Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (726)

Search Parameters:
Keywords = implant interface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2820 KB  
Case Report
An Enhanced Method for Left Bundle Branch Area Pacing Lead Extraction Using Continuous Femoral Pigtail Countertraction
by Andrei Mihnea Rosu, Theodor Georgian Badea, Florentina Luminita Tomescu, Emanuel Stefan Radu, Maria-Daniela Tanasescu, Eduard George Cismas and Oana Andreea Popa
Diagnostics 2025, 15(17), 2198; https://doi.org/10.3390/diagnostics15172198 - 29 Aug 2025
Viewed by 126
Abstract
Background: Left bundle branch area pacing (LBBAP) has emerged as a physiological alternative to conventional pacing, offering improved ventricular synchrony and clinical outcomes. However, extraction of deeply implanted LBBAP leads remains challenging, particularly in the context of device-related infections. Case Summary: We [...] Read more.
Background: Left bundle branch area pacing (LBBAP) has emerged as a physiological alternative to conventional pacing, offering improved ventricular synchrony and clinical outcomes. However, extraction of deeply implanted LBBAP leads remains challenging, particularly in the context of device-related infections. Case Summary: We report two cases of successful extraction of chronically implanted LBBAP leads using a novel technique based on femoral countertraction with pigtail catheters. In the first case, a deep septal implanted 3830 lead was extracted in a patient with persistent bacteremia and suspected device-related endocarditis. Continuous traction was applied to the mid-portion of the lead using a pigtail catheter introduced via femoral access, facilitating safe removal without the use of powered sheaths proximal to the distal tip of the lead. In the second case, three leads (RA, RV, LBBAP) from a cardiac resynchronization therapy with deffibrilation support (CRT-D) system were completely removed in a patient with device extrusion and pocket erosion, using a dual pigtail approach anchored to the atrial and septal leads. Results: In both cases, the technique enabled successful extraction without complications. Procedural times were approximately 70 and 65 min, respectively. In vitro testing suggested that the pigtail catheter applied a sustained moderate traction force (~0.06 kgf), translating to an estimated pressure of 0.85–1.91 kgf/cm2 at the septal lead interface. Conclusions: This case series demonstrates that LBBAP lead extraction is feasible using a novel femoral countertraction technique with pigtail catheters. Steady, moderate traction over time may provide a safer alternative to forceful subclavicular extraction, especially in chronically implanted deep septal leads. Further studies are warranted to evaluate the reproducibility, safety, and clinical applicability of this approach. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Cardiovascular Diseases)
Show Figures

