Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,757)

Search Parameters:
Keywords = inducible knockout

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 17339 KB  
Article
Notch Signaling Pathway Regulates Ozone-Induced Lung Circadian Rhythm Disruption
by Xinyu Zhang, Xiaotong Jian, Xinyi Miao and Yangyang Jia
Toxics 2025, 13(9), 733; https://doi.org/10.3390/toxics13090733 - 30 Aug 2025
Viewed by 217
Abstract
Background: Ozone (O3) pollution disrupts pulmonary circadian rhythms, yet the molecular mechanisms remain elusive. The Notch signaling pathway, critical for lung homeostasis, may crosstalk with the circadian clock system. Objective: This study elucidates the role of the Notch signaling pathway in [...] Read more.
Background: Ozone (O3) pollution disrupts pulmonary circadian rhythms, yet the molecular mechanisms remain elusive. The Notch signaling pathway, critical for lung homeostasis, may crosstalk with the circadian clock system. Objective: This study elucidates the role of the Notch signaling pathway in O3-induced lung circadian rhythm disruption. Methods: C57BL/6J mice were acutely exposed to O3 (1.0 ppm, 3 h). Lung tissues were collected 24 h post exposure. Transcriptome sequencing coupled with GSEA identified dysregulated pathways; IHC and RT-qPCR validated core genes; GEO dataset (GSE58244) reanalysis assessed Notch3/4 knockout effects. Results: O3 activated Notch signaling (NES = 1.85, FDR = 0.034) and disrupted the circadian pathway (NES = 1.84, FDR = 0.029), downregulating Bmal1 while upregulating Per2/3 and Notch3/4 (p < 0.05). Strong correlations (r > 0.8) existed between core genes of both pathways. Notch3/4 knockout exacerbated circadian disruption in a time-dependent manner upon O3 exposure. Conclusion: O3 induces lung circadian disruption via Notch3/4 activation, which provides novel mechanistic insights into pollutant-induced lung injury. Full article
(This article belongs to the Special Issue Ozone Pollution and Adverse Health Impacts)
Show Figures

Graphical abstract

20 pages, 3854 KB  
Article
Hepatic AhR Activation by TCDD Induces Obesity and Steatosis via Hepatic Plasminogen Activator Inhibitor-1 (PAI-1)
by Seung Jun Oh, Suyeol Im, Sora Kang, Aden Geonhee Lee, Byung Cheol Lee and Youngmi Kim Pak
Int. J. Mol. Sci. 2025, 26(17), 8452; https://doi.org/10.3390/ijms26178452 - 30 Aug 2025
Viewed by 240
Abstract
Exposure to persistent organic pollutants such as 2,3,7,8-tetrachlorodibenzodioxin (TCDD) increases metabolic disorder risk. In this study, we show that a single intraperitoneal injection of TCDD (10 μg/kg) in C57BL/6J mice induced body weight gain, lipid accumulation in the liver and adipose tissue, macrophage [...] Read more.
Exposure to persistent organic pollutants such as 2,3,7,8-tetrachlorodibenzodioxin (TCDD) increases metabolic disorder risk. In this study, we show that a single intraperitoneal injection of TCDD (10 μg/kg) in C57BL/6J mice induced body weight gain, lipid accumulation in the liver and adipose tissue, macrophage infiltration, and elevated hepatic and serum triglyceride levels after 12 weeks. Despite serum aryl hydrocarbon receptor (AhR) ligand levels normalizing by 12 weeks, the persistent effects suggest TCDD sequestration in fat tissue. TCDD inhibited the expression of mitochondrial proteins (COX1, TOM20, TFAM, H2AX) and reduced mitochondrial oxygen consumption. Liver-specific AhR knockout ameliorated TCDD-induced mitochondrial dysfunction, lipid accumulation, and macrophage infiltration. Mechanistically, TCDD-induced hepatic plasminogen activator inhibitor-1 (PAI-1) promoted adipocyte hypertrophy. In the liver, PAI-1 disrupted the interaction between tissue-type plasminogen activator (tPA) and apolipoprotein B (ApoB), thereby enhancing very-low-density lipoprotein (VLDL) assembly. These findings reveal that hepatocyte-derived circulating PAI-1, upregulated via hepatic AhR activation, contributes to adipocyte hypertrophy and hepatosteatosis through the intracellular modulation of the tPA–PAI-1 axis. Thus, hepatic AhR activation drives mitochondrial dysfunction and obesity, even after a single TCDD exposure. Full article
Show Figures

