Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,715)

Search Parameters:
Keywords = injectate recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4263 KB  
Article
A Prudent Approach to Reduce CO2 Emissions While Enhancing Oil Recovery
by Mohammad Al-Ghnemi, Erdal Ozkan and Hossein Kazemi
Fuels 2025, 6(4), 75; https://doi.org/10.3390/fuels6040075 - 2 Oct 2025
Abstract
Emissions of carbon dioxide (CO2) resulting from steam-driven enhanced oil recovery (EOR) operations present an environmental challenge as well as an opportunity to further enhance oil recovery. Using numerical simulations with realistic input data from field and laboratory measurements, we demonstrate [...] Read more.
Emissions of carbon dioxide (CO2) resulting from steam-driven enhanced oil recovery (EOR) operations present an environmental challenge as well as an opportunity to further enhance oil recovery. Using numerical simulations with realistic input data from field and laboratory measurements, we demonstrate a prudent approach to reduce CO2 emissions by capturing CO2 from steam generators of a steam-driven enhanced oil recovery (EOR) project and injecting it in a nearby oil field to improve oil recovery in this neighboring field. The proposed use of CO2 as a water-alternating-CO2 (WAG-CO2) EOR project in a small, 144-acre, sector of a target limestone reservoir would yield 42% incremental EOR oil while sequestering CO2 with a net utilization ratio (NUR) of 3100 standard cubic feet CO2 per stock tank barrel (SCF/STB) of EOR oil in a single five-spot pattern consisting of a central producer and four surrounding injectors. This EOR application sequesters 135,000, 165,000, and 213,000 metric tons of CO2 in five, ten, and twenty years in the single five spot pattern (i.e., our sector target), respectively. As a related matter, the CO2 emissions from nearby steam oil recovery project consisting of ten 58-ton steam/hr boilers amounts to 119,000 metric tons of CO2 per year with an estimated social cost of USD 440 million over 20 years. Upscaling the results from the single five-spot pattern to a four-pattern field scale increases the sequestered amount of CO2 by a factor of 4 without recycling and to 11 with recycling produced CO2 from the EOR project. Furthermore, the numerical model indicates that initiating CO2 injection earlier at higher residual oil saturations improves EOR efficiency while somewhat decreases sequestration per incremental EOR barrel. The most significant conclusion is that the proposed venture is an economically viable EOR idea in addition to being an effective sequestration project. Other sources of CO2 emissions in oil fields and nearby refineries or power generators may also be considered for similar projects. Full article
Show Figures

Figure 1

24 pages, 5930 KB  
Article
Modulating Mechanisms of Surfactants on Fluid/Fluid/Rock Interfacial Properties for Enhanced Oil Recovery: A Multi-Scale Evaluation from SARA-Based Experiments to Atomistic Simulations
by Yiming Wang, Xinru Liang, Jinze Du, Yuxing Tan, Yu Sun, Gaobo Yu, Jinjian Hou, Zhenda Tan and Jiacheng Li
Coatings 2025, 15(10), 1146; https://doi.org/10.3390/coatings15101146 - 2 Oct 2025
Abstract
Low-Salinity Water Flooding (LSWF) has gained attention for its cost-effectiveness and environmental advantages, yet its underlying mechanisms remain not fully understood. Oil recovery in LSWF is primarily governed by interfacial dynamics and formation wettability. This research investigates the effects of seawater dilution in [...] Read more.
Low-Salinity Water Flooding (LSWF) has gained attention for its cost-effectiveness and environmental advantages, yet its underlying mechanisms remain not fully understood. Oil recovery in LSWF is primarily governed by interfacial dynamics and formation wettability. This research investigates the effects of seawater dilution in carbonate reservoirs through laboratory analyses and displacement experiments. Results show that oil recovery efficiency is largely driven by rock–fluid interactions rather than fluid–fluid interactions, with optimal brine concentrations enhancing wettability alteration, boundary flexibility, and mineral leaching. These findings highlight the importance of considering both fluid–rock interactions and mineral reactivity, rather than attributing recovery to a single mechanism. Molecular dynamics simulations further supported the experimental observations. Overall, the study emphasizes that early and well-designed low-salinity injection strategies can maximize LSWF performance. The results elucidate the key interaction mechanisms between surfactants and the various components of heavy oil through atomic-scale precision modeling and dynamic process tracking. These simulations clarify, at the microscopic level, the differences in displacement dynamics and efficiency of organic solvent systems toward different hydrocarbon components. Full article
(This article belongs to the Section Liquid–Fluid Coatings, Surfaces and Interfaces)
Show Figures