Figure 1

24 pages, 13784 KB  
Article
Effect of Cold Rolling on Microstructure Evolution and Mechanical Properties of Zn-3Cu-1Mg-0.3Nd Alloy
by Huan Liu, Zhenghan Yang, Zhangwei Yang, Yuna Wu and Jia Ju
Crystals 2025, 15(9), 769; https://doi.org/10.3390/cryst15090769 - 29 Aug 2025
Viewed by 137
Abstract
Biodegradable zinc alloys for orthopedic implants must balance mechanical strength and plasticity, yet current as-cast alloys struggle to meet this dual requirement. In this study, a Zn-3Cu-1Mg-0.3Nd alloy was designed, and the influence of room-temperature rolling at four reduction levels (50%, 60%, 70%, [...] Read more.
Biodegradable zinc alloys for orthopedic implants must balance mechanical strength and plasticity, yet current as-cast alloys struggle to meet this dual requirement. In this study, a Zn-3Cu-1Mg-0.3Nd alloy was designed, and the influence of room-temperature rolling at four reduction levels (50%, 60%, 70%, and 80%) on its microstructure and mechanical properties was systematically investigated. Results indicate that as the reduction increases, the CuZn5 phase elongated along the rolling direction, and the η-Zn+Mg2Zn11 eutectic structure was progressively fragmented. The average grain size of the η-Zn matrix decreased significantly from 18.9 μm (50% reduction) to 1.71 μm (80% reduction). A distinct bimodal heterogeneous microstructure (coarse/fine grains) was formed at 60% and 70% reductions, while a predominantly fine-grained structure (91.3% fine grains) was achieved at 80% reduction. Furthermore, cracks initiated in the NdZn11 phase due to stress concentration during rolling. As the rolling reduction increases, the alloy’s ultimate tensile strengths (UTS) initially rose and then declined (peaking at 417 ± 5 MPa at 60% reduction), while its elongation (EL) consistently improved. At 80% reduction, the alloy exhibited optimal mechanical properties, achieving a tensile strength of 406 ± 4 MPa and an EL of 16.4 ± 0.3%, both significantly higher than those of the as-cast alloy (126 MPa, 4.4%). The enhancement in strength is attributed to a multi-scale synergistic mechanism involving grain refinement and back stress strengthening induced by heterogeneous microstructures. The continuous improvement in plasticity results from grain refinement, texture weakening, and the activation of non-basal <c+a> slip systems. Notably, cracks within the NdZn11 phase were confined by its high-binding-strength interface, preventing detrimental propagation into the matrix. This study elucidates the strengthening and toughening mechanisms in zinc alloys through cold rolling and the addition of the Nd element, particularly in terms of microstructural control and crack passivation, offering theoretical guidance for the design of biodegradable zinc alloy materials. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

19 pages, 7555 KB  
Article
Effects of Two Dental Implant Micromotor Systems for Dental Implant Placement on Implant Stability and Removal Torque: An Animal Experiment
by Keunbada Son, Young-Tak Son, Sung-Min Hwang, Jae Mok Lee, Jin-Wook Kim and Kyu-Bok Lee
Materials 2025, 18(17), 4048; https://doi.org/10.3390/ma18174048 - 29 Aug 2025
Viewed by 158
Abstract
This in vivo animal study aimed to evaluate the effects of two different implant placement micromotor systems on implant stability and removal torque. In a within-animal crossover design, twenty titanium implants (AnyOne fixture; internal type; diameter, 3.5 mm; length, 7.0 mm; Megagen, Daegu, [...] Read more.
This in vivo animal study aimed to evaluate the effects of two different implant placement micromotor systems on implant stability and removal torque. In a within-animal crossover design, twenty titanium implants (AnyOne fixture; internal type; diameter, 3.5 mm; length, 7.0 mm; Megagen, Daegu, Republic of Korea) were placed in the tibiae of five rabbits using a conventional micromotor system (NSK group: SurgicPro+; NSK, Kanuma, Japan) and a diode laser-integrated micromotor system (SAESHIN group: BLP 10; Saeshin, Daegu, Republic of Korea). Resonance frequency analysis provided the implant stability quotient (ISQ) immediately after placement and at four weeks. Micro-computed tomography quantified the bone–implant interface gap (BIG). Removal torque was measured at sacrifice. Linear mixed-effects models with a random intercept for rabbit generated adjusted means with 95% confidence intervals (CIs) (α = 0.05). Equivalence for the four-week ISQ used two one-sided tests with a margin of ±5 ISQ. The SAESHIN group achieved a higher immediate ISQ than the NSK group (difference =+6.9 ISQ; 95% CI +1.3–+12.5; p = 0.018). At four weeks, the ISQ did not differ (difference = −1.2 ISQ; 95% CI −4.3–+1.9; p = 0.42), and equivalence was supported (TOST p_lower = 0.024; p_upper = 0.019). Removal torque was comparable (difference = +4.3 N·cm; 95% CI −5.2–+13.8; p = 0.36). BIG metrics showed no between-system differences across regions. ICC indicated clustering for ISQ and torque (0.36 and 0.31). The diode laser-integrated micromotor system yielded a higher immediate ISQ under a standardized 35 N·cm seating torque, whereas the ISQ, removal torque, and BIG at four weeks were comparable to those of the conventional system. The immediate ISQ should be interpreted as stiffness under fixed torque rather than superior device-dependent interlocking. These findings support the clinical interchangeability of the two systems for early osseointegration endpoints in preclinical settings. Full article
(This article belongs to the Special Issue Innovations in Digital Dentistry: Novel Materials and Technologies)
Show Figures