Figure 1

22 pages, 5549 KB  
Article
Differences in the Effectiveness of Uridine and Liriope platyphylla L. Between Complement Component 3 Deficiency- and Loperamide-Induced Constipation May Be Associated with the Alternative Regulation of the Cyclic Adenosine Monophosphate Downstream Signaling Pathway
by Hee Jin Song, Eun Seo Park, Ji Eun Kim, Ayun Seol, Su Jeong Lim, Su Ha Wang, Ye Ryeong Kim, Ye Eun Ryu, So Hae Park, Jumin Park, Hyun Gu Kang and Dae Youn Hwang
Pharmaceuticals 2025, 18(9), 1289; https://doi.org/10.3390/ph18091289 - 28 Aug 2025
Viewed by 185
Abstract
Background/Objectives: Constipation can be induced in animal models through various factors such as loperamide (Lop) or complement component 3 (C3) deficiency. The effectiveness of therapeutic agents in the clinical management of constipation has been primarily evaluated within only one model, but between-model [...] Read more.
Background/Objectives: Constipation can be induced in animal models through various factors such as loperamide (Lop) or complement component 3 (C3) deficiency. The effectiveness of therapeutic agents in the clinical management of constipation has been primarily evaluated within only one model, but between-model comparisons have not been performed so far. Therefore, we investigated whether the effectiveness of the laxative drugs for the clinical management is related to etiological factors. Methods: The changes in the key parameters for defecation were compared between C3 knockout (KO) mice with C3-deficiency-induced constipation and ICR mice with Lop-induced constipation after the oral administration of Uridine (Urd) and aqueous extract of Liriope platyphylla L. (AELP). Results: Similar effectiveness of Urd and AELP were detected on the stool frequency, intestinal epithelial barrier structure, and mucin secretion in both models. However, other parameters (namely gastrointestinal (GI) transit, water retention, and enteric nervous system (ENS) structure and function) showed higher effectiveness in C3 KO mice than in the Lop-induced model. Only the effectiveness of the two therapeutic agents on the histological structure of the mid-colon was greater in the Lop-induced mice model compared to the C3 KO mice model. Furthermore, these differences in the therapeutic effectiveness of Urd and AELP were partially reflected in alterations in the cyclic adenosine monophosphate (cAMP) downstream signaling pathway. Conclusions: The results suggest that the therapeutic effectiveness of Urd and AELP is sensitive to C3-deficiency-induced constipation and these differences may be linked to the alternative regulation of the cAMP downstream signaling. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

24 pages, 4535 KB  
Article
CmDUF239-1 Improves the Salt Tolerance of Grafted Melon by Enhancing Antioxidant Capacity and Na+/K+ Homeostasis
by Yanjun Liu, Zhanming Tan, Lulu Meng, Yang Li and Yuquan Peng
Plants 2025, 14(17), 2670; https://doi.org/10.3390/plants14172670 - 27 Aug 2025
Viewed by 311
Abstract
Salt stress poses a substantial challenge to melon cultivation, but grafting techniques have shown promise in enhancing salt tolerance. This study aims to identify key genes involved in salt tolerance within melon rootstocks. The salt tolerance of four melon cultivars was evaluated, revealing [...] Read more.
Salt stress poses a substantial challenge to melon cultivation, but grafting techniques have shown promise in enhancing salt tolerance. This study aims to identify key genes involved in salt tolerance within melon rootstocks. The salt tolerance of four melon cultivars was evaluated, revealing that ‘ST2’ exhibited salt sensitivity, whereas ‘XZM17’ demonstrated salt tolerance. Grafting experiments indicated that salt-sensitive melons benefit significantly from being grafted onto salt-tolerant rootstocks. Transcriptome analysis further identified the CmDUF239-1 gene as a critical factor contributing to improved salt tolerance in grafted melons. Functional studies demonstrated that knocking out CmDUF239-1 reduces salt tolerance, reflected in decreased activities of antioxidant enzymes (SOD, POD, CAT) and diminished expression levels of related genes (CmSOD1, CmPRX53-1, CmPRX53-2, CmCAT2). Conversely, overexpression of CmDUF239-1 leads to enhanced enzyme activity and gene expression, along with improved Na+/K+ homeostasis, evidenced by decreased Na+ accumulation and increased K+ absorption. Furthermore, CmDUF239-1 overexpression upregulated Na+/K+ transport-related genes (CmSOS1, CmNHX6, CmKUP3, CmSKOR), whereas CmDUF239-1 knockout had the opposite effect. These findings indicate that CmDUF239-1 plays a dual role in promoting salt tolerance by regulating antioxidant defenses and ion transport, contributing to our understanding of the molecular mechanisms behind grafting-induced salt tolerance and providing insights for the breeding of resilient melon varieties. Full article
Show Figures

Figure 1

10 pages, 3048 KB  
Article
CRISPR/Cas9-Mediated Overexpression of HGF Potentiates Tarim Red Deer Antler MSCs into Osteogenic Differentiation
by Yujiao Qi, Xiaodong Jia, Chuan Lin, Wenxi Qian, Hong Chen, Di Fang and Chunmei Han
Int. J. Mol. Sci. 2025, 26(17), 8273; https://doi.org/10.3390/ijms26178273 - 26 Aug 2025
Viewed by 339
Abstract
Previous studies conducted by our research groups have demonstrated that the HGF/c-Met signaling pathway promotes the proliferation and migration of MSCs in the antlers of Tarim red deer. However, the role and mechanism of this gene in the osteogenic differentiation of antler MSCs [...] Read more.
Previous studies conducted by our research groups have demonstrated that the HGF/c-Met signaling pathway promotes the proliferation and migration of MSCs in the antlers of Tarim red deer. However, the role and mechanism of this gene in the osteogenic differentiation of antler MSCs remain unclear. In this study, we used antler MSCs as experimental materials. CRISPR/Cas9 technology was employed to knock out the HGF gene, and lentivirus-mediated overexpression of the HGF gene was constructed in antler MSCs. Subsequently, antler MSCs were induced to undergo osteogenic differentiation in vitro. Alizarin Red staining was employed to identify calcium nodules, while the expression levels of various osteogenic differentiation marker genes were assessed using immunohistochemistry, RT-qPCR, and Western blotting techniques. The findings indicated that the HGF gene facilitates the osteogenic differentiation of antler MSCs. Analysis of genes associated with the PI3K/Akt and MEK/ERK signaling pathways demonstrated that in antler MSCs with HGF gene knockout, the expression levels of PI3K/Akt and MEK/ERK pathway genes were significantly downregulated on days 7 and 14 of osteogenic differentiation (p < 0.05). In contrast, antler MSCs with HGF gene overexpression exhibited a significant upregulation of the PI3K/Akt and MEK/ERK signaling pathways on days 4 and 6 of osteogenic differentiation (p < 0.01). These findings suggest that the HGF gene in antlers enhances the osteogenic differentiation of MSCs by activating the PI3K/Akt and MEK/ERK pathways. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