Figure 1

25 pages, 4329 KB  
Article
Investigation of the Temperature Effect on Oil–Water–Rock Interaction Mechanisms During Low-Salinity Water Flooding in Tight Sandstone Reservoirs
by Min Sun and Yuetian Liu
Processes 2025, 13(10), 3135; https://doi.org/10.3390/pr13103135 - 30 Sep 2025
Abstract
Temperature is a key factor in regulating interfacial behaviors and enhancing oil recovery during low-salinity water flooding in tight sandstone reservoirs. This study systematically investigates the synergistic mechanisms of temperature and salinity on ion exchange, wettability alteration, interfacial tension, and crude oil desorption. [...] Read more.
Temperature is a key factor in regulating interfacial behaviors and enhancing oil recovery during low-salinity water flooding in tight sandstone reservoirs. This study systematically investigates the synergistic mechanisms of temperature and salinity on ion exchange, wettability alteration, interfacial tension, and crude oil desorption. The experimental results show that elevated temperature significantly strengthens the oil–water–rock interactions induced by low-salinity water, thereby improving oil recovery. At 70 °C, the release of divalent cations such as Ca2+ and Mg2+ from the rock surface is notably enhanced. Simultaneously, the increase in interfacial electrostatic repulsion is evidenced by a shift in the rock–brine zeta potential from −3.14 mV to −6.26 mV. This promotes the desorption of polar components, such as asphaltenes, from the rock surface, leading to a significant change in wettability. The wettability alteration index increases to 0.4647, indicating a strong water-wet condition. Additionally, the reduction in oil–water interfacial zeta potential and the enhancement in interfacial viscoelasticity contribute to a further decrease in interfacial tension. Under conditions of 0.6 PW salinity and 70 °C, non-isothermal core flooding experiments demonstrate that rock–fluid interactions are the dominant mechanism responsible for enhanced oil recovery. By applying a staged injection strategy, where 0.6 PW is followed by 0.4 PW, the oil recovery reaches 34.89%, which is significantly higher than that achieved with high-salinity water flooding. This study provides critical mechanistic insights and optimized injection strategies for the development of high-temperature tight sandstone reservoirs using low-temperature waterflooding. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 2837 KB  
Article
Research on Profile Control Potential Evaluation and Optimization Design Technology in Block M of Gudong Oilfield
by Yuanyuan He, Wanting Li, Ruiyi Yang, Rong Chen, Chenggao Yi, Hualei Xu and Houshun Jiang
Processes 2025, 13(10), 3131; https://doi.org/10.3390/pr13103131 - 29 Sep 2025
Abstract
After long-term water injection development in Block M of the Gudong Oilfield, the fluid seepage field in the formation has become increasingly complex, and the heterogeneity of the reservoir has intensified. The uneven injection-production and the differences in lithological permeability have further led [...] Read more.
After long-term water injection development in Block M of the Gudong Oilfield, the fluid seepage field in the formation has become increasingly complex, and the heterogeneity of the reservoir has intensified. The uneven injection-production and the differences in lithological permeability have further led to a series of problems such as uneven reserve utilization, a low injection-production correspondence rate, and a poor overall development effect. During the development process, severe water flooding at the bottom and rich remaining oil at the top within the layer also emerged. These issues not only affected the economic benefits of the oilfield but also put forward higher requirements for the subsequent development strategies. In order to solve the above problems, based on a detailed analysis of geological characteristics, reservoir engineering and monitoring data, this paper uses the numerical simulation method to systematically simulate the dynamic changes in the residual oil saturation and pressure field in the formation under different development stages. The simulation results show that the pressure and saturation in each layer are both on a downward trend, especially in the layers with large pressure changes, where the oil saturation changes are more significant. Therefore, combined with the results of numerical simulation, a series of profile control and water shutoff schemes were systematically designed. These schemes covered different types of profile control agents and technological parameters. Representative well groups were selected to predict and evaluate the profile control effect. In the technical and economic evaluation of the profile control effect, the input–output ratio method was adopted. Finally, an optimal scheme was selected and applied in the field. The results show that after the implementation of this scheme, the daily oil increment of the well group was remarkable. During the test period, the cumulative oil increment reached 100 t, and the total expected oil increment could reach 190 t. The input–output ratio reached 1:2.1. The profile control measures significantly improved the injection-production correspondence, slowed down the in-layer water flooding, and further enhanced the recovery rate of remaining oil. In conclusion, the methods and achievements of this study can provide important technical references and support for the efficient and long-term development of similar high-water-cut and heterogeneous complex oil reservoirs, and have guiding significance for the subsequent adjustment, potential tapping, stable production and efficiency improvement of oilfields. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 3871 KB  
Review
Comparative Effectiveness of Treatments for Shoulder Subluxation After Stroke: A Systematic Review and Network Meta-Analysis
by Jong-Mi Park, Hee-Jae Park, Seo-Yeon Yoon, Yong-Wook Kim, Jae-Il Shin and Sang-Chul Lee
J. Clin. Med. 2025, 14(19), 6913; https://doi.org/10.3390/jcm14196913 - 29 Sep 2025
Abstract
Background: Shoulder subluxation and pain are common complications of stroke that impair upper limb function. Objectives: This study conducted a systematic review and network meta-analysis to compare multiple therapeutic interventions for post-stroke shoulder subluxation, establishing an evidence-based hierarchy of treatment efficacy [...] Read more.
Background: Shoulder subluxation and pain are common complications of stroke that impair upper limb function. Objectives: This study conducted a systematic review and network meta-analysis to compare multiple therapeutic interventions for post-stroke shoulder subluxation, establishing an evidence-based hierarchy of treatment efficacy to optimize rehabilitation strategies and guide clinical practice. Methods: A comprehensive search was conducted using the MEDLINE, EMBASE, Cochrane, Scopus, and Web of Science databases until 8 August 2025. Randomized controlled trials evaluating treatments for shoulder subluxation, including neuromuscular electrical stimulation (NMES), Kinesio taping, corticosteroid injections, slings, repetitive peripheral magnetic stimulation, and electroacupuncture, were included. The follow-up duration in the included trials ranged from 1 to 12 weeks. Effect sizes were calculated using standardized mean differences with a random-effects model, and treatment rankings were determined using surface under the cumulative ranking curve (SUCRA). Results: Thirteen studies including 402 patients were analyzed. NMES was the most effective intervention for reducing subluxation distance (SUCRA: 84.9), while corticosteroid injections provided the greatest pain relief at rest (SUCRA: 73.6). Kinesio taping was most effective for functional recovery, as measured by the Fugl–Meyer Assessment (SUCRA: 98.5), and for pain relief during activity (SUCRA: 87.7). Conclusions: Our network meta-analysis suggests that different interventions are optimal for specific aspects of post-stroke shoulder impairment. NMES most effectively reduces subluxation distance, whereas corticosteroid injections are most effective for alleviating pain at rest. Kinesio taping appears superior for enhancing functional recovery and reducing pain during movement. These findings, based on short-term follow-up durations (1–12 weeks), provide an evidence-based ranking of interventions to support multimodal rehabilitation and inform clinical decision-making. The observed heterogeneity across studies underscores the need for standardized treatment protocols and rigorous long-term investigations. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

30 pages, 1430 KB  
Review
A Critical Review of Limited-Entry Liner (LEL) Technology for Unconventional Oil and Gas: A Case Study of Tight Carbonate Reservoirs
by Bohong Wu, Junbo Sheng, Dongyu Wu, Chao Yang, Xinxin Zhang and Yong He
Energies 2025, 18(19), 5159; https://doi.org/10.3390/en18195159 - 28 Sep 2025
Abstract
Limited-Entry Liner (LEL) technology has emerged as a transformative solution for enhancing hydrocarbon recovery in unconventional reservoirs while addressing challenges in carbon sequestration. This review examines the role of LEL in optimizing acid stimulation, hydraulic fracturing and production optimization, focusing on its ability [...] Read more.
Limited-Entry Liner (LEL) technology has emerged as a transformative solution for enhancing hydrocarbon recovery in unconventional reservoirs while addressing challenges in carbon sequestration. This review examines the role of LEL in optimizing acid stimulation, hydraulic fracturing and production optimization, focusing on its ability to improve fluid distribution uniformity in horizontal wells through precision-engineered orifices. By integrating theoretical models, experimental studies, and field applications, we highlight LEL’s potential to mitigate the heel–toe effect and reservoir heterogeneity, thereby maximizing stimulation efficiency. Based on a comprehensive review of existing literature, this study identifies critical limitations in current LEL models—such as oversimplified annular flow dynamics, semi-empirical treatment of wormhole propagation, and a lack of quantitative design guidance—and aims to bridge these gaps through integrated multiphysics modeling and machine learning-driven optimization. Furthermore, we explore its adaptability for controlled CO2 injection in geological storage, offering a sustainable approach to energy transition. This work provides a comprehensive yet accessible overview of LEL’s significance in both energy production and environmental sustainability. Full article
(This article belongs to the Special Issue Unconventional Energy Exploration Technology)
Show Figures

Figure 1

15 pages, 2521 KB  
Article
Enhanced Oil Recovery Mechanism and Parameter Optimization of Huff-and-Puff Flooding with Oil Displacement Agents in the Baikouquan Oilfield
by Hui Tian, Jianye Mou, Kunlin Xue, Xingyu Yi, Hao Liu and Budong Gao
Processes 2025, 13(10), 3098; https://doi.org/10.3390/pr13103098 - 27 Sep 2025
Abstract
The Baikouquan Oilfield edge expansion wells suffer from poor reservoir properties and limited connectivity, leading to low waterflooding sweep efficiency and insufficient reservoir energy. While oil displacement agents (ODAs) are currently employed in huff-and-puff flooding to enhance recovery, there is a lack of [...] Read more.
The Baikouquan Oilfield edge expansion wells suffer from poor reservoir properties and limited connectivity, leading to low waterflooding sweep efficiency and insufficient reservoir energy. While oil displacement agents (ODAs) are currently employed in huff-and-puff flooding to enhance recovery, there is a lack of a solid basis for selecting these ODAs, and the dominant mechanisms of enhanced oil recovery (EOR) remain unclear. To address this issue, this study combines experimental work and reservoir numerical simulation to investigate the mechanisms of EOR by ODAs, optimize the selection of ODAs, and fine-tune the huff-and-puff flooding parameters. The results show that the selected nanoemulsion ODA (Nano ODA) significantly reduces the oil–water interfacial tension (IFT) by 97%, thereby increasing capillary number. Additionally, the ODA induces a shift from water–wet to neutral–wet conditions on rock surfaces, reducing capillary forces and weakening spontaneous imbibition. The Nano ODA demonstrates strong emulsification and oil-carrying ability, with an emulsification efficiency of 75%. Overall, the ODA increases the relative permeability of the oil phase, reduces residual oil saturation, and achieves a recovery improvement of more than 10% compared with conventional waterflooding. The injection volume and shut-in time were optimized for the target well, and the recovery enhancement from multiple cycles of huff-and-puff flooding was predicted. The research in this paper is expected to provide guidance for the design of huff-and-puff flooding schemes in low-permeability reservoirs. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

19 pages, 2345 KB  
Article
Study on Main Controlling Factors of CO2 Enhanced Gas Recovery and Geological Storage in Tight Gas Reservoirs
by Lili Liu, Jinbu Li, Pengcheng Liu, Zepeng Yang, Bin Fu and Xinwei Liao
Processes 2025, 13(10), 3097; https://doi.org/10.3390/pr13103097 - 27 Sep 2025
Abstract
Tight gas reservoirs, as important unconventional natural gas resources, face low recovery rates due to low porosity, low permeability, and strong heterogeneity. CO2 Storage with Enhanced Gas Recovery (CSEGR