virtual Reality (VR) is a useful educational tool in healthcare, allowing students to practise and improve practical skills. In speech therapy (ST), the need to revise academic curricula to adapt them to university contexts and integrate them into advanced clinical practices has highlighted [...] Read more.
Virtual Reality (VR) is a useful educational tool in healthcare, allowing students to practise and improve practical skills. In speech therapy (ST), the need to revise academic curricula to adapt them to university contexts and integrate them into advanced clinical practices has highlighted the need to analyse the use of VR in this sector. The objective of this scoping review was to investigate whether research has considered using VR to support ST students’ training and highlight potential gaps in the literature. The study followed the JBI methodology for scoping reviews and was reported according to PRISMA-ScR guidelines. A protocol to conduct the current review was developed and registered on the Open Science Framework. The articles considered were retrieved from databases specialising in healthcare, computer science, and education, and were enhanced by results found with the help of AI-based tools. No constraints were applied and all study types were considered. Fourteen studies were included in the review and analysed under four core subjects: VR technology, ST context, training purposes, and main outcomes and assessment methods. The VR types identified in the studies were grouped into four categories, i.e., non-immersive VR (6/14, 42.9%), immersive VR (5/14, 35.7%), non-specified VR type (2/14, 14.3%), and semi-immersive VR (1/14, 7.1%). Most studies (5/14, 35.7%) focused on clinical skills acquisition, others addressed communication and interpersonal collaborative skills (3/14, 21.4%), while the remaining focused on person-centred care and awareness, clinical interviewing or reasoning skills, and performance knowledge (2/14 each, 14.3%). VR is still in its early stages in ST education. Some recent studies suggest VR supports students’ communication, interdisciplinary, and clinical skills. Although still limited in the context of ST education, the increasing affordability and ease of development of VR, along with its growing use in other healthcare fields, suggest that its underuse might be due to institutional barriers and lack of standardised frameworks. Overall, the findings suggest that VR offers promising support for experiential and skills-based learning. Full article
(This article belongs to the Special Issue Empowering Health Education: Digital Transformation Frontiers for All)
Show Figures

Figure 1

42 pages, 5531 KB  
Article
Preliminary Analysis and Proof-of-Concept Validation of a Neuronally Controlled Visual Assistive Device Integrating Computer Vision with EEG-Based Binary Control
by Preetam Kumar Khuntia, Prajwal Sanjay Bhide and Pudureddiyur Venkataraman Manivannan
Sensors 2025, 25(16), 5187; https://doi.org/10.3390/s25165187 - 21 Aug 2025
Viewed by 431
Abstract
Contemporary visual assistive devices often lack immersive user experience due to passive control systems. This study introduces a neuronally controlled visual assistive device (NCVAD) that aims to assist visually impaired users in performing reach tasks with active, intuitive control. The developed NCVAD integrates [...] Read more.
Contemporary visual assistive devices often lack immersive user experience due to passive control systems. This study introduces a neuronally controlled visual assistive device (NCVAD) that aims to assist visually impaired users in performing reach tasks with active, intuitive control. The developed NCVAD integrates computer vision, electroencephalogram (EEG) signal processing, and robotic manipulation to facilitate object detection, selection, and assistive guidance. The monocular vision-based subsystem implements the YOLOv8n algorithm to detect objects of daily use. Then, audio prompting conveys the detected objects’ information to the user, who selects their targeted object using a voluntary trigger decoded through real-time EEG classification. The target’s physical coordinates are extracted using ArUco markers, and a gradient descent-based path optimization algorithm (POA) guides a 3-DoF robotic arm to reach the target. The classification algorithm achieves over 85% precision and recall in decoding EEG data, even with coexisting physiological artifacts. Similarly, the POA achieves approximately 650 ms of actuation time with a 0.001 learning rate and 0.1 cm2 error threshold settings. In conclusion, the study also validates the preliminary analysis results on a working physical model and benchmarks the robotic arm’s performance against human users, establishing the proof-of-concept for future assistive technologies integrating EEG and computer vision paradigms. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

29 pages, 3101 KB  
Article
Optimizing Efficiency for Logistics Training Using Virtual Reality Movies
by Qiaoling Zou, Xinyan Jiang, Xiangling Hu, Wanyu Zheng and Dongning Li
Mathematics 2025, 13(16), 2676; https://doi.org/10.3390/math13162676 - 20 Aug 2025
Viewed by 129
Abstract
(1) Background: Traditional logistics training faces challenges like high costs, limited scalability, and safety risks. Virtual Reality Movie Training (VRMT) enhances operational accuracy, safety, and accessibility through immersive simulation. However, adoption faces barriers including high equipment costs, immature technology, and coordination challenges among [...] Read more.
(1) Background: Traditional logistics training faces challenges like high costs, limited scalability, and safety risks. Virtual Reality Movie Training (VRMT) enhances operational accuracy, safety, and accessibility through immersive simulation. However, adoption faces barriers including high equipment costs, immature technology, and coordination challenges among logistics enterprises, design companies, and government entities. This study explores strategic interactions to optimize VRMT adoption. (2) Methods: A tripartite evolutionary game model was used to analyze strategic interactions between logistics enterprises, design companies, and government. (3) Results: System stability occurs when logistics enterprises adopt VRMT, design companies deliver high-quality solutions, and government provides active support. Simulations reveal stronger adoption coefficients through increased employee acceptance and enhanced training quality. Government incentives and brand premiums significantly influence quality design provision, though excessive subsidies may reduce governmental willingness to support initiatives. (4) Conclusions: Cost minimization and accessibility improvement require batch hardware purchasing, optimized training cycles, and shared platforms at logistics enterprises. Design companies should optimize content development for cost-effectiveness while maintaining quality standards to leverage brand benefits. Governments should establish VRMT quality certification, invest in public VR platforms for SMEs, and convert accident savings into fiscal supplements. This tripartite collaboration enables efficient, safe, and sustainable logistics training transformation. Full article
Show Figures

Figure 1

23 pages, 1971 KB  
Article
Characterization of Perfluoro Sulfonic Acid Membranes for Potential Electrolytic Hydrogen Production and Fuel Cell Applications for Local and Global Green Hydrogen Economy
by Lihle Mdleleni, Sithenkosi Mlala, Tobeka Naki, Edson L. Meyer, Mojeed A. Agoro and Nicholas Rono
Fuels 2025, 6(3), 63; https://doi.org/10.3390/fuels6030063 - 20 Aug 2025
Viewed by 337
Abstract
Fuel cells have become a fundamental technology in the development of clean energy systems, playing a vital role in the global shift toward a low-carbon future. With the growing need for sustainable hydrogen production, perfluoro sulfonic acid (PFSA) ionomer membranes play a critical [...] Read more.
Fuel cells have become a fundamental technology in the development of clean energy systems, playing a vital role in the global shift toward a low-carbon future. With the growing need for sustainable hydrogen production, perfluoro sulfonic acid (PFSA) ionomer membranes play a critical role in optimizing green hydrogen technologies and fuel cells. This study aims to investigate the effects of different environmental and solvent treatments on the chemical and physical properties of Nafion N−115 membranes to evaluate their suitability for both hydrogen production in proton exchange membrane (PEM) electrolyzers and hydrogen utilization in fuel cells, supporting integrated applications in the local and global green hydrogen economy. To achieve this, Nafion N−115 membranes were partially dissolved in various solvent mixtures, including ethanol/isopropanol (EI), isopropanol/water (IW), dimethylformamide/N-methyl-2-pyrrolidone (DN), and ethanol/methanol/isopropanol (EMI), evaluated under water immersion and thermal stress, and characterized for chemical stability, mechanical strength, water uptake, and proton conductivity using advanced electrochemical and spectroscopic techniques. The results demonstrated that the EMI-treated membrane showed the highest proton conductivity and maintained its structural integrity, making it the most promising for hydrogen electrolysis applications. Conversely, the DN-treated membrane exhibited reduced stability and lower conductivity due to solvent-induced degradation. This study highlights the potential of EMI as an optimal solvent mixture for enhancing PFSA membranes performance in green hydrogen production, contributing to the advancement of sustainable energy solutions. Full article
Show Figures

Figure 1

24 pages, 1279 KB  
Article
Application of Artificial Intelligence and Virtual Reality in Soft Skills Training with Modeled Personality
by Dawid Budnarowski, Dawid Jereczek, Kalina Detka and Iwona Wieczorek
Appl. Sci. 2025, 15(16), 9067; https://doi.org/10.3390/app15169067 - 18 Aug 2025
Viewed by 396
Abstract
Across the world, people are exploring fields where AI (Artificial Intelligence) and VR (Virtual Reality) can be harnessed to unlock new possibilities and drive innovation. The aim of this article was to review the potential and assess the feasibility of using virtual reality [...] Read more.
Across the world, people are exploring fields where AI (Artificial Intelligence) and VR (Virtual Reality) can be harnessed to unlock new possibilities and drive innovation. The aim of this article was to review the potential and assess the feasibility of using virtual reality technology in soft skills training (including people management, stress management, communication, conflict resolution, and sales). A project was developed featuring an application that utilizes virtual reality and artificial intelligence to facilitate communication with a virtual coach. The application operates on Meta Quest 3 virtual reality goggles (Meta Platforms, Inc., Menlo Park, CA, USA). Tests of the presented solution confirm market trends, highlighting the potential for achieving positive training outcomes through immersive technologies. The conclusions outline opportunities for improvement and further development of such solutions. This study applied a quasi-experimental model with pretest, posttest, and four-week follow-up measurements. The effectiveness of VR training was evaluated using a knowledge test (0–100%), a self-assessment scale of soft skills (Likert 1–5), expert behavior observation (0–10 scale), and posttraining surveys. The VR group demonstrated significantly higher gains in knowledge, soft skills, and behavioral performance with knowledge retention reaching 89% after four weeks. These results confirm the effectiveness of immersive VR training and its alignment with current market trends in innovative professional development. Full article
(This article belongs to the Special Issue Virtual and Augmented Reality: Theory, Methods, and Applications)
Show Figures

Figure 1

23 pages, 7524 KB  
Article
Analyzing Visual Attention in Virtual Crime Scene Investigations Using Eye-Tracking and VR: Insights for Cognitive Modeling
by Wen-Chao Yang, Chih-Hung Shih, Jiajun Jiang, Sergio Pallas Enguita and Chung-Hao Chen
Electronics 2025, 14(16), 3265; https://doi.org/10.3390/electronics14163265 - 17 Aug 2025
Viewed by 216
Abstract
Understanding human perceptual strategies in high-stakes environments, such as crime scene investigations, is essential for developing cognitive models that reflect expert decision-making. This study presents an immersive experimental framework that utilizes virtual reality (VR) and eye-tracking technologies to capture and analyze visual attention [...] Read more.
Understanding human perceptual strategies in high-stakes environments, such as crime scene investigations, is essential for developing cognitive models that reflect expert decision-making. This study presents an immersive experimental framework that utilizes virtual reality (VR) and eye-tracking technologies to capture and analyze visual attention during simulated forensic tasks. A360° panoramic crime scene, constructed using the Nikon KeyMission 360 camera, was integrated into a VR system with HTC Vive and Tobii Pro eye-tracking components. A total of 46 undergraduate students aged 19 to 24–23, from the National University of Singapore in Singapore and 23 from the Central Police University in Taiwan—participated in the study, generating over 2.6 million gaze samples (IRB No. 23-095-B). The collected eye-tracking data were analyzed using statistical summarization, temporal alignment techniques (Earth Mover’s Distance and Needleman-Wunsch algorithms), and machine learning models, including K-means clustering, random forest regression, and support vector machines (SVMs). Clustering achieved a classification accuracy of 78.26%, revealing distinct visual behavior patterns across participant groups. Proficiency prediction models reached optimal performance with a random forest regression (R2 = 0.7034), highlighting scan-path variability and fixation regularity as key predictive features. These findings demonstrate that eye-tracking metrics—particularly sequence-alignment-based features—can effectively capture differences linked to both experiential training and cultural context. Beyond its immediate forensic relevance, the study contributes a structured methodology for encoding visual attention strategies into analyzable formats, offering valuable insights for cognitive modeling, training systems, and human-centered design in future perceptual intelligence applications. Furthermore, our work advances the development of autonomous vehicles by modeling how humans visually interpret complex and potentially hazardous environments. By examining expert and novice gaze patterns during simulated forensic investigations, we provide insights that can inform the design of autonomous systems required to make rapid, safety-critical decisions in similarly unstructured settings. The extraction of human-like visual attention strategies not only enhances scene understanding, anomaly detection, and risk assessment in autonomous driving scenarios, but also supports accelerated learning of response patterns for rare, dangerous, or otherwise exceptional conditions—enabling autonomous driving systems to better anticipate and manage unexpected real-world challenges. Full article
(This article belongs to the Special Issue Autonomous and Connected Vehicles)
Show Figures

Figure 1

16 pages, 1350 KB  
Article
The Synergistic Impact of 5G on Cloud-to-Edge Computing and the Evolution of Digital Applications
by Saleh M. Altowaijri and Mohamed Ayari
Mathematics 2025, 13(16), 2634; https://doi.org/10.3390/math13162634 - 16 Aug 2025
Viewed by 352
Abstract
The integration of 5G technology with cloud and edge computing is redefining the digital landscape by enabling ultra-fast connectivity, low-latency communication, and scalable solutions across diverse application domains. This paper investigates the synergistic impact of 5G on cloud-to-edge architectures, emphasizing its transformative role [...] Read more.
The integration of 5G technology with cloud and edge computing is redefining the digital landscape by enabling ultra-fast connectivity, low-latency communication, and scalable solutions across diverse application domains. This paper investigates the synergistic impact of 5G on cloud-to-edge architectures, emphasizing its transformative role in revolutionizing sectors such as healthcare, smart cities, industrial automation, and autonomous systems. Key advancements in 5G—including Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low-Latency Communication (URLLC), and Massive Machine-Type Communications (mMTC)—are examined for their role in enabling real-time data processing, edge intelligence, and IoT scalability. In addition to conceptual analysis, the paper presents simulation-based evaluations comparing 5G cloud-to-edge systems with traditional 4G cloud models. Quantitative results demonstrate significant improvements in latency, energy efficiency, reliability, and AI prediction accuracy. The study also explores challenges in infrastructure deployment, cybersecurity, and latency management while highlighting the growing opportunities for innovation in AI-driven automation and immersive consumer technologies. Future research directions are outlined, focusing on energy-efficient designs, advanced security mechanisms, and equitable access to 5G infrastructure. Overall, this study offers comprehensive insights and performance benchmarks that will serve as a valuable resource for researchers and practitioners working to advance next-generation digital ecosystems. Full article
(This article belongs to the Special Issue Innovations in Cloud Computing and Machine Learning Applications)
Show Figures

Figure 1

23 pages, 525 KB  
Systematic Review
Virtual and Augmented Reality Games in Dementia Care: Systematic and Bibliographic Review
by Martin Eckert, Varsha Radhakrishnan, Thomas Ostermann, Jan Peter Ehlers and Gregor Hohenberg
Healthcare 2025, 13(16), 2013; https://doi.org/10.3390/healthcare13162013 - 15 Aug 2025
Viewed by 353
Abstract
Background: This review investigates the use of virtual and augmented reality games in dementia care. It provides an insight into the last 13 years of research, including the earliest publications on this topic, and takes a systematic and bibliographic approach. Methods: We sourced [...] Read more.
Background: This review investigates the use of virtual and augmented reality games in dementia care. It provides an insight into the last 13 years of research, including the earliest publications on this topic, and takes a systematic and bibliographic approach. Methods: We sourced research publications from three different scientific databases (PubMed, Scopus, and APA PsycInfo) for this publication. We chose the PRISMA approach and categorized the studies according to the publisher. A set of 12 variables was defined across three categories (bibliographic, medical, and technical). Results: Of the 389 identified articles, 36 met the inclusion and exclusion criteria. After a phase of pilot studies mainly being conducted, the number of publications increased by four times but decreased again in 2023. Dominating were pilot and feasibility studies; 8 out of the 36 trials were RCTs. The median trial population was 24, and the protocols were performed for an average of 10 weeks, with two 40-min sessions a week. Simulator sickness was reported but not by the majority of participants. A total of 59% of the studies used fully immersive 3D-VR systems. We identified only three publications that provided high immersion quality. These findings indicate the positive effects of using virtual and augmented reality systems on participants’ cognitive function and mood. Conclusions: This publication focuses on the technical aspects of the applied technologies and immersion levels of the patients. Using augmented and virtual reality methods to improve the quality of life and physical interaction of dementia patients shows the potential to enhance cognitive functioning in this population, but further investigation and multicenter RCTs are needed. There are strong indications that this research branch has high potential to benefit both caretakers and patients. Full article
Show Figures

Graphical abstract

Back to TopTop