20 pages, 1853 KB  
Article
CRISPR/Cas9 TCR-Edited NKp30 CAR T Cells Exhibit Superior Anti-Tumor Immunity to B7H6-Expressing Leukemia and Melanoma
by Sedigheh Givi, Benedikt J. Lohnes, Saber Ebrahimi, Sophie Riedel, Sneha Khokhali, Shamsul A. Khan, Maximilian Keller, Catherine Wölfel, Hakim Echchannaoui, Ernesto Bockamp, Maya C. Andre, Hinrich Abken, Matthias Theobald and Udo F. Hartwig
Int. J. Mol. Sci. 2025, 26(17), 8235; https://doi.org/10.3390/ijms26178235 - 25 Aug 2025
Viewed by 588
Abstract
Chimeric antigen receptor (CAR) T-cell therapy directed to CD19 and B-cell maturation antigen has revolutionized treatment of B-cell leukemia and lymphoma, and multiple myeloma. However, identifying suitable targets for acute myeloid leukemia (AML) remains challenging due to concurrent expression of potential target antigens [...] Read more.
Chimeric antigen receptor (CAR) T-cell therapy directed to CD19 and B-cell maturation antigen has revolutionized treatment of B-cell leukemia and lymphoma, and multiple myeloma. However, identifying suitable targets for acute myeloid leukemia (AML) remains challenging due to concurrent expression of potential target antigens on normal hematopoietic stem cells or tissues. As the stress-induced B7H6 molecule is rarely found on normal tissues but expressed on many cancers including AML and melanoma, the NKp30-ligand B7H6 emerges as a promising target for NKp30-based CAR T therapy for these tumors. In this study, we report a comprehensive B7H6 expression analysis on primary AML and melanoma as well as on different tumor cell-lines examined by RT-qPCR and flow cytometry, and efficient anti-tumor reactivity of NKp30-CAR T cells to AML and melanoma. To overcome limitations of autologous CAR T-cell fitness-dependent efficacy and patient-tailored production, we generated CRISPR/Cas9-mediated TCR-knockout (TCRKO) NKp30-CAR T cells as an off-the-shelf approach for CAR T therapy. Functional studies comparing NKp30-CD28 CAR or NKp30-CD137 CAR TCR+ and TCRKO T lymphocytes revealed superior anti-tumoral immunity of NKp30-CD28 CAR TCRKO T cells to AML and melanoma cell lines in vitro, and effective control of tumor burden in an NSG melanoma-xenograft mouse model. In conclusion, these findings highlight the therapeutic potential of NKp30 CAR TCRKO T cells for adoptive T-cell therapy to B7H6-expressing cancers, including melanoma and AML. Full article
(This article belongs to the Special Issue Advanced Research on CAR-T Cell Therapy)
Show Figures

Figure 1

20 pages, 12508 KB  
Article
SIRT3 Acetylation Regulates Mitophagy to Alleviate Deoxynivalenol-Induced Apoptosis in Porcine Alveolar Macrophages Cells
by Peng Fan, Huidan Deng, Ya Wang, Zhihua Ren and Junliang Deng
Int. J. Mol. Sci. 2025, 26(17), 8222; https://doi.org/10.3390/ijms26178222 - 25 Aug 2025
Viewed by 502
Abstract
Deoxynivalenol (DON), a global mycotoxin contaminant, induces immunotoxicity in swine and humans by disrupting mitochondrial membrane integrity and activating mitophagy. SIRT3 plays an important role in regulating cell metabolism and various diseases. It also regulates apoptosis (caused by DON) by regulating the mitophagy [...] Read more.
Deoxynivalenol (DON), a global mycotoxin contaminant, induces immunotoxicity in swine and humans by disrupting mitochondrial membrane integrity and activating mitophagy. SIRT3 plays an important role in regulating cell metabolism and various diseases. It also regulates apoptosis (caused by DON) by regulating the mitophagy pathway, but this pathway has not been studied yet. Gene knockout and overexpression of SIRT3 were performed for proteomics and acetylation modification. Therefore, in this study, PAM cells were selected as an in vitro model of DON (1.1 μg/mL) exposure for 24 h. The results showed that the knockout impaired mitochondrial antioxidant function, whereas overexpression improves damage stimulation. DON can also affect the metabolism of immune pathways, but SIRT3 can enrich these substances’ metabolism. The results of the acetylation modification analysis showed that knockout affected the mRNA metabolism and others, while overexpression affected apoptosis and others. DON exposure caused fatty acid degradation, and altered MAPK signaling pathway. Knockout and overexpression of SIRT3 under DON exposure were enriched in PPAR, Ferroptosis pathway. Overexpression attenuated DON-induced mitophagy by reducing cellular ROS, as well as the expression of LC3, P62 and PINK1/Parkin. Finally, SIRT3 reduced cell apoptosis by reducing the expression of BAX and CASP3 and increasing the expression of BCL-2. These results indicated that SIRT3 could alleviate DON-induced cell damage by reducing apoptosis through the mitophagy pathway. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Graphical abstract