Figure 1

16 pages, 3430 KB  
Article
Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation
by Minghao Wang, Chaojie Zhou, Siyan Shang, Hao Jiang, Wenhao Wang, Xinhua Zhou, Wenbin Zhang, Xinyi Wang, Minyi Jin, Tiling Hu, Longchun Wang and Bowen Ji
Micromachines 2025, 16(9), 983; https://doi.org/10.3390/mi16090983 - 27 Aug 2025
Viewed by 300
Abstract
This study proposes a rigid-flexible neural optrode integrated with anti-bending SU-8 optical waveguides and locally soft peptide-functionalized microelectrodes to address the challenges of precise implantation and long-term biocompatibility in traditional neural interfaces. Fabricated via microelectromechanical systems (MEMS) technology, the optrode features a PBK/PPS/(PHE) [...] Read more.
This study proposes a rigid-flexible neural optrode integrated with anti-bending SU-8 optical waveguides and locally soft peptide-functionalized microelectrodes to address the challenges of precise implantation and long-term biocompatibility in traditional neural interfaces. Fabricated via microelectromechanical systems (MEMS) technology, the optrode features a PBK/PPS/(PHE)2 trilayer electrochemical modification that suppresses photoelectrochemical (PEC) noise by 63% and enhances charge storage capacity by 51 times. A polyethylene glycol (PEG)-enabled temporary rigid layer ensures precise implantation while allowing post-implantation restoration of flexibility and enabling positioning adjustment. In vitro tests demonstrate efficient light transmission through SU-8 waveguides in agar gel and a 63% reduction in PEC noise peaks. Biocompatibility analysis reveals that peptide-coated PI substrates improve cell viability by 32.5–37.1% compared to rigid silicon controls. In vivo validation in crucian carp midbrain successfully records local field potential (LFP) signals (60–80 μV), thereby confirming the optrode’s sensitivity and stability. This design provides a low-damage and high-resolution tool for neural circuit analysis. It also lays a technical foundation for future applications in monitoring neuronal activity and researching neurodegenerative diseases with high spatiotemporal resolution. Full article
Show Figures

Figure 1

23 pages, 1615 KB  
Review
Current Mechanobiological Pathways and Therapies Driving Spinal Health
by Rahul Kumar, Kyle Sporn, Harlene Kaur, Akshay Khanna, Phani Paladugu, Nasif Zaman and Alireza Tavakkoli
Bioengineering 2025, 12(8), 886; https://doi.org/10.3390/bioengineering12080886 - 20 Aug 2025
Viewed by 475
Abstract
Spinal health depends on the dynamic interplay between mechanical forces, biochemical signaling, and cellular behavior. This review explores how key molecular pathways, including integrin, yeas-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), Piezo, and Wingless/Integrated (Wnt) with β-catenin, actively shape the [...] Read more.
Spinal health depends on the dynamic interplay between mechanical forces, biochemical signaling, and cellular behavior. This review explores how key molecular pathways, including integrin, yeas-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), Piezo, and Wingless/Integrated (Wnt) with β-catenin, actively shape the structural and functional integrity of spinal tissues. These signaling mechanisms respond to physical cues and interact with inflammatory mediators such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), driving changes that lead to disc degeneration, vertebral fractures, spinal cord injury, and ligament failure. New research is emerging that shows scaffold designs that can directly harness these pathways. Further, new stem cell-based therapies have been shown to promote disc regeneration through targeted differentiation and paracrine signaling. Interestingly, many novel bone and ligament scaffolds are modulating anti-inflammatory signals to enhance tissue repair and integration, as well as prevent scaffold degradation. Neural scaffolds are also arising. These mimic spinal biomechanics and activate Piezo signaling to guide axonal growth and restore motor function. Scientists have begun combining these biological platforms with brain–computer interface technology to restore movement and sensory feedback in patients with severe spinal damage. Although this technology is not fully clinically ready, this field is advancing rapidly. As implantable technology can now mimic physiological processes, molecular signaling, biomechanical design, and neurotechnology opens new possibilities for restoring spinal function and improving the quality of life for individuals with spinal disorders. Full article
(This article belongs to the Special Issue Biomechanics and Mechanobiology in Cell and Tissue Engineering)
Show Figures

Figure 1

28 pages, 3851 KB  
Review
Technological Advances and Medical Applications of Implantable Electronic Devices: From the Heart, Brain, and Skin to Gastrointestinal Organs
by Jonghyun Lee, Sung Yong Han and Young Woo Kwon
Biosensors 2025, 15(8), 543; https://doi.org/10.3390/bios15080543 - 18 Aug 2025
Viewed by 690
Abstract
Implantable electronic devices are driving innovation in modern medical technology and have significantly improved patients’ quality of life. This review comprehensively analyzes the latest technological trends in implantable electronic devices used in major organs, including the heart, brain, and skin. Additionally, it explores [...] Read more.
Implantable electronic devices are driving innovation in modern medical technology and have significantly improved patients’ quality of life. This review comprehensively analyzes the latest technological trends in implantable electronic devices used in major organs, including the heart, brain, and skin. Additionally, it explores the potential for application in the gastrointestinal system, particularly in the field of biliary stents, in which development has been limited. In the cardiac field, wireless pacemakers, subcutaneous implantable cardioverter-defibrillators, and cardiac resynchronization therapy devices have been commercialized, significantly improving survival rates and quality of life of patients with cardiovascular diseases. In the field of brain–neural interfaces, biocompatible flexible electrodes and closed-loop deep brain stimulation have improved treatments of neurological disorders, such as Parkinson’s disease and epilepsy. Skin-implantable devices have revolutionized glucose management in patients with diabetes by integrating continuous glucose monitoring and automated insulin delivery systems. Future development of implantable electronic devices incorporating pressure or pH sensors into biliary stents in the gastrointestinal system may significantly improve the prognosis of patients with bile duct cancer. This review systematically organizes the technological advances and clinical outcomes in each field and provides a comprehensive understanding of implantable electronic devices by suggesting future research directions. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

46 pages, 1676 KB  
Review
Neural–Computer Interfaces: Theory, Practice, Perspectives
by Ignat Dubynin, Maxim Zemlyanskov, Irina Shalayeva, Oleg Gorskii, Vladimir Grinevich and Pavel Musienko
Appl. Sci. 2025, 15(16), 8900; https://doi.org/10.3390/app15168900 - 12 Aug 2025
Viewed by 889
Abstract
This review outlines the technological principles of neural–computer interface (NCI) construction, classifying them according to: (1) the degree of intervention (invasive, semi-invasive, and non-invasive); (2) the direction of signal communication, including BCI (brain–computer interface) for converting neural activity into commands for external devices, [...] Read more.
This review outlines the technological principles of neural–computer interface (NCI) construction, classifying them according to: (1) the degree of intervention (invasive, semi-invasive, and non-invasive); (2) the direction of signal communication, including BCI (brain–computer interface) for converting neural activity into commands for external devices, CBI (computer–brain interface) for translating artificial signals into stimuli for the CNS, and BBI (brain–brain interface) for direct brain-to-brain interaction systems that account for agency; and (3) the mode of user interaction with technology (active, reactive, passive). For each NCI type, we detail the fundamental data processing principles, covering signal registration, digitization, preprocessing, classification, encoding, command execution, and stimulation, alongside engineering implementations ranging from EEG/MEG to intracortical implants and from transcranial magnetic stimulation (TMS) to intracortical microstimulation (ICMS). We also review mathematical modeling methods for NCIs, focusing on optimizing the extraction of informative features from neural signals—decoding for BCI and encoding for CBI—followed by a discussion of quasi-real-time operation and the use of DSP and neuromorphic chips. Quantitative metrics and rehabilitation measures for evaluating NCI system effectiveness are considered. Finally, we highlight promising future research directions, such as the development of electrochemical interfaces, biomimetic hierarchical systems, and energy-efficient technologies capable of expanding brain functionality. Full article
(This article belongs to the Special Issue Brain-Computer Interfaces: Development, Applications, and Challenges)
Show Figures

Figure 1

16 pages, 3286 KB  
Article
Effect of EVT-Derived Small Extracellular Vesicles on Normal and Impaired Human Implantation
by Marina Alexandrova, Mariela Ivanova, Ivaylo Vangelov, Iana Hristova and Tanya Dimova
Appl. Sci. 2025, 15(16), 8866; https://doi.org/10.3390/app15168866 - 11 Aug 2025
Viewed by 409
Abstract
Uncontrolled and excessive inflammation could negatively impact embryo implantation, potentially leading to implantation failure or miscarriage. Small extracellular vesicles (sEVs) secreted by extravillous trophoblasts (EVTs) play a significant role in mediating the homeostasis at the maternal–fetal interface. In the present work we assessed [...] Read more.
Uncontrolled and excessive inflammation could negatively impact embryo implantation, potentially leading to implantation failure or miscarriage. Small extracellular vesicles (sEVs) secreted by extravillous trophoblasts (EVTs) play a significant role in mediating the homeostasis at the maternal–fetal interface. In the present work we assessed the role of EVT-derived sEVs in the protection of the human blastocyst’s integrity and function in a microenvironment with excessive Th1-induced inflammation using the Sw71 blastocyst-like surrogate (Sw71 BLS) as a model of implanting a human embryo. Conditioned media from primary trophoblast-derived EVT cells were used as the source for sEVs’ isolation by precipitation. sEVs were characterized by TEM, IEM, and protein content. To simulate Th1-induced inflammation, we performed TCR stimulation and polyclonal activation of isolated T cells, which preferentially led to Th1 cytokine production. The use of the Sw71 spheroid model allowed us to monitor directly the damaging effect of high levels of Th1 cytokines on the ability of trophoblast cells to self-organize and migrate. The addition of EVT-sEVs unlocked the absolute migration capacity of the trophoblast cells in a healthy microenvironment. However, EVT-sEV treatment could not counteract the adverse effects of excessive Th1-mediated inflammation. This study provides a platform for further elucidation of the EVT-sEV dosage and potency for trophoblast functional recovery. Full article
(This article belongs to the Special Issue Cell Biology: Latest Advances and Prospects)
Show Figures

Figure 1

18 pages, 11273 KB  
Article
The Effect of Different Tightening Torques of Implant Cone Morse Abutment Connection Under Dynamic Fatigue Loading: An In Vitro Study
by Felice Lorusso, Antonio Scarano, Sergio Rexhep Tari, Ishita Singhal, Funda Goker, Maria Costanza Soldini, Gianluca Martino Tartaglia and Massimo Del Fabbro
Biomimetics 2025, 10(8), 511; https://doi.org/10.3390/biomimetics10080511 - 4 Aug 2025
Viewed by 426
Abstract
Background: The implant–abutment joint is important for the long-term marginal tissue integrity in terms of biomimetic design that replicates the natural dentition under mastication forces. This study aimed to evaluate conical implant–abutment joints coupled at different tightening torque values through a mechanical fatigue [...] Read more.
Background: The implant–abutment joint is important for the long-term marginal tissue integrity in terms of biomimetic design that replicates the natural dentition under mastication forces. This study aimed to evaluate conical implant–abutment joints coupled at different tightening torque values through a mechanical fatigue test. Methods: Eighty conic implants (Ø: 3.8 mm L: 10 mm) with a 6° cone morse joint were embedded in resin blocks with an inclination of 30° ± 2°. The samples were divided into 8 groups (4 Test and 4 Control). The implant–abutment joints were coupled with different tightening torques: 25 Ncm (Group I), 30 Ncm (Group II), 35 Ncm (Group III) and 40 Ncm (Group IV). An in vitro cyclic loading test (1 × 104 loads) was performed for 4 Test groups, while 4 Control groups did not receive any forces. All the samples were assessed with Scanning Electron Microscopy to compare the microfractures and microgaps on flexion and extension points. Results: Microscopy observation results showed significant differences among torque groups. We found that 30 Ncm had the best stability with less microgap. Conclusions: Tightening torque plays an important role in the distortion of the cone morse joint under mechanical forces. However, further studies should be conducted to validate the results using different implant–abutment joints for comparison. Full article
Show Figures

Figure 1

24 pages, 6108 KB  
Review
Angiogenic Cell Precursors and Neural Cell Precursors in Service to the Brain–Computer Interface
by Fraser C. Henderson and Kelly Tuchman
Cells 2025, 14(15), 1163; https://doi.org/10.3390/cells14151163 - 29 Jul 2025
Viewed by 1086
Abstract
The application of artificial intelligence through the brain–computer interface (BCI) is proving to be one of the great advances in neuroscience today. The development of surface electrodes over the cortex and very fine electrodes that can be stereotactically implanted in the brain have [...] Read more.
The application of artificial intelligence through the brain–computer interface (BCI) is proving to be one of the great advances in neuroscience today. The development of surface electrodes over the cortex and very fine electrodes that can be stereotactically implanted in the brain have moved the science forward to the extent that paralyzed people can play chess and blind people can read letters. However, the introduction of foreign bodies into deeper parts of the central nervous system results in foreign body reaction, scarring, apoptosis, and decreased signaling. Implanted electrodes activate microglia, causing the release of inflammatory factors, the recruitment of systemic inflammatory cells to the site of injury, and ultimately glial scarring and the encapsulation of the electrode. Recordings historically fail between 6 months and 1 year; the longest BCI in use has been 7 years. This article proposes a biomolecular strategy provided by angiogenic cell precursors (ACPs) and nerve cell precursors (NCPs), administered intrathecally. This combination of cells is anticipated to sustain and promote learning across the BCI. Together, through the downstream activation of neurotrophic factors, they may exert a salutary immunomodulatory suppression of inflammation, anti-apoptosis, homeostasis, angiogenesis, differentiation, synaptogenesis, neuritogenesis, and learning-associated plasticity. Full article
Show Figures

Graphical abstract

14 pages, 1607 KB  
Article
Three-Dimensional Distribution of Titanium Hydrides After Degradation of Magnesium/Titanium Hybrid Implant Material—A Study by X-Ray Diffraction Contrast Tomography
by Vasil M. Garamus, D. C. Florian Wieland, Julian P. Moosmann, Felix Beckmann, Lars Lottermoser, Maria Serdechnova, Carsten Blawert, Mohammad Fazel, Eshwara P. S. Nidadavolu, Wolfgang Limberg, Thomas Ebel, Regine Willumeit-Römer and Berit Zeller-Plumhoff
J. Compos. Sci. 2025, 9(8), 396; https://doi.org/10.3390/jcs9080396 - 26 Jul 2025
Cited by 1 | Viewed by 798
Abstract
Hybrid implants composed of magnesium and titanium are a promising direction in orthopaedics, as these implants combine the stability of titanium with the biological activity of magnesium. These partly soluble implants require careful investigation, as the degradation of magnesium releases hydrogen, which can [...] Read more.
Hybrid implants composed of magnesium and titanium are a promising direction in orthopaedics, as these implants combine the stability of titanium with the biological activity of magnesium. These partly soluble implants require careful investigation, as the degradation of magnesium releases hydrogen, which can enter the Ti matrix and thus alter the mechanical properties. To investigate this scenario and quantify the hydrogen uptake along with its structural impacts, we employed inert gas fusion, scanning electron microscopy, X-ray diffraction, and a combination of synchrotron absorption and X-ray diffraction tomography. These techniques enabled us to investigate the concentration and distribution of hydrogen and the formation of hydrides in the samples. Titanium hydride formation was observed in a region approximately 120 µm away from the titanium surface and correlates with the amount of absorbed hydrogen. We speculate that the degradation of magnesium at the magnesium/titanium implant interface leads to the penetration of hydrogen due to a combination of electrochemical and gaseous charging. Full article
Show Figures

Graphical abstract

18 pages, 2288 KB  
Article
Defect Studies in Thin-Film SiO2 of a Metal-Oxide-Silicon Capacitor Using Drift-Assisted Positron Annihilation Lifetime Spectroscopy
by Ricardo Helm, Werner Egger, Catherine Corbel, Peter Sperr, Maik Butterling, Andreas Wagner, Maciej Oskar Liedke, Johannes Mitteneder, Michael Mayerhofer, Kangho Lee, Georg S. Duesberg, Günther Dollinger and Marcel Dickmann
Nanomaterials 2025, 15(15), 1142; https://doi.org/10.3390/nano15151142 - 23 Jul 2025
Viewed by 411
Abstract
This work investigates the impact of an internal electric field on the annihilation characteristics of positrons implanted in a 180(10)nm SiO2 layer of a Metal-Oxide-Silicon (MOS) capacitor, using Positron Annihilation Lifetime Spectroscopy (PALS). By varying the gate voltage, [...] Read more.
This work investigates the impact of an internal electric field on the annihilation characteristics of positrons implanted in a 180(10)nm SiO2 layer of a Metal-Oxide-Silicon (MOS) capacitor, using Positron Annihilation Lifetime Spectroscopy (PALS). By varying the gate voltage, electric fields up to 1.72MV/cm were applied. The measurements reveal a field-dependent suppression of positronium (Ps) formation by up to 64%, leading to an enhancement of free positron annihilation. The increase in free positrons suggests that vacancy clusters are the dominant defect type in the oxide layer. Additionally, drift towards the SiO2/Si interface reveals not only larger void-like defects but also a distinct population of smaller traps that are less prominent when drifting to the Al/SiO2 interface. In total, by combining positron drift with PALS, more detailed insights into the nature and spatial distribution of defects within the SiO2 network and in particular near the SiO2/Si interface are obtained. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

15 pages, 2537 KB  
Article
Comparative Assessment of the Mechanical Response to Different Screw Dimensions in Scaphoid Fracture Fixation
by Esin Rothenfluh, Sambhav Jain, William R. Taylor and Seyyed Hamed Hosseini Nasab
Bioengineering 2025, 12(8), 790; https://doi.org/10.3390/bioengineering12080790 - 22 Jul 2025
Viewed by 455
Abstract
The scaphoid is the most commonly fractured carpal bone. Headless compression screws became the gold standard for fixation, but the ideal screw diameter remains debated. This study investigates the relative benefit of using a larger screw diameter to improve stability in typical scaphoid [...] Read more.
The scaphoid is the most commonly fractured carpal bone. Headless compression screws became the gold standard for fixation, but the ideal screw diameter remains debated. This study investigates the relative benefit of using a larger screw diameter to improve stability in typical scaphoid fractures. It also examines the effects of preload and screw length on mechanical behaviour. A finite element (FE) model of a mid-waist scaphoid fracture was created. Screws from Medartis (1.7 mm, 2.2 mm, and 3.0 mm diameter; 23 mm length) were placed along the longitudinal axis. Boundary and loading conditions matched prior studies. Interfragmentary displacement (IFD) and von Mises stress were compared across screw sizes. The effects of screw length and preload were also evaluated. Maximum in-plane IFD was 2.08 mm (1.7 mm screw), 0.53 mm (2.2 mm), and 0.27 mm (3.0 mm). The 1.7 mm screw exceeded the scaphoid’s average ultimate stress (60.51 MPa). Increasing preload reduced IFD, especially above 60 N. Screws longer than 1.5 times the mid-waist diameter offered no added benefit. Larger screws provide better biomechanical fracture stability. However, the gain from 2.2 mm to 3.0 mm is minor, while 1.7 mm screws lack sufficient strength. The 2.2 mm screw offers a good balance of stability and bone preservation, making it the preferred choice. Full article
(This article belongs to the Special Issue Advanced Engineering Technologies in Orthopaedic Research)
Show Figures

Graphical abstract

12 pages, 2107 KB  
Article
Assessment of Diameter Stability in Morse Taper Dental Implants with Different Angulations After Abutment Connection
by Bruno Q. S. Cordeiro, Waldimir R. Carvalho, Edgard M. Fonseca, Aldir N. Machado, Bruna Ghiraldini, Michel A. D. Soares and Priscila L. Casado
Materials 2025, 18(14), 3403; https://doi.org/10.3390/ma18143403 - 21 Jul 2025
Viewed by 446
Abstract
Background: Modification of diameter stability after the abutment retention can result in a decrease in the applied torque or affect the peri-implant tissue, compromising the longevity of the treatment. Therefore, this study aimed to investigate how different connection angles (11.5° and 16.0°) at [...] Read more.
Background: Modification of diameter stability after the abutment retention can result in a decrease in the applied torque or affect the peri-implant tissue, compromising the longevity of the treatment. Therefore, this study aimed to investigate how different connection angles (11.5° and 16.0°) at the implant–abutment interface influence implant diameter stability under the manufacturer’s recommended torque. Methods: Eighty Morse cone-type implant specimens were divided into two groups, with different internal conicity angles: 11.5° (n = 40) and 16.0° (n = 40). Implants varied in diameter (mm): 3.5, 3.8, 4.5, and 5.0. Initial measurements of the implants’ external diameter were carried out. After these measurements, all implants received the abutment installation, and a final measurement of the external implant diameter was performed. Results: Considering the comparative analysis between the final and initial diameters, a non-significant increase in diameter, in the cervical implant region, after torque on the abutment, was observed. The torque applied to the abutments did not produce deformations in the cervical area of Morse taper implants. Conclusions: The torque applied to the abutment screw in implants with a Morse taper connection does not cause deformation in the cervical area of the implant body in implant with 11.5° and 16.0° conicity angles. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

12 pages, 5437 KB  
Article
Cyber-Physical System Interface for Implantable Esophageal Prosthesis
by Ana Magdalena Anghel and Teodora Mîndra
Sensors 2025, 25(14), 4469; https://doi.org/10.3390/s25144469 - 18 Jul 2025
Viewed by 357
Abstract
This article presents a Cyber-Physical System Interface (CPSI) for a patented implantable esophageal prosthesis. Designed for in vivo use, the CPSI has been implemented in a MATLAB (version R2021b) simulation environment integrated with real-time data from sensors relevant for monitoring the prosthesis’s physical [...] Read more.
This article presents a Cyber-Physical System Interface (CPSI) for a patented implantable esophageal prosthesis. Designed for in vivo use, the CPSI has been implemented in a MATLAB (version R2021b) simulation environment integrated with real-time data from sensors relevant for monitoring the prosthesis’s physical positioning and environmental interactions, aggregated through an Arduino external system. This setup enables the modeling and analysis of system behaviors in a controlled setting. The paper discusses the sensors, hardware and software components supporting a wide range of applications, and the method chosen for sensor-to-display flow. The case study demonstrates two monitoring system applications: one analyzes the influence of variations in the prosthesis geometry, while the other evaluates the tissue response to the implant. The proposed framework and implementation are highly relevant for a wide range of in vivo implants and related systems. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop