Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,290)

Search Parameters:
Keywords = inductive networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 314 KB  
Article
Conceptualising a Community-Based Response to Loneliness: The Representational Anchoring of Nature-Based Social Prescription by Professionals in Marseille, Insights from the RECETAS Project
by Lucie Cattaneo, Alexandre Daguzan, Gabriela García Vélez and Stéphanie Gentile
Int. J. Environ. Res. Public Health 2025, 22(9), 1400; https://doi.org/10.3390/ijerph22091400 (registering DOI) - 7 Sep 2025
Abstract
Background: Urban loneliness is rising worldwide and is a recognised public-health threat. Nature-Based Social Prescriptions (NBSPs), guided group activities in natural settings, are being piloted in six cities through the EU project RECETAS. However, in new contexts such as Marseille, its implementation is [...] Read more.
Background: Urban loneliness is rising worldwide and is a recognised public-health threat. Nature-Based Social Prescriptions (NBSPs), guided group activities in natural settings, are being piloted in six cities through the EU project RECETAS. However, in new contexts such as Marseille, its implementation is constrained by professionals’ limited knowledge of the concept. Objectives: (i) Exploring how professionals in Marseille (France) conceptualise NBSPs; (ii) Identifying perceived facilitators and barriers to implementing NBSPs among residents facing social isolation and loneliness. Methods: Twelve semi-structured interviews were conducted with health, social-care, and urban–environment professionals selected via network mapping and snowball sampling. Verbatim transcripts underwent inductive thematic analysis informed by Social Representation Theory, with double coding to enhance reliability. Results: Five analytic themes emerged: (1) a holistic health paradigm linking nature, community, and well-being; (2) stark ecological inequities with limited green-space access in deprived districts; (3) work challenges due to the urgent needs of individuals facing significant socio-economic challenges in demanding contexts; (4) a key tension between a perceived top-down process and a preference for participatory approaches; (5) drivers and obstacles: strong professional endorsement of NBSPs meets significant systemic and institutional constraints. Conclusions: Professionals endorse NBSPs as a promising approach against loneliness, provided programmes tackle structural inequities and adopt participatory governance. Results inform the Marseille RECETAS pilot and contribute to global discussions on environmentally anchored health promotion. Full article
(This article belongs to the Special Issue Public Health Consequences of Social Isolation and Loneliness)
37 pages, 4201 KB  
Article
Comparative Performance Analysis of Deep Learning-Based Diagnostic and Predictive Models in Grid-Integrated Doubly Fed Induction Generator Wind Turbines
by Ramesh Kumar Behara and Akshay Kumar Saha
Energies 2025, 18(17), 4725; https://doi.org/10.3390/en18174725 - 5 Sep 2025
Viewed by 170
Abstract
As the deployment of wind energy systems continues to rise globally, ensuring the reliability and efficiency of grid-connected Doubly Fed Induction Generator (DFIG) wind turbines has become increasingly critical. Two core challenges faced by these systems include fault diagnosis in power electronic converters [...] Read more.
As the deployment of wind energy systems continues to rise globally, ensuring the reliability and efficiency of grid-connected Doubly Fed Induction Generator (DFIG) wind turbines has become increasingly critical. Two core challenges faced by these systems include fault diagnosis in power electronic converters and accurate prediction of wind conditions for adaptive power control. Recent advancements in artificial intelligence (AI) have introduced powerful tools for addressing these challenges. This study presents the first unified comparative performance analysis of two deep learning-based models: (i) a Convolutional Neural Network-Long Short-Term Memory CNN-LSTM with Variational Mode Decomposition for real-time Grid Side Converter (GSC) fault diagnosis, and (ii) an Incremental Generative Adversarial Network (IGAN) for wind attribute prediction and adaptive droop gain control, applied to grid-integrated DFIG wind turbines. Unlike prior studies that address fault diagnosis and wind forecasting separately, both models are evaluated within a common MATLAB/Simulink framework using identical wind profiles, disturbances, and system parameters, ensuring fair and reproducible benchmarking. Beyond accuracy, the analysis incorporates multi-dimensional performance metrics such as inference latency, robustness to disturbances, scalability, and computational efficiency, offering a more holistic assessment than prior work. The results reveal complementary strengths: the CNN-LSTM achieves 88% accuracy with 15 ms detection latency for converter faults, while the IGAN delivers more than 95% prediction accuracy and enhances frequency stability by 18%. Comparative analysis shows that while the CNN-LSTM model is highly suitable for rapid fault localization and maintenance planning, the IGAN model excels in predictive control and grid performance optimization. Unlike prior studies, this work establishes the first direct comparative framework for diagnostic and predictive AI models in DFIG systems, providing novel insights into their complementary strengths and practical deployment trade-offs. This dual evaluation lays the groundwork for hybrid two-tier AI frameworks in smart wind energy systems. By establishing a reproducible methodology and highlighting practical deployment trade-offs, this study offers valuable guidance for researchers and practitioners seeking explainable, adaptive, and computationally efficient AI solutions for next-generation renewable energy integration. Full article
Show Figures

Figure 1

21 pages, 6817 KB  
Article
Prepubertal Diabetes Stagnates Testicular Development by Skewing Autophagy Homeostasis in Leydig Cells
by Zonghao Tang and Youkun Zheng
Cells 2025, 14(17), 1376; https://doi.org/10.3390/cells14171376 - 4 Sep 2025
Viewed by 168
Abstract
The maturation of testicular Leydig cells during the prepubertal stage is crucial for establishing male fertility. While diabetes is recognized as a significant detrimental factor affecting male testicular function, its impact specifically during the prepubertal period remains largely unknown. We hypothesized that prepubertal [...] Read more.
The maturation of testicular Leydig cells during the prepubertal stage is crucial for establishing male fertility. While diabetes is recognized as a significant detrimental factor affecting male testicular function, its impact specifically during the prepubertal period remains largely unknown. We hypothesized that prepubertal diabetes may impair testicular development by disrupting Leydig cell maturation. Using streptozotocin (STZ) administration, we established a prepubertal diabetic rat model and investigated the effects of diabetes on testicular development 2 and 4 weeks post-STZ treatment. Diabetes significantly hampered testicular development, manifesting as a decreased testicular weight, structural abnormalities, reduced testosterone levels, and increased inflammatory responses. As anticipated, prepubertal diabetes stagnated Leydig cell maturation and increased Leydig cell apoptosis. Mechanistic studies revealed that autophagy is essential for maintaining homeostasis and facilitating differentiation in immature Leydig cells but is significantly inhibited by hyperglycemia. Dysregulation of autophagy impaired the mitochondrial network, triggering inflammatory responses, suppressing steroidogenic capacity, and accumulating reactive oxygen species (ROS). Elevated ROS levels exacerbated the inflammatory response in the Leydig cells in an NLRP3-dependent manner. Inhibition of NLRP3 ameliorated the hyperglycemia-induced inflammation and decline in steroidogenic ability. Collectively, these findings demonstrate that hyperglycemia suppresses autophagy induction and enhances ROS accumulation in Leydig cells. This cascade promotes inflammation and inhibits steroidogenesis, thereby impeding testicular development in prepubertal diabetic rats. Full article
Show Figures

Figure 1

12 pages, 942 KB  
Article
Functional Brain Connectivity During Stress Induction and Recovery: Normal Subjects
by Jaehui Kim and Mi-Hyun Choi
Appl. Sci. 2025, 15(17), 9714; https://doi.org/10.3390/app15179714 - 4 Sep 2025
Viewed by 122
Abstract
This study aimed to compare the changes in brain functional connectivity between states of stress induction and recovery in mentally stable, healthy individuals to investigate the effects of stress on brain networks. We selected a stable group comprising 20 healthy adults with Perceived [...] Read more.
This study aimed to compare the changes in brain functional connectivity between states of stress induction and recovery in mentally stable, healthy individuals to investigate the effects of stress on brain networks. We selected a stable group comprising 20 healthy adults with Perceived Stress Scale scores of 0–13 points and a mean age of 24.4 ± 4.3 years. We used the Montreal Imaging Stress Task to induce stress and captured images of the brain using a 3T magnetic resonance imaging scanner. We analyzed the region of interest (ROI)-to-ROI connectivity and compared the differences in functional connectivity between the stress and recovery phases. In the stress state, we observed increased connectivity between the dorsal attention and sensorimotor networks and between the visual and default mode networks. In the recovery state, the default mode network became reactivated, and connectivity supporting self-referential thinking and stability was observed. The connectivities observed only in the recovery phase were Language.pSTG (R)—DefaultMode.LP (R) and DefaultMode.LP (R)—Visual.Lateral (R). Our findings provide important basic data for the development of stress management and recovery strategies. By assessing healthy individuals, our findings provide new perspectives on stress resilience in the brain. Full article
Show Figures

Figure 1

19 pages, 52140 KB  
Article
Wearable SIMO Inductive Resonant Link for Posture Monitoring
by Giuseppina Monti, Daniele Lezzi and Luciano Tarricone
Sensors 2025, 25(17), 5478; https://doi.org/10.3390/s25175478 - 3 Sep 2025
Viewed by 209
Abstract
This paper explores the feasibility of using a wireless Inductive Resonant Link (IRL) for wearable posture monitoring. The proposed system is based on magnetically coupled textile resonators and is implemented using a Single Input Multiple Output (SIMO) configuration. In particular, the setup consists [...] Read more.
This paper explores the feasibility of using a wireless Inductive Resonant Link (IRL) for wearable posture monitoring. The proposed system is based on magnetically coupled textile resonators and is implemented using a Single Input Multiple Output (SIMO) configuration. In particular, the setup consists of four inductively coupled resonators: one transmitting coil integrated into a textile structure and positioned on the back of the neck, and three receiving coils placed on the shoulders. The magnetic coupling between these elements varies as a function of the user’s posture, making it possible to monitor postural changes by analyzing variations in the transmission coefficients of the link. Unlike traditional sensor-based systems that require multiple components and data processing, the proposed method uses the inherent response of the inductive link to detect posture in a simple and efficient way. To validate the concept, experimental measurements of the scattering parameters were carried out using a compact and low-power vector network analyzer. The results show a consistent and measurable relationship between postural changes and variations in the transmission coefficients, demonstrating the effectiveness of the proposed system in distinguishing between different postures. The findings suggest that inductive resonant wireless links, especially when implemented with textile components, represent a promising alternative to traditional wearable sensor technologies for posture tracking. The approach offers significant advantages in terms of wearability, power consumption, and simplicity, making it suitable for applications in ergonomics, rehabilitation, occupational health, and smart clothing. Full article
(This article belongs to the Section Wearables)
Show Figures

Graphical abstract

26 pages, 2140 KB  
Article
Mitigation of Subsynchronous Resonance in Doubly Fed Induction Generator Systems by Static Synchronous Compensator Using Fuzzy Logic
by Luis Chicaiza, Luis Tipán, Manuel Jaramillo and Carlos Barrera-Singaña
Energies 2025, 18(17), 4653; https://doi.org/10.3390/en18174653 - 2 Sep 2025
Viewed by 285
Abstract
This document focuses on the mitigation of subsynchronous resonance (SSR) in doubly fed induction generators (DFIGs) through the application of an effective solution based on the use of a Static Synchronous Compensator (STATCOM) with fuzzy logic. The STATCOM, a static parallel compensator, improved [...] Read more.
This document focuses on the mitigation of subsynchronous resonance (SSR) in doubly fed induction generators (DFIGs) through the application of an effective solution based on the use of a Static Synchronous Compensator (STATCOM) with fuzzy logic. The STATCOM, a static parallel compensator, improved the stability, quality, and reliability of the power supply in distribution systems by optimizing the response to voltage fluctuations. Combined with fuzzy logic, it provided flexible and efficient control, reducing oscillations arising in the system. Two case studies were carried out in which the DFIG and the STATCOM module with fuzzy logic were implemented in IEEE 13- and IEEE 33-bus systems. Comparative analyses with and without compensation were performed to assess the system’s behavior in response to oscillations generated by the generator, taking voltages as the main variable. The results showed that the fuzzy–PI controlled STATCOM effectively stabilized voltage profiles, mitigating SSR and improving system reliability. In the IEEE 13-bus case, voltage oscillations were reduced by approximately 72% and the bus voltages converged to 0.99–1.01 p.u. within 1.5 s. In the IEEE 33-bus system, the controller achieved a suppression rate of 68%, with voltages restored to 0.98–1.02 p.u. in less than 2 s. These findings demonstrate the efficiency of the proposed fuzzy–PI STATCOM in suppressing subsynchronous oscillations and enhancing stability in DFIG-based networks. Full article
Show Figures

Figure 1

16 pages, 6039 KB  
Article
Blue Light Receptor WC-2 Regulates Ganoderic Acid Biosynthesis in Ganoderma lingzhi
by Yan Xu, Xiong-Min Huang, Zi-Xu Wang, Ying-Jie Zhao, Dong-Mei Lv and Jun-Wei Xu
J. Fungi 2025, 11(9), 646; https://doi.org/10.3390/jof11090646 - 1 Sep 2025
Viewed by 333
Abstract
Ganoderic acid (GA) is a key bioactive component with pharmacological properties that is found in Ganoderma lingzhi, a renowned medicinal mushroom. Currently, the regulatory mechanisms underlying GA biosynthesis in G. lingzhi remain to be further elucidated. In this study, blue light induction [...] Read more.
Ganoderic acid (GA) is a key bioactive component with pharmacological properties that is found in Ganoderma lingzhi, a renowned medicinal mushroom. Currently, the regulatory mechanisms underlying GA biosynthesis in G. lingzhi remain to be further elucidated. In this study, blue light induction was found to significantly enhance the GA content in G. lingzhi. To explore the regulatory mechanism of GA biosynthesis in response to blue light, the blue light receptor WC-2 was identified, and its regulatory role was characterized. The deletion of wc-2 resulted in a significant reduction in both GA content and the accumulation of intermediates compared to the wild-type control strain, largely due to the strong downregulation of key GA biosynthetic genes. Additionally, decreased asexual spore production and reduced expression of sporulation-specific genes were observed with the deletion of wc-2. The overexpression of wc-2 led to greatly enhanced GA accumulation. Under blue light induction, the maximum contents of GA-Mk, GA-T, GA-S, and GA-Me were 2.27-, 2.51-, 2.49-, and 2.08-fold higher, respectively, compared to the control kept in darkness. These results demonstrate that the blue light receptor WC-2 functions as a positive regulator of GA biosynthesis in G. lingzhi, influencing the expression of genes involved in GA biosynthesis and asexual spore production, thereby advancing our understanding of the intricate regulatory network of GA biosynthesis. Full article
Show Figures

Figure 1

27 pages, 1057 KB  
Review
Distributed Acoustic Sensing for Road Traffic Monitoring: Principles, Signal Processing, and Emerging Applications
by Jingxiang Deng, Long Jin, Hongzhi Wang, Zihao Zhang, Yanjiang Liu, Fei Meng, Jikai Wang, Zhenghao Li and Jianqing Wu
Infrastructures 2025, 10(9), 228; https://doi.org/10.3390/infrastructures10090228 - 29 Aug 2025
Viewed by 376
Abstract
With accelerating urbanization and the exponential growth in vehicle populations, high-precision traffic monitoring has become indispensable for intelligent transportation systems (ITSs). Conventional sensing technologies—including inductive loops, cameras, and radar—suffer from inherent limitations: restrictive spatial coverage, prohibitive installation costs, and vulnerability to adverse weather. [...] Read more.
With accelerating urbanization and the exponential growth in vehicle populations, high-precision traffic monitoring has become indispensable for intelligent transportation systems (ITSs). Conventional sensing technologies—including inductive loops, cameras, and radar—suffer from inherent limitations: restrictive spatial coverage, prohibitive installation costs, and vulnerability to adverse weather. Distributed Acoustic Sensing (DAS), leveraging Rayleigh backscattering to convert standard optical fibers into kilometer-scale, real-time vibration sensor networks, presents a transformative alternative. This paper provides a comprehensive review of the principles and system architecture of DAS for roadway traffic monitoring, with a focus on signal processing techniques, feature extraction methods, and recent advances in vehicle detection, classification, and speed/flow estimation. Special attention is given to the integration of deep learning approaches, which enhance noise suppression and feature recognition under complex, multi-lane traffic conditions. Real-world deployment cases on highways, urban roads, and bridges are analyzed to demonstrate DAS’s practical value. Finally, this paper delineates emerging research trends and technical hurdles, providing actionable insights for the scalable implementation of DAS-enhanced ITS infrastructures. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

13 pages, 1498 KB  
Article
Regulatory Ouabain Action on Excitatory Transmission in Rat Hippocampus: Facilitation of Synaptic Responses and Weakening of LTP
by Yulia D. Stepanenko, Dmitry A. Sibarov and Sergei M. Antonov
Biomolecules 2025, 15(9), 1236; https://doi.org/10.3390/biom15091236 - 27 Aug 2025
Viewed by 295
Abstract
Cardiotonic steroids (CTS), including the endogenous compound ouabain, modulate neuronal Na/K-ATPase (NKA) activity in a concentration-dependent manner, affecting neuronal survival and function. While high concentrations of ouabain are neurotoxic, endogenous levels of 0.1–1 nM exert neuroprotective effects and influence intracellular signaling. However, the [...] Read more.
Cardiotonic steroids (CTS), including the endogenous compound ouabain, modulate neuronal Na/K-ATPase (NKA) activity in a concentration-dependent manner, affecting neuronal survival and function. While high concentrations of ouabain are neurotoxic, endogenous levels of 0.1–1 nM exert neuroprotective effects and influence intracellular signaling. However, the effects of physiologically relevant ouabain concentrations on excitatory synaptic transmission remain unclear. In this study, we examined how 1 nM ouabain affects synaptic responses in rat hippocampal CA1 neurons. Using whole-cell patch-clamp recordings of evoked excitatory postsynaptic currents (EPSCs) and extracellular recordings of field excitatory postsynaptic potentials (fEPSPs), we found that ouabain enhances excitatory synaptic transmission, increasing EPSC amplitude and fEPSP slope by 35–50%. This effect was independent of NMDA receptor (NMDAR) activity. Ouabain reduced the magnitude of NMDAR-dependent long-term potentiation (LTP), but still augmented fEPSPs when applied after LTP induction. This implies separate additive mechanisms. These observations exhibit that ouabain, at concentrations corresponding to endogenous levels, facilitates basal excitatory synaptic transmission while partially suppressing LTP. We propose that ouabain exerts dual modulatory effects in hippocampal networks via distinct synaptic mechanisms. Full article
(This article belongs to the Special Issue Regulation of Synapses in the Brain)
Show Figures

Figure 1

22 pages, 7015 KB  
Article
Induction Motor Fault Diagnosis Using Low-Cost MEMS Acoustic Sensors and Multilayer Neural Networks
by Seon Min Yoo, Hwi Gyo Lee, Wang Ke Hao and In Soo Lee
Appl. Sci. 2025, 15(17), 9379; https://doi.org/10.3390/app15179379 - 26 Aug 2025
Viewed by 475
Abstract
Induction motors are the dominant choice in industrial applications due to their robustness, structural simplicity, and high reliability. However, extended operation under extreme conditions, such as high temperatures, overload, and contamination, accelerates the degradation of internal components and increases the likelihood of faults. [...] Read more.
Induction motors are the dominant choice in industrial applications due to their robustness, structural simplicity, and high reliability. However, extended operation under extreme conditions, such as high temperatures, overload, and contamination, accelerates the degradation of internal components and increases the likelihood of faults. These faults are challenging to detect, as they typically develop gradually without clear external indicators. To address this issue, the present study proposes a cost-effective fault diagnosis system utilizing low-cost MEMS acoustic sensors in conjunction with a lightweight multilayer neural network (MNN). The same MNN architecture is employed to systematically compare three types of input feature representations: raw time-domain waveforms, FFT-based statistical features, and PCA-compressed FFT features. A total of 5040 samples were used to train, validate, and test the model for classifying three conditions: normal, rotor fault, and bearing fault. The time-domain approach achieved 90.6% accuracy, misclassifying 102 samples. In comparison, FFT-based statistical features yielded 99.8% accuracy with only two misclassifications. The FFT + PCA method produced similar performance while reducing dimensionality, making it more suitable for resource-constrained environments. These results demonstrate that acoustic-based fault diagnosis provides a practical and economical solution for industrial applications. Full article
(This article belongs to the Special Issue Artificial Intelligence in Machinery Fault Diagnosis)
Show Figures

Figure 1

17 pages, 2228 KB  
Article
Rheological and Physicochemical Characterization of Structured Chia Oil: A Novel Approach Using a Low-Content Shellac Wax/Beeswax Blend as Oleogelant
by Eduardo Morales, Katerine Marilaf, Mónica Rubilar, Ingrid Contardo, Marcela Quilaqueo, Sonia Millao, Mariela Bustamante, César Burgos-Díaz and Karla Garrido-Miranda
Gels 2025, 11(9), 680; https://doi.org/10.3390/gels11090680 - 25 Aug 2025
Viewed by 384
Abstract
Vegetable oils structured with natural wax blends have attracted increasing interest due to their tunable crystallization and gelling behavior. This study evaluated the structuring of chia oil (ChO) using low concentrations (1–5%) of a shellac wax (SW) and beeswax (BW) blend in a [...] Read more.
Vegetable oils structured with natural wax blends have attracted increasing interest due to their tunable crystallization and gelling behavior. This study evaluated the structuring of chia oil (ChO) using low concentrations (1–5%) of a shellac wax (SW) and beeswax (BW) blend in a 1:1 ratio, focusing on physicochemical, viscoelastic, and thixotropic properties. ChO structured with 1% SW/BW formed a weak network with high oil loss, whereas concentrations of 3–5% formed denser networks, resulting in OBC values of 75.6–88.4% and firmness values of 16.9–55.1 g. Structuring with 5% SW/BW significantly reduced peroxide values (p < 0.05), indicating a reduction in oxidative deterioration after oleogelation, while concentrations of 1–3% had no significant effect (p > 0.05). Although induction periods were slightly extended in structured samples, differences across oleogelant concentrations were not statistically significant (p > 0.05). Rheological analysis revealed that 3–5% SW/BW-structured ChO exhibited semisolid gel behavior, characterized by enhanced deformation resistance and thermal stability. Thixotropic recovery tests revealed that structural recovery improved as the deformation amplitude decreased within the linear viscoelastic range, suggesting that thixotropic behavior was influenced by oleogelant concentration. These findings demonstrate the potential of SW/BW-structured ChO as fat alternatives in lipid-based foods that require mechanical resilience, structural recovery, and enhanced oxidative stability, even at low wax levels. Full article
(This article belongs to the Special Issue Food Gels: Structures, Properties and Applications)
Show Figures

Graphical abstract

17 pages, 1675 KB  
Article
Annual Dynamics of Endogenous Hormones Reveal the Mechanism of Off-Season Flowering in Macadamia
by Ya Ning, Yuchun Chen, Xiyong He, Tingmei Yang and Hai Yue
Plants 2025, 14(17), 2637; https://doi.org/10.3390/plants14172637 - 24 Aug 2025
Viewed by 483
Abstract
Off-season flowering of Macadamia integrifolia has been observed in certain high-altitude regions; however, the endogenous hormonal mechanisms underlying this phenomenon remain unclear. In this study, the annual dynamics of four key endogenous phytohormones (ZT, GA3, IAA, and ABA) were quantified in [...] Read more.
Off-season flowering of Macadamia integrifolia has been observed in certain high-altitude regions; however, the endogenous hormonal mechanisms underlying this phenomenon remain unclear. In this study, the annual dynamics of four key endogenous phytohormones (ZT, GA3, IAA, and ABA) were quantified in the leaves and branches of trees from both normal and off-season flowering sites using high-performance liquid chromatography (HPLC). Hormonal ratios and correlation network analyses were further performed to investigate their roles in flowering regulation. Floral bud differentiation at the off-season site occurred approximately 1 to 2 months earlier than at the normal site. This advancement was associated with sustained low levels of GA3 (below 100 μg·g−1 FW), while ZT and ABA levels peaked in September at 108.66 μg·g−1 FW and 24.25 μg·g−1 FW, respectively. The ratios of ABA to GA3, ABA to IAA, and ZT to GA3 increased significantly between July and September, indicating the early establishment of a hormonal environment favorable for floral induction. Correlation analysis revealed that IAA, GA3, and ZT formed a synergistic module promoting flowering, whereas ABA functioned as an antagonistic regulator. These findings provide insight into the hormonal regulation of off-season flowering in macadamia and offer a theoretical basis for precision flowering control in high-altitude cultivation systems. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

23 pages, 3815 KB  
Article
Galangin and 1′-Acetoxychavicol Acetate from Galangal (Alpinia galanga) Suppress Lymphoma Growth via c-Myc Downregulation and Apoptosis Induction
by Sirinya Moakmamern, Lapamas Rueankham, Natsima Viriyaadhammaa, Kittikawin Panyakham, Natnicha Khakhai, Pinyaphat Khamphikham, Suwit Duangmano, Siriporn Okonogi, Sawitree Chiampanichayakul and Songyot Anuchapreeda
Biology 2025, 14(8), 1098; https://doi.org/10.3390/biology14081098 - 21 Aug 2025
Viewed by 446
Abstract
The c-Myc protein, a key regulator of cell proliferation, growth, and apoptosis in B-cell lymphocytes, is frequently dysregulated in Burkitt’s lymphoma. Zingiberaceae plants—galangal (Alpinia galanga), black turmeric (Curcuma aeroginosa), black ginger (Kaempferia parviflora), phlai lueang (Zingiber [...] Read more.
The c-Myc protein, a key regulator of cell proliferation, growth, and apoptosis in B-cell lymphocytes, is frequently dysregulated in Burkitt’s lymphoma. Zingiberaceae plants—galangal (Alpinia galanga), black turmeric (Curcuma aeroginosa), black ginger (Kaempferia parviflora), phlai lueang (Zingiber montanum), and phlai dum (Zingiber ottensii)—are traditionally used as herbal remedies and may serve as natural anti-lymphoma agents. In this study, extracts from these five plants were screened for cytotoxicity against Raji and Daudi lymphoma cell lines and compared with their effects on normal peripheral blood mononuclear cells (PBMCs). Galangal extract exhibited the strongest cytotoxic effects on lymphoma cells. Its major bioactive compounds, galangin and 1′-acetoxychavicol acetate (ACA), showed selective cytotoxicity, with ACA being more potent. ACA significantly suppressed both c-Myc and phosphorylated c-Myc (p-c-Myc) protein levels and induced dose-dependent apoptosis in lymphoma cells. Cell cycle analysis revealed arrest at specific phases, supporting its anti-proliferative action. Furthermore, network pharmacology and pathway enrichment analyses implicated ACA in the modulation of oncogenic PI3K-Akt and MAPK pathways. These findings highlight ACA as a promising plant-derived therapeutic candidate for lymphoma, acting through c-Myc suppression, cell cycle arrest, and apoptosis induction. Full article
Show Figures

Figure 1

24 pages, 4238 KB  
Article
Hydrothermal Magnesium Alloy Extracts Modulate MicroRNA Expression in RAW264.7 Cells: Implications for Bone Remodeling
by Viviana Costa, Lavinia Raimondi, Daniele Bellavia, Angela De Luca, Pasquale Guglielmi, Angela Cusanno, Luca Cattini, Lia Pulsatelli, Matteo Pavarini, Roberto Chiesa and Gianluca Giavaresi
J. Funct. Biomater. 2025, 16(8), 303; https://doi.org/10.3390/jfb16080303 - 21 Aug 2025
Viewed by 504
Abstract
Magnesium (Mg) alloys, particularly Mg AZ31, have emerged as promising biomaterials for orthopedic applications due to their biodegradability and favorable mechanical characteristics. Among these, the Mg AZ31+SPF alloy, subjected to hydrothermal (HT) treatment, has demonstrated enhanced bioactivity. Our previous research established that this [...] Read more.
Magnesium (Mg) alloys, particularly Mg AZ31, have emerged as promising biomaterials for orthopedic applications due to their biodegradability and favorable mechanical characteristics. Among these, the Mg AZ31+SPF alloy, subjected to hydrothermal (HT) treatment, has demonstrated enhanced bioactivity. Our previous research established that this surface modification supports the osteogenic differentiation of human mesenchymal stem cells (hMSCs) by modulating both canonical and non-canonical signaling pathways, including those implicated in osteogenesis, hypoxic response, exosome biogenesis, and lipid metabolism. In the present study, we extended our investigation to assess the effects of Mg AZ31+SPF+HT and Mg AZ31+SPF extracts on murine pre-osteoclasts (RAW 264.7 cells) over 3- and 6-day treatment periods. The primary objectives were to evaluate biocompatibility and to investigate potential impacts on osteoclastogenesis induction and miRNA expression profiles. Methods: To assess cytocompatibility, metabolic activity, DNA integrity, and morphological alterations in RAW 264.7 cells were evaluated. Osteoclast differentiation was quantified using TRAP staining, alongside the assessment of osteoclastogenic marker expression by qRT-PCR and ELISA. The immunomodulatory properties of the extracts were examined using multiplex BioPlex assays to quantify soluble factors involved in bone healing. Additionally, global miRNA expression profiling was performed using a specialized panel targeting 82 microRNAs implicated in bone remodeling and inflammatory signaling. Results: Mg AZ31+SPF+HT extract exhibited high biocompatibility, with no observable adverse effects on cell viability. Notably, a significant reduction in the number of TRAP-positive and multinucleated cells was observed relative to the Mg AZ31+SPF group. This effect was corroborated by the downregulation of osteoclast-specific gene expression and decreased MMP9 protein levels. Cytokine profiling indicated that Mg AZ31+SPF+HT extract promoted an earlier release of key cytokines involved in maintaining the balance between bone formation and resorption, suggesting a beneficial role in bone healing. Furthermore, miRNA profiling revealed a distinct regulatory signature in Mg AZ31+SPF+HT-treated cells, with differentially expressed miRNAs associated with inflammation, osteoclast differentiation, apoptosis, bone resorption, hypoxic response, and metabolic processes compared to Mg AZ31+SPF-treated cells. Conclusions: Collectively, these findings indicate that hydrothermal treatment of Mg AZ31+SPF (resulting in Mg AZ31+SPF+HT) attenuates pre-osteoclast activation by influencing cellular morphology, gene and protein expression, as well as post-transcriptional regulation via modulation of miRNAs. The preliminary identification of miRNAs and the activation of their regulatory networks in pre-osteoclasts exposed to hydrothermally treated Mg alloy are described herein. In the context of orthopedic surgery—where balanced bone remodeling is imperative—our results emphasize the dual significance of promoting bone formation while modulating bone resorption to achieve optimal implant integration and ensure long-term bone health. Full article
(This article belongs to the Special Issue Metals and Alloys for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

11 pages, 5586 KB  
Communication
Experimental Evaluation of Coupled-Line Tunable Inductors with Switchable Mutual Coupling
by Yejin Kim, Jaeyong Lee, Soosung Kim and Changkun Park
Electronics 2025, 14(16), 3228; https://doi.org/10.3390/electronics14163228 - 14 Aug 2025
Viewed by 277
Abstract
This paper investigates and characterizes a tunable inductor structure based on coupled-line configurations, referred to as a coupled-line tunable inductor (CLTI). By integrating switches along the coupled-line paths, the mutual inductance can be selectively enabled or disabled, providing a means for active inductance [...] Read more.
This paper investigates and characterizes a tunable inductor structure based on coupled-line configurations, referred to as a coupled-line tunable inductor (CLTI). By integrating switches along the coupled-line paths, the mutual inductance can be selectively enabled or disabled, providing a means for active inductance modulation. Spiral inductors with one-turn and two-turn cores were used in conjunction with inner-coupled-line placements to explore different coupling configurations. The test structures were implemented using printed circuit board (PCB) technology, and their performance was analyzed through electromagnetic simulations and vector network analyzer (VNA) measurements. The results confirm that switch-controlled coupled lines enable effective inductance tuning, with a measurable reduction in inductance when the coupled-line path is activated. In the switch-OFF state, only minimal performance degradation was observed due to parasitic effects. These findings provide useful insights into the practical behavior of coupled-line tunable inductors and suggest their applicability in RF circuits and adaptive analog systems, particularly where integration and compact tunability are desired. Full article
Show Figures

Figure 1

Back to TopTop