14 pages, 3442 KB  
Article
Drebrin Is Involved in the Life Cycle of Pseudorabies Virus by Regulating the Actin Cytoskeleton
by Kun Xu, Xiao-Han Wang, Yan-Pei Ku, Jie-Yuan Guo, Shu-Han Fan, Miao-Miao Xue, Jiang Wang, Shuang Guo, Jia-Jia Pan and Bei-Bei Chu
Microorganisms 2025, 13(9), 1969; https://doi.org/10.3390/microorganisms13091969 - 22 Aug 2025
Viewed by 310
Abstract
Pseudorabies virus (PRV), a highly pathogenic alphaherpesvirus, poses a potential threat to public health and safety due to its broad host range and risk of cross-species transmission. Viruses have evolved multiple strategies to exploit host factors for entry into and survival in host [...] Read more.
Pseudorabies virus (PRV), a highly pathogenic alphaherpesvirus, poses a potential threat to public health and safety due to its broad host range and risk of cross-species transmission. Viruses have evolved multiple strategies to exploit host factors for entry into and survival in host cells. Drebrin is an actin-binding protein that restricts rotavirus entry by inhibiting dynamin-mediated endocytosis. However, its role and mechanism in DNA virus infection, particularly in herpesviruses, remain unexplored. In this study, we investigated the role of Drebrin in PRV infection using pharmacological inhibition (BTP−2) and CRISPR-Cas9-mediated gene knockout. Both the Drebrin inhibitor BTP−2 and gene knockout significantly suppressed PRV replication. Intriguingly, Drebrin exhibited stage-specific effects on the viral life cycle: its inhibition enhanced viral internalization during early infection but impaired viral replication at later stages, suggesting that Drebrin plays a complex role in the regulation of PRV infection. PRV infection partially disrupted actin stress fibers and caused an increase in cell size. Drebrin knockout also altered the host-cell morphology, reduced the cell surface area, and induced actin cytoskeleton rearrangement, which was further modulated in PRV-infected cells. In summary, our data demonstrate that Drebrin functions as a critical host factor governing the entire PRV life cycle by regulating actin cytoskeleton reorganization. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

20 pages, 17294 KB  
Article
RIPK3 Contributes to Thyroid Hormone-Induced Photoreceptor Degeneration
by Lilliana R. York, Hongwei Ma, Yun Le, Courtney T. Griffin and Xi-Qin Ding
Int. J. Mol. Sci. 2025, 26(17), 8154; https://doi.org/10.3390/ijms26178154 - 22 Aug 2025
Viewed by 324
Abstract
Thyroid hormone (TH) regulates cell proliferation, differentiation, and metabolism. Increased TH levels in circulation are associated with a higher incidence of age-related macular degeneration. In mice, TH treatment causes photoreceptor degeneration, which is accompanied by an increase in receptor-interacting serine/threonine-protein kinase 3 (RIPK3) [...] Read more.
Thyroid hormone (TH) regulates cell proliferation, differentiation, and metabolism. Increased TH levels in circulation are associated with a higher incidence of age-related macular degeneration. In mice, TH treatment causes photoreceptor degeneration, which is accompanied by an increase in receptor-interacting serine/threonine-protein kinase 3 (RIPK3) in the retina. Here, we investigated the contribution of RIPK3/necroptosis to TH-induced photoreceptor degeneration using mice deficient in RIPK3 and the necroptotic mixed lineage kinase domain-like protein (MLKL). Wild-type (C57BL/6) and mutant mice at postnatal day 30 received triiodothyronine (T3, 20 µg/mL in drinking water) for four weeks, followed by the evaluation of photoreceptor survival/death and retinal function. Deletion of Ripk3 preserved photoreceptor integrity against T3-induced degeneration, evidenced by improved retinal morphology, increased cone density, improved retinal light responses, and reduced cell death. This protection was observed in both global and photoreceptor-specific Ripk3 knockout mice. In contrast, the deletion of Mlkl did not protect photoreceptors. This work supports the view that RIPK3, but not MLKL, contributes to TH-induced photoreceptor degeneration. The lack of protection from Mlkl deletion suggests that RIPK3’s action is likely mediated via a necrosome-independent mechanism. These findings provide significant insight into how TH signaling induces photoreceptor degeneration and implicate RIPK3 as a potential therapeutic target. Full article
(This article belongs to the Special Issue Advanced Molecular Research on Retinopathy and Protection)
Show Figures

Figure 1

23 pages, 6706 KB  
Article
Oleuropein Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Mice by Targeting TGF-β1 Signaling Pathway
by Liang Zhang, Zhigang Liu, Yayue Hu, Xueze Liu, Zhongyi Yang, Yuming Liu, Ran Jiao, Xiaoting Gu, Weidong Zhang, Xiaohe Li and Honggang Zhou
Biomolecules 2025, 15(9), 1211; https://doi.org/10.3390/biom15091211 - 22 Aug 2025
Viewed by 342
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by the accumulation of fibrotic tissue in the lungs, leading to impaired gas exchange and respiratory failure, with a poor prognosis and limited treatment options. Oleuropein, a compound extracted from olive [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by the accumulation of fibrotic tissue in the lungs, leading to impaired gas exchange and respiratory failure, with a poor prognosis and limited treatment options. Oleuropein, a compound extracted from olive leaves, demonstrates a range of pharmacological activities, including benefits for non-alcoholic fatty liver disease and cardiac fibrosis. This study investigates the therapeutic potential of oleuropein for IPF and its underlying mechanisms. We first established a bleomycin-induced mouse model of pulmonary fibrosis and evaluated the in vivo efficacy of oleuropein. Our findings demonstrated that oleuropein significantly alleviated lung fibrosis and improved pulmonary function. Through in vitro experiments, we found that oleuropein inhibited TGF-β1-induced fibroblast migration, activation, autophagy, and apoptotic resistance, and mechanistically, oleuropein could regulate the TGF-β1/Smad and TGF-β1/mTOR signaling pathways in fibroblasts. Additionally, molecular docking analysis indicated that FAP-α is a potential target of oleuropein, displaying strong binding affinity. The effects of oleuropein on fibroblasts were markedly disrupted in FAP-α knockout cells. In conclusion, oleuropein exerts its beneficial effects by targeting FAP-α and inhibiting TGF-β1-related signaling pathways, improving the pathological characteristics of pulmonary fibrosis in mouse models, and demonstrating promising application prospects for the treatment of IPF. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

15 pages, 24794 KB  
Article
CDK5RAP3 Deficiency Is Associated with Hepatic Inflammation and Increased Expression of NLRP3 Inflammasome Components
by Xinjin Chen, Yaqi Huang, Yilin Wu, Le Sheng, Hongchen Yan, Fanghui Chen, Fengwei Li, Hirpha Ketema and Yafei Cai
Biomedicines 2025, 13(8), 2030; https://doi.org/10.3390/biomedicines13082030 - 21 Aug 2025
Viewed by 485
Abstract
Background/Objectives: CDK5RAP3 (CDK5 regulatory subunit-associated protein 3), is a ubiquitously expressed protein in mammalian tissues, with emerging evidence suggesting its critical role in liver hypoplasia. CDK5RAP3 knockout results in liver hypoplasia and liver injury in mice, and most liver injuries are associated [...] Read more.
Background/Objectives: CDK5RAP3 (CDK5 regulatory subunit-associated protein 3), is a ubiquitously expressed protein in mammalian tissues, with emerging evidence suggesting its critical role in liver hypoplasia. CDK5RAP3 knockout results in liver hypoplasia and liver injury in mice, and most liver injuries are associated with inflammation. However, the connection between its deficiency and liver inflammation remains unclear. The NLRP3 inflammasome is a ubiquitously expressed inflammatory pathway, and growing evidence links it to liver diseases. Therefore, we aim to investigate the relationship between CDK5RAP3 deficiency in the liver and the NLRP3 inflammasome. Methods: To clarify the pathological link between CDK5RAP3 deficiency and liver inflammation, we developed liver-specific CDK5RAP3 knockout mouse models and mouse embryonic fibroblasts (MEFs) from conditional knockout mice. Results: CDK5RAP3 deficiency induces hepatic injury and inflammation in mice, with increased expression of NLRP3 inflammasome components (NLRP3, ASC, Caspase-1) and GSDMD, all of which promote pyroptosis. Notably, CDK5RAP3-deficient MEFs exhibit compromised proliferative capacity and elevated apoptotic rates. Conclusions: Our findings demonstrate that CDK5RAP3 is indispensable for maintaining hepatic homeostasis. Its deficiency can induce liver damage and inflammatory cell death in mice. Therefore, CDK5RAP3 may be a candidate for further investigation in inflammatory liver disease models. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

15 pages, 1806 KB  
Article
Acute HSV-1 Ocular Infection Is Impaired in KLF15 Knockout Mice but Stress-Induced Reactivation from Latency Is Prolonged in Male KLF15 Knockout Mice
by Kelly S. Harrison and Clinton Jones
Pathogens 2025, 14(8), 823; https://doi.org/10.3390/pathogens14080823 - 20 Aug 2025
Viewed by 810
Abstract
Acute human alpha-herpesvirus 1 (HSV-1) infection culminates in a latent infection of neurons in trigeminal ganglia (TG) and the central nervous system. Following infection of mucosal epithelial cells, certain neurons survive infection and life-long latency is established. Periodically, stressful stimuli trigger reactivation from [...] Read more.
Acute human alpha-herpesvirus 1 (HSV-1) infection culminates in a latent infection of neurons in trigeminal ganglia (TG) and the central nervous system. Following infection of mucosal epithelial cells, certain neurons survive infection and life-long latency is established. Periodically, stressful stimuli trigger reactivation from latency, which result in virus shedding, transmission to other people, and, occasionally, recurrent disease. The glucocorticoid receptor (GR) and Krüppel-like factor 15 (KLF15) comprise a feed-forward transcriptional loop that cooperatively transactivate key HSV-1 promoters that drive expression of infected cell protein 0 (ICP0), ICP4, and ICP27. Silencing KLF15 significantly reduces HSV-1 replication in cultured mouse neuroblastoma cells. Consequently, we hypothesized that KLF15 mediates certain aspects of reactivation from latency. To test this hypothesis, we compared HSV-1 replication in KLF15−/− mice versus wild-type (wt) parental C57BL/6 mice. Virus shedding during acute infection was reduced in KLF15−/− mice. Male KLF15−/− mice shed higher titers of virus during late stages of reactivation from latency compared to KLF15−/− females and wt mice regardless of sex. At 15 d after explant-induced reactivation, virus shedding was higher in male KLF15−/− mice relative to wt mice and female KLF15−/− mice. These studies confirm KLF15 expression enhances viral replication during acute infection and reactivation from latency. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

16 pages, 3404 KB  
Article
Loss of LsSOC1 Function Delays Bolting and Reprograms Transcriptional and Metabolic Responses in Lettuce
by Jin-Young Kim, Young-Hee Jang, Tae-Sung Kim, Yu-Jin Jung and Kwon-Kyoo Kang
DNA 2025, 5(3), 40; https://doi.org/10.3390/dna5030040 - 19 Aug 2025
Viewed by 373
Abstract
Background/Objectives: Bolting in lettuce (Lactuca sativa L.) is highly sensitive to elevated temperatures, leading to premature flowering and reduced crop quality and yield. Although SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is a well-known floral integrator in Arabidopsis, its [...] Read more.
Background/Objectives: Bolting in lettuce (Lactuca sativa L.) is highly sensitive to elevated temperatures, leading to premature flowering and reduced crop quality and yield. Although SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is a well-known floral integrator in Arabidopsis, its role in heat-induced bolting in lettuce remains unclear. Methods: In this study, we generated CRISPR/Cas9-mediated LsSOC1 knockout (KO) lines and evaluated their phenotypes under high-temperature conditions. Results: LsSOC1-KO lines exhibited delayed bolting up to 18.6 days, and stem elongation was reduced by approximately 3.8 cm, which is equivalent to a 36.1% decrease compared to wild-type (WT) plants. Transcriptome analysis of leaf and bud tissues identified 32 up-regulated and 10 down-regulated genes common to leaf tissue (|log2FC| ≥ 1, adjusted p < 0.05). Among them, GA20-oxidase1 was significantly down-regulated in both tissues, which may have contributed to delayed floral transition and possibly to reduced stem elongation, although tissue-specific regulation of gibberellin metabolism warrants further investigation. In contrast, genes encoding heat shock proteins, ROS-detoxification enzymes, and flavonoid biosynthetic enzymes were up-regulated, suggesting a dual role of LsSOC1 in modulating thermotolerance and floral transition. qRT-PCR validated the sustained suppression of flowering-related genes in LsSOC1 KO plants under 37 °C heat stress. Conclusions: These findings demonstrate that LsSOC1 is a key integrator of developmental and thermal cues, orchestrating both bolting and stress-responsive transcriptional programs. Importantly, delayed bolting may extend the harvest window and improve postharvest quality in lettuce, highlighting LsSOC1 as a promising genetic target for breeding heat-resilient leafy vegetables. Full article
Show Figures

Graphical abstract

16 pages, 9092 KB  
Article
Chromatin Remodeler RSF1 as an Oncogenic Driver and Therapeutic Target in Esophageal Squamous Cell Carcinoma
by Zhenhua Du, Zhili Jia, Yao Lin, Xudong Zhao, Gengsheng Cao and Hengbin Wang
Cells 2025, 14(16), 1262; https://doi.org/10.3390/cells14161262 - 15 Aug 2025
Viewed by 457
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy, ranking eleventh in incidence and seventh in mortality globally. Remodeling and Spacing factor 1 (RSF1), a chromatin remodeling factor, is frequently overexpressed in various tumors and correlates with poor prognosis. This study, combining public [...] Read more.
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy, ranking eleventh in incidence and seventh in mortality globally. Remodeling and Spacing factor 1 (RSF1), a chromatin remodeling factor, is frequently overexpressed in various tumors and correlates with poor prognosis. This study, combining public database analysis and clinical sample validation, reveals significantly elevated RSF1 expression in ESCC tumor tissues, confirmed further in an ESCC orthotopic model. Functional assays show that RSF1 knockout (KO) significantly inhibits ESCC cell proliferation, migration, invasion, and in vivo tumor growth, while reintroducing RSF1 restores its oncogenic effects. Proteomic analysis highlights that RSF1 KO disrupts pathways associated with cell cycle control, apoptosis, and focal adhesion. Experimentally, RSF1 KO induces apoptosis and G2/M arrest, establishing its essential role in ESCC progression. Collectively, these findings establish RSF1 as an oncogenic driver and a promising therapeutic target in ESCC. Full article
Show Figures

Figure 1

10 pages, 2056 KB  
Article
Complete Loss of Cramp Promotes Experimental Osteoarthritis with Enhanced Chondrocyte Apoptosis in Mice
by Moon-Chang Choi, Jiwon Jo and Junghee Park
Int. J. Mol. Sci. 2025, 26(16), 7874; https://doi.org/10.3390/ijms26167874 - 15 Aug 2025
Viewed by 303
Abstract
Osteoarthritis (OA) is the most prevalent form of joint arthritis, frequently associated with aging, mechanical wear, and inflammation. Our previous work demonstrated that cathelicidin-related antimicrobial peptide (Cramp) is upregulated in mouse OA cartilage, and that transient knockdown (KD) of Cramp in cultured chondrocytes [...] Read more.
Osteoarthritis (OA) is the most prevalent form of joint arthritis, frequently associated with aging, mechanical wear, and inflammation. Our previous work demonstrated that cathelicidin-related antimicrobial peptide (Cramp) is upregulated in mouse OA cartilage, and that transient knockdown (KD) of Cramp in cultured chondrocytes decreases IL-1β-induced expression of matrix-degrading enzymes. The aim of this study was to determine the in vivo role of Cramp in OA pathogenesis using whole-body Cramp knockout (KO) mice. Normal skeletal development and growth plate morphology were assessed in E18.5d embryos and 2-week-old mice, respectively. Expression profiles of catabolic and anabolic genes were analyzed in primary chondrocytes derived from Cramp KO mice. OA in mouse knee joints was induced using intra-articular monosodium iodoacetate (MIA) injections or surgical destabilization of the medial meniscus (DMM). We observed that Cramp loss does not impact normal skeletal development. In contrast to our expectations, complete Cramp deficiency in chondrocytes failed to decrease catabolic gene expression upon IL-1β stimulation. Instead, genetic deletion of Cramp significantly worsened OA cartilage degradation in both MIA- and DMM-induced models. The detrimental phenotype observed in Cramp-deficient mice results from enhanced chondrocyte apoptosis. Therefore, even minimal Cramp expression appears essential for maintaining catabolic balance and preventing chondrocyte apoptosis in OA cartilage. Collectively, our data indicate that Cramp may exert multifaceted effects on OA pathogenesis by modulating catabolic pathways and apoptosis. Full article
(This article belongs to the Special Issue Elucidating How Chondrocytes Maintain Cartilage Stability)
Show Figures

Figure 1

Back to TopTop