Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,465)

Search Parameters:
Keywords = immune modulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2172 KB  
Article
Identification and Validation of Iron Metabolism-Related Biomarkers in Endometriosis: A Mendelian Randomization and Single-Cell Transcriptomics Study
by Juan Du, Zili Lv and Xiaohong Luo
Curr. Issues Mol. Biol. 2025, 47(10), 831; https://doi.org/10.3390/cimb47100831 (registering DOI) - 9 Oct 2025
Abstract
Studies have shown that the iron concentration in the peritoneal fluid of women is associated with the severity of endometriosis. Therefore, investigation of iron metabolism-related genes (IM-RGs) in endometriosis holds significant implications for both prevention and therapeutic strategies in affected patients. Differentially expressed [...] Read more.
Studies have shown that the iron concentration in the peritoneal fluid of women is associated with the severity of endometriosis. Therefore, investigation of iron metabolism-related genes (IM-RGs) in endometriosis holds significant implications for both prevention and therapeutic strategies in affected patients. Differentially expressed IM-RGs (DEIM-RGs) were identified by intersecting IM-RGs with differentially expressed genes derived from GSE86534. Mendelian randomization analysis was employed to determine DEIM-RGs causally associated with endometriosis, with subsequent verification through sensitivity analyses and the Steiger test. Biomarkers associated with IM-RGs in endometriosis were validated using expression data from GSE86534 and GSE105764. Functional annotation, regulatory network construction, and immunological profiling were conducted for these biomarkers. Single-cell RNA sequencing (scRNA-seq) (GSE213216) was utilized to identify distinctively expressed cellular subsets between endometriosis and controls. Experimental validation of biomarker expression was performed via reverse transcription–quantitative polymerase chain reaction (RT-qPCR). BMP6 and SLC48A1, biomarkers indicative of cellular BMP response, were influenced by a medicus variant mutation that inactivated PINK1 in complex I, concurrently enriched by both biomarkers. The lncRNA NEAT1 regulated BMP6 through hsa-mir-22-3p and hsa-mir-124-3p, while SLC48A1 was modulated by hsa-mir-423-5p, hsa-mir-19a-3p, and hsa-mir-19b-3p. Immune profiling revealed a negative correlation between BMP6 and monocytes, whereas SLC48A1 displayed a positive correlation with activated natural killer cells. scRNA-seq analysis identified macrophages and stromal stem cells as pivotal cellular components in endometriosis, exhibiting altered self-communication networks. RT-qPCR confirmed elevated expression of BMP6 and SLC48A1 in endometriosis samples relative to controls. Both BMP6 and SLC48A1 were consistently overexpressed in endometriosis, reinforcing their potential as biomarkers. Moreover, macrophages and stromal stem cells were delineated as key contributors. These findings provide novel insights into therapeutic and preventive approaches for patients with endometriosis. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
34 pages, 4086 KB  
Review
Neurotransmitter Regulatory Networks: A New Perspective on Cancer Therapy
by Xiaoyu Zhang, Jiaxin Cao, Yishu Zhang, Chuanxiong Li and Yuhong Jing
Biomolecules 2025, 15(10), 1429; https://doi.org/10.3390/biom15101429 - 9 Oct 2025
Abstract
In recent years, the scientific community has increasingly delved into the study of the interaction between the nervous system and tumors, revealing that the nervous system not only regulates bodily functions under physiological conditions, but also assumes a vital part in the emergence [...] Read more.
In recent years, the scientific community has increasingly delved into the study of the interaction between the nervous system and tumors, revealing that the nervous system not only regulates bodily functions under physiological conditions, but also assumes a vital part in the emergence and progression of tumors. Research has demonstrated that the extensive neural network directly regulates tumor progression and can influence tumors by modulating the tumor microenvironment and immune system. Moreover, tumors induce neural networks to provide favorable conditions for their proliferation and metastasis. In the above process, neurotransmitters play a vital role. They directly act or bind to their receptor, activating various classical signaling pathways, among which are PI3K/AKT, MEK/ERK, and WNT/β-catenin, to facilitate tumor advancement. Therefore, this study systematically reviews the regulatory mechanisms of neurotransmitters and their receptors in the advancement of cancer, along with the utilization of targeted drugs. At the same time, we also analyzed that targeting specific receptor subtypes may produce more significant therapeutic effects in different types of cancer. Additionally, this research further explores the limitations of neurotransmitter-based drugs currently used in clinical cancer treatment. In summary, the field of cancer neuroscience is rapidly advancing, constantly revealing the regulatory effects of neurotransmitters on tumor progression and their specific molecular mechanisms, providing broad application prospects for future clinical therapy. Full article
Show Figures

Figure 1

35 pages, 1751 KB  
Review
Molecular Signatures of Schizophrenia and Insights into Potential Biological Convergence
by Malak Saada and Shani Stern
Int. J. Mol. Sci. 2025, 26(19), 9830; https://doi.org/10.3390/ijms26199830 (registering DOI) - 9 Oct 2025
Abstract
Schizophrenia is a highly polygenic and clinically heterogeneous disorder. We first review layer-specific evidence across genetics, epigenetics, transcriptomics, proteomics, and patient-derived induced pluripotent stem cell (iPSC) models, then integrate cross-layer findings. Genetics research identifies widespread risk architecture. Hundreds of loci from common, rare, [...] Read more.
Schizophrenia is a highly polygenic and clinically heterogeneous disorder. We first review layer-specific evidence across genetics, epigenetics, transcriptomics, proteomics, and patient-derived induced pluripotent stem cell (iPSC) models, then integrate cross-layer findings. Genetics research identifies widespread risk architecture. Hundreds of loci from common, rare, and CNV analyses. Epigenetics reveals disease-associated DNA methylation and histone-mark changes. These occur at neuronally active enhancers and promoters, together with chromatin contacts that link non-coding risk to target genes. Transcriptomics show broad differential expression, isoform-level dysregulation, and disrupted co-expression modules. These alterations span synaptic signaling, mitochondrial bioenergetics, and immune programs. Proteomics demonstrates coordinated decreases in postsynaptic scaffold and mitochondrial respiratory-chain proteins in cortex, with complementary inflammatory signatures in serum/plasma. iPSC models recapitulate disease-relevant phenotypes: including fewer synaptic puncta and excitatory postsynaptic currents, electrophysiological immaturity, oxidative stress, and progenitor vulnerability. These same models show partial rescue under targeted perturbations. Integration across layers highlights convergent pathways repeatedly supported by ≥3 independent data types: synaptic signaling, immune/complement regulation, mitochondrial/energetic function, neurodevelopmental programs and cell-adhesion complexes. Within these axes, several cross-layer convergence genes/proteins (e.g., DLG4/PSD-95, C4A, RELN, NRXN1/NLGN1, OXPHOS subunits, POU3F2/BRN2, PTN) recur across cohorts and modalities. Framing results through cross-layer and shared-pathway convergence organizes heterogeneous evidence and prioritizes targets for mechanistic dissection, biomarker development, and translational follow-up. Full article
17 pages, 1299 KB  
Review
Seborrheic Dermatitis Revisited: Pathophysiology, Diagnosis, and Emerging Therapies—A Narrative Review
by Francisco José Navarro Triviño, Juan Pablo Velasco Amador and Irene Rivera Ruiz
Biomedicines 2025, 13(10), 2458; https://doi.org/10.3390/biomedicines13102458 - 9 Oct 2025
Abstract
Background: Seborrheic dermatitis (SD) is a chronic, recurrent inflammatory dermatosis that primarily affects seborrheic areas such as the scalp, face, and upper trunk. Its etiology is multifactorial, involving sebaceous gland activity, immune dysregulation, skin barrier dysfunction, and alterations in the microbiome, particularly [...] Read more.
Background: Seborrheic dermatitis (SD) is a chronic, recurrent inflammatory dermatosis that primarily affects seborrheic areas such as the scalp, face, and upper trunk. Its etiology is multifactorial, involving sebaceous gland activity, immune dysregulation, skin barrier dysfunction, and alterations in the microbiome, particularly an overgrowth of Malassezia spp. Objective: This review provides an updated overview of the pathophysiological mechanisms of seborrheic dermatitis and critically examines current therapies and emerging treatments. Methods: A narrative review of the recent literature was conducted, including preclinical studies, clinical trials, and real-world evidence regarding SD pathogenesis and therapy. Special attention was paid to molecular pathways, microbiome-modulating strategies, and novel therapeutic agents. Results: Advances in transcriptomic and microbiome profiling have revealed a complex immunoinflammatory environment in SD, involving predominantly Th1, Th17, and Th22 axes. Conventional therapies are mainly based on antifungals, topical corticosteroids, and calcineurin inhibitors. However, new therapeutic approaches are under investigation, including PDE4 inhibitors (roflumilast, crisaborole, and apremilast), topical and oral JAK inhibitors, probiotics, and microbiome-targeted therapies. These agents offer promising results in selected patients, particularly those with refractory disease or facial involvement. Conclusions: SD remains a challenging condition due to its relapsing course and limited long-term therapeutic options. Emerging therapies represent a valuable opportunity to address unmet clinical needs, particularly in patients with severe, recurrent, or treatment-resistant forms. Full article
(This article belongs to the Special Issue State-of-the-Art Dermatology in Spain)
Show Figures

Figure 1

23 pages, 609 KB  
Review
The Mycobacterium avium Complex: Genomics, Disease, and Beyond
by Sofia Matos, Isabel Portugal and João Perdigão
Microorganisms 2025, 13(10), 2329; https://doi.org/10.3390/microorganisms13102329 - 9 Oct 2025
Abstract
Nontuberculous mycobacteria are opportunistic pathogens increasingly associated with human disease. Within this group, the Mycobacterium avium complex (MAC), which includes M. avium, M. intracellulare and M. intracellulare subsp. chimaera, is the most frequent cause of infection. The increase in MAC cases [...] Read more.
Nontuberculous mycobacteria are opportunistic pathogens increasingly associated with human disease. Within this group, the Mycobacterium avium complex (MAC), which includes M. avium, M. intracellulare and M. intracellulare subsp. chimaera, is the most frequent cause of infection. The increase in MAC cases worldwide has made it crucial to understand their population structure, clinical relevance and resistance mechanisms. Recent advances in whole-genome sequencing (WGS) and molecular approaches have improved the knowledge of taxonomy, population structure and genetic diversity, while also enabling the investigation of transmission and epidemiology. Clinically, MAC most often causes chronic pulmonary disease, but extrapulmonary forms, including disseminated disease, also occur. Presentation can vary by infecting species, while host factors such as pre-existing lung disease or immunosuppression further increase the risk. Treatment outcomes remain less favourable than desired, in part due to antimicrobial resistance involving de novo-acquired mutations. Pathogenesis is also influenced by interactions between MAC and host cells, including mechanisms of immune evasion and inflammatory modulation. In addition, emerging evidence suggests that gut–lung axis dysbiosis may influence susceptibility to MAC infection. This review outlines current knowledge on the population structure, clinical significance, resistance and host–pathogen interactions of MAC. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
34 pages, 1283 KB  
Review
Brain Structures, Circuits, and Networks Involved in Immune Regulation, Periodontal Health, and Disease
by Torbjørn Jarle Breivik, Per Gjermo, Per Kristian Opstad, Robert Murison, Stephan von Hörsten and Inge Fristad
Life 2025, 15(10), 1572; https://doi.org/10.3390/life15101572 - 9 Oct 2025
Abstract
The interaction between microorganisms in the dental microfilm (plaque) at the gingival margin, the immune system, and the brain is vital for gingival health. The brain constantly receives information regarding microbial composition and inflammation status through afferent nerves and the bloodstream. It modulates [...] Read more.
The interaction between microorganisms in the dental microfilm (plaque) at the gingival margin, the immune system, and the brain is vital for gingival health. The brain constantly receives information regarding microbial composition and inflammation status through afferent nerves and the bloodstream. It modulates immune responses via efferent nerves and hormonal systems to maintain homeostasis. This relationship determines whether the gingiva remains healthy or develops into gingivitis (non-destructive inflammation) or periodontitis (a destructive condition), collectively referred to as periodontal disease. Factors associated with severe periodontitis heighten the responsiveness of this homeostatic system, diminishing the adaptive immune system’s defence against symbiotic microorganisms with pathogenic properties, known as pathobionts. This leads to excessive innate immune system activation, effectively preventing infection but damaging the periodontium. Consequently, investigating the microbiota–brain axis is vital for understanding its impact on periodontal health and disease. Herein, we examine recent advancements in how the defence against pathobionts is organised within the brain, and how it regulates and adapts the pro-inflammatory and anti-inflammatory immune balance, controlling microbiota composition. It also discussed how pathobionts and emotional stress can trigger neurodegenerative diseases, and how inadequate coping strategies for managing daily stress and shift work can disrupt brain circuits linked to immune regulation, weakening the adaptive immune response against pathobionts. Full article
15 pages, 1079 KB  
Review
P2Y2 Receptor Signaling in Health and Disease
by Fatemeh Salarpour and Jean Sévigny
Int. J. Mol. Sci. 2025, 26(19), 9815; https://doi.org/10.3390/ijms26199815 (registering DOI) - 9 Oct 2025
Abstract
P2Y2 receptors are a subclass of G protein-coupled receptors activated by the extracellular nucleotides ATP and UTP. These receptors are widely expressed in multiple tissues—including the brain, lungs, heart, and kidneys—and play pivotal roles in inflammation, wound healing, and cell migration. Through [...] Read more.
P2Y2 receptors are a subclass of G protein-coupled receptors activated by the extracellular nucleotides ATP and UTP. These receptors are widely expressed in multiple tissues—including the brain, lungs, heart, and kidneys—and play pivotal roles in inflammation, wound healing, and cell migration. Through coupling with various G proteins, P2Y2 receptors initiate diverse intracellular signaling pathways that mediate calcium mobilization, cytokine release, and cytoskeletal reorganization. Recent studies highlight their dual roles in health and disease. In physiological contexts, P2Y2 receptors contribute to immune modulation and tissue repair. In pathological conditions, they are implicated in Alzheimer’s disease by promoting non-amyloidogenic processing of amyloid precursor protein and in dry eye disease by enhancing mucin secretion while modulating ocular inflammation. They also influence chloride secretion and mucosal hydration in cystic fibrosis and contribute to inflammatory regulation and epithelial repair in inflammatory bowel disease. Additionally, P2Y2 receptors modulate breast cancer progression by regulating cell adhesion, migration, and matrix remodeling. Their involvement in blood pressure regulation via epithelial sodium channel modulation and their facilitative role in HIV-1 entry further underscore their clinical significance. These multifaceted functions position P2Y2 receptors as promising therapeutic targets for diverse diseases, warranting further investigation for translational applications. Full article
Show Figures

Figure 1

44 pages, 692 KB  
Review
Nutraceuticals, Social Interaction, and Psychophysiological Influence on Pet Health and Well-Being: Focus on Dogs and Cats
by Mario Nicotra, Tommaso Iannitti and Alessandro Di Cerbo
Vet. Sci. 2025, 12(10), 964; https://doi.org/10.3390/vetsci12100964 - 9 Oct 2025
Abstract
Pet humanization, particularly in dogs and cats, has transformed animal healthcare and highlighted the importance of nutrition in promoting human–pet social interaction, pet psychophysical well-being and, possibly, longevity. Nutraceuticals, such as omega-3 fatty acids, prebiotics, probiotics, plant extracts and dietary supplements, are endowed [...] Read more.
Pet humanization, particularly in dogs and cats, has transformed animal healthcare and highlighted the importance of nutrition in promoting human–pet social interaction, pet psychophysical well-being and, possibly, longevity. Nutraceuticals, such as omega-3 fatty acids, prebiotics, probiotics, plant extracts and dietary supplements, are endowed with antioxidant, anti-inflammatory, immune-modulating, cognitive-enhancing and gut-microbiota balancing properties. These effects have been shown to contribute to the possible prevention and management of bone and skin diseases, as well as gastrointestinal and behavioral disturbs. Moreover, the human–animal bond has been shown to play a pivotal role in reducing stress, improving sociability, and modulating pets’ emotional and physiological states. Evidence also suggests that nutrition and social interactions can influence the gut–brain axis, impacting the behavior, cognition, and resilience to stress-related disorders. Besides underlining the value of nutraceutical integration into pet nutrition strategies and offering a comprehensive, evidence-based perspective on their potential in improving animal welfare, literature reports about drawbacks of the use/misuse of such substances have been reported. Full article
17 pages, 587 KB  
Review
Dietary Habits and Their Impact on Pediatric Obesity and Asthma: A Narrative Review with Emphasis on the Mediterranean Diet
by Marianna Deligeorgopoulou, Sophia Tsabouri, Ekaterini Siomou, Antonios P. Vlahos and Anastasios Serbis
Children 2025, 12(10), 1354; https://doi.org/10.3390/children12101354 - 9 Oct 2025
Abstract
Obesity and asthma are increasingly prevalent chronic conditions that often coexist in the pediatric population and may influence each other through shared pathophysiological mechanisms. Obesity can affect asthma expression and severity via mechanical effects on the lungs, systemic inflammation, altered adipokine levels, and [...] Read more.
Obesity and asthma are increasingly prevalent chronic conditions that often coexist in the pediatric population and may influence each other through shared pathophysiological mechanisms. Obesity can affect asthma expression and severity via mechanical effects on the lungs, systemic inflammation, altered adipokine levels, and metabolic dysregulation. These mechanisms contribute to a distinct asthma phenotype in children with obesity that is often less responsive to standard therapy. Nutrition plays a critical role in this context by influencing immune function, inflammation, and respiratory outcomes. Specific dietary patterns, such as the Mediterranean diet, along with nutrients including vitamin D, antioxidants, and polyunsaturated fatty acids, have been associated with the modulation of airway inflammation and asthma risk. Additionally, early-life nutritional exposures and gut microbiota composition may influence immune development and the propensity for allergic diseases. This narrative review aims to synthesize current evidence on the interplay between obesity, asthma, and nutrition in the pediatric population, highlighting potential dietary interventions and targets for improved asthma management in children with obesity. Full article
(This article belongs to the Section Global Pediatric Health)
Show Figures

Figure 1

14 pages, 2950 KB  
Article
Serum Metabolomics Uncovers Immune and Lipid Pathway Alterations in Lambs Supplemented with Novel LAB-Bifidobacterium Cocktail
by Roman Wójcik, Angelika Król-Grzymała, Dawid Tobolski, Assel Paritova, Estefanía García-Calvo, Jan Miciński and Grzegorz Zwierzchowski
Int. J. Mol. Sci. 2025, 26(19), 9808; https://doi.org/10.3390/ijms26199808 - 9 Oct 2025
Abstract
The ban on antibiotic growth promoters in livestock has intensified the search for effective probiotic alternatives. This study assessed the impact of a novel probiotic cocktail—comprising Lactobacillus plantarum AMT14 and AMT4, L. rhamnosus AMT15, and Bifidobacterium animalis AMT30—on the serum metabolome of lambs [...] Read more.
The ban on antibiotic growth promoters in livestock has intensified the search for effective probiotic alternatives. This study assessed the impact of a novel probiotic cocktail—comprising Lactobacillus plantarum AMT14 and AMT4, L. rhamnosus AMT15, and Bifidobacterium animalis AMT30—on the serum metabolome of lambs using an untargeted GC/MS approach. Sixteen Kamieniec lambs were divided into control and probiotic groups, with serum collected on days 0, 15, and 30. Metabolomic profiling revealed significant alterations in lipid and amino acid metabolism in the probiotic group. By day 15, 38 metabolites were upregulated, including 9,12-octadecadienoic acid, arachidonic acid, and cholesterol. On day 30, key increases included D-glucose, oleic acid, glycine, decanoic acid, and L-leucine. Multivariate analyses (PCA, PLS-DA) demonstrated clear separation between groups, and ROC analysis identified strong biomarkers with high predictive accuracy. These results suggest that probiotic supplementation can beneficially modulate host metabolism, potentially enhancing immune and physiological function in lambs. This highlights the value of multi-strain LAB-Bifidobacterium probiotics as a promising strategy for improving health and reducing antibiotic reliance in ruminant production systems. Full article
Show Figures

Figure 1

36 pages, 4341 KB  
Review
Physiological Barriers to Nucleic Acid Therapeutics and Engineering Strategies for Lipid Nanoparticle Design, Optimization, and Clinical Translation
by Yerim Kim, Jisu Park, Jaewon Choi, Minse Kim, Gyeongsu Seo, Jeongeun Kim, Jeong-Ann Park, Kwang Suk Lim, Suk-Jin Ha and Hyun-Ouk Kim
Pharmaceutics 2025, 17(10), 1309; https://doi.org/10.3390/pharmaceutics17101309 - 8 Oct 2025
Abstract
Lipid nanoparticles are a clinically validated platform for delivering nucleic acids, but performance is constrained by multiscale physiological barriers spanning circulation, vascular interfaces, extracellular matrices, cellular uptake, and intracellular trafficking. This review links composition–structure–function relationships for ionizable lipids, helper phospholipids, cholesterol, and PEG-lipids [...] Read more.
Lipid nanoparticles are a clinically validated platform for delivering nucleic acids, but performance is constrained by multiscale physiological barriers spanning circulation, vascular interfaces, extracellular matrices, cellular uptake, and intracellular trafficking. This review links composition–structure–function relationships for ionizable lipids, helper phospholipids, cholesterol, and PEG-lipids to systemic fate, endothelial access, endosomal escape, cytoplasmic stability, and nuclear transport. We outline strategies for tissue and cell targeting, including hepatocyte ligands, immune and tumor selectivity, and selective organ targeting through compositional tuning, together with approaches that modulate escape using pH-responsive chemistries or fusion-active peptides and polymers. We further examine immunomodulatory co-formulation, route and schedule effects on biodistribution and immune programming, and manufacturing and stability levers from microfluidic mixing to lyophilization. Across these themes, we weigh trade-offs between stealth and engagement, potency and tolerability, and potency and manufacturability, noting that only a small fraction of endosomes supports productive release and that protein corona variability and repeat dosing can reshape tropism and clearance. Convergence of standardized assays for true cytosolic delivery, biomarker-guided patient selection, and robust process controls will be required to extend LNP therapeutics beyond the liver while sustaining safety, access, and scale. Full article
Show Figures

Graphical abstract

33 pages, 5368 KB  
Review
Zinc-Mediated Defenses Against Toxic Heavy Metals and Metalloids: Mechanisms, Immunomodulation, and Therapeutic Relevance
by Roopkumar Sangubotla, Shameer Syed, Anthati Mastan, Buddolla Anantha Lakshmi and Jongsung Kim
Int. J. Mol. Sci. 2025, 26(19), 9797; https://doi.org/10.3390/ijms26199797 - 8 Oct 2025
Abstract
Zinc (Zn), a naturally occurring trace element ubiquitous in the Earth’s crust, soil, and water, is indispensable for human health due to its physiological and nutritive benefits. In this scenario, Zn is pivotal for maintaining homeostasis against toxic effects exerted by heavy metals [...] Read more.
Zinc (Zn), a naturally occurring trace element ubiquitous in the Earth’s crust, soil, and water, is indispensable for human health due to its physiological and nutritive benefits. In this scenario, Zn is pivotal for maintaining homeostasis against toxic effects exerted by heavy metals (HMs) through bioaccumulation and metabolic interference. Zinc is an enticing cofactor for miscellaneous biochemical enzymes such as Zn metalloenzymes, which mediate crucial cellular processes, including cell proliferation, protein synthesis, immune modulation, epigenetic regulation, and nucleic acid synthesis. Recently, several research studies have focused on the thorough investigation of Zn supplementation in controlling HM toxicity by competing for binding sites and boosting protective mechanisms in humans. The current article discusses the upper limits for various toxic HMs in staple crop foods, as provided by globally recognized organizations. Clinical studies recommend a daily dose of 11 mg of Zn for healthy men and 8–12 mg for women in healthy and pregnancy conditions. However, during Zn deficiency, therapeutic supplementation is expected to be adjustable, and the dosage is increased from 15 to 30 mg daily. This review discusses the dysregulation of specific Zn importers and transporters (ZIPs/ZnTs) due to their clinical significance in immune system dysfunction as well as the progression of a myriad of cancers, including prostate, breast, and pancreas. Moreover, this review emphasizes indispensable in vitro and in vivo studies, as well as key molecular mechanisms related to Zn supplementation for treating toxicities exacerbated by HMs. Full article
Show Figures

Graphical abstract

16 pages, 1694 KB  
Article
Dietary Inclusion of Micro-Algal Astaxanthin on Gut Health of Rainbow Trout Oncorhynchus mykiss: Insights from Gut Morphology, Physiological Indices and Microbiota Diversity
by Min Zhang, Xiaowen Long, Yaopeng Li, Yong Zhang, Weihong Sun and Xugan Wu
Fishes 2025, 10(10), 505; https://doi.org/10.3390/fishes10100505 - 8 Oct 2025
Abstract
The green alga Haematococcus pluvialis, rich in natural astaxanthin, is a key feed additive for salmonid pigmentation. This study evaluated dietary micro-algal astaxanthin effects on structure, antioxidative and immune response, as well as microbiota in different gut segments of rainbow trout Oncorhynchus [...] Read more.
The green alga Haematococcus pluvialis, rich in natural astaxanthin, is a key feed additive for salmonid pigmentation. This study evaluated dietary micro-algal astaxanthin effects on structure, antioxidative and immune response, as well as microbiota in different gut segments of rainbow trout Oncorhynchus mykiss (initial average weight: 0.67 ± 0.02 kg). Three diets contained 0 (Diet 1, control), 18.57 (Diet 2) and 31.25 mg/kg (Diet 3) micro-algal astaxanthin. After a 4-month feeding trial, dietary astaxanthin promoted the goblet cell proliferation of pyloric caeca and increased hindgut tunica muscularis thickness (p < 0.05). It also improved antioxidant capacity, characterized by the upregulation of gpx and cat expression in the midgut, accompanied by a significant decrease in MDA content (p < 0.05). Furthermore, dietary astaxanthin could upregulate tgf-β, tor1 and pcna levels in midgut and igm in hindgut, while il1β, il6, il8 and tnfα in hindgut were significantly downregulated in Diet 2 (p < 0.05). Additionally, dietary astaxanthin also enhanced the α-diversity of hindgut and altered the core microbiota (reduced Proteobacteria, increased Actinobacteria). Diet 2 increased microbic abundance associated with reducing gut inflammation and promoting nutrient absorption while decreasing that of pathogenic bacteria. Overall, dietary 18.57 mg/kg astaxanthin supplementation could promote gut structure, antioxidant and immune capacity, reduce inflammation and modulate microbiota. These findings indicate that natural astaxanthin from H. pluvialis has potential as an immunostimulant to promote gut health in salmonids. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

30 pages, 1765 KB  
Review
Adipocyte–Tumor Interactions in the Bone Marrow Niche: Implications for Metastasis and Therapy
by Alhomam Dabaliz, Mohammad Nawar Al Hakawati, Najmuddeen Alrashdan, Sarah Alrashdan, Mohamad Bakir and Khalid S. Mohammad
Int. J. Mol. Sci. 2025, 26(19), 9781; https://doi.org/10.3390/ijms26199781 - 8 Oct 2025
Abstract
Bone metastases continue to be a major cause of morbidity and mortality in patients with advanced cancers, driven by the dynamic remodeling of the bone marrow niche. Traditionally viewed as passive space-fillers, bone marrow adipocytes (BMAs) are now recognized as active regulators of [...] Read more.
Bone metastases continue to be a major cause of morbidity and mortality in patients with advanced cancers, driven by the dynamic remodeling of the bone marrow niche. Traditionally viewed as passive space-fillers, bone marrow adipocytes (BMAs) are now recognized as active regulators of tumor growth, therapeutic resistance, and skeletal pathology. BMAs comprise a significant portion of the adult marrow space, particularly in aging and obesity, and facilitate metastatic colonization through various mechanisms. These include metabolic coupling, where adipocyte-derived fatty acids fuel tumor oxidative phosphorylation; the secretion of adipokines such as leptin and IL-6, which promote epithelial-to-mesenchymal transition, invasion, and immune evasion; regulation of osteoclastogenesis via RANKL expression; and the release of extracellular vesicles that reprogram cancer cell metabolism. Clinical and experimental studies show that BMA expansion correlates with increased tumor burden and poorer outcomes in breast, prostate, lung cancers, and multiple myeloma. Additionally, BMAs actively promote therapeutic resistance through metabolic rewiring and drug sequestration. Experimental models, ranging from in vitro co-cultures to in vivo patient-derived xenografts, demonstrate the complex roles of BMAs and also reveal important translational gaps. Despite promising preclinical approaches such as metabolic inhibitors, PPARγ modulation, adipokine blockade, and lifestyle changes, no therapies directly targeting BMAs have yet reached clinical practice. This review compiles current evidence on the biology of BMAs, their tumor-promoting interactions, and potential therapeutic strategies, while also highlighting unresolved questions about BMA heterogeneity, lipid flux, and immunometabolic crosstalk. By revealing how bone marrow adipocytes actively shape the metastatic niche through metabolic, endocrine, and immunological pathways, this review highlights their potential as novel biomarkers and therapeutic targets for improving the management of bone metastases. Full article
(This article belongs to the Special Issue Novel Molecular Pathways in Oncology, 3rd Edition)
Show Figures

Graphical abstract

23 pages, 2890 KB  
Review
Crosstalk Between Allergic Inflammation and Autophagy
by Jaewhoon Jeoung, Wonho Kim and Dooil Jeoung
Int. J. Mol. Sci. 2025, 26(19), 9765; https://doi.org/10.3390/ijms26199765 - 7 Oct 2025
Abstract
Autophagy is a conserved process that involves the degradation of damaged proteins and organelles to restore cellular homeostasis. Autophagy plays a critical role in cell differentiation, immune responses, and protection against pathogens, as well as the development and progression of allergic inflammation. Crosstalk [...] Read more.
Autophagy is a conserved process that involves the degradation of damaged proteins and organelles to restore cellular homeostasis. Autophagy plays a critical role in cell differentiation, immune responses, and protection against pathogens, as well as the development and progression of allergic inflammation. Crosstalk between autophagy and signaling pathways modulates immune responses to inflammatory signals. Here, we discuss the regulatory roles of autophagy in allergic inflammation. Autophagy can promote allergic inflammation by enhancing the secretion of inflammatory mediators. Impaired autophagy resulting from the accumulation of autophagosomes can exacerbate allergic inflammation. Mast cell degranulation and activation require energy provided by mitochondrial respiration. Mast cell activation is accompanied by morphological changes and mitochondrial fragmentation. Mitochondrial fragmentation (mitophagy) induced by oxidative stress involves the degradation of defective mitochondria. Therefore, we discuss the relationship between mitophagy and allergic inflammation. Targeting autophagy and oxidative stress can be a strategy for developing anti-allergy therapeutics. In this review, we also discuss future research directions to better understand allergic diseases with respect to autophagy and develop effective anti-allergy drugs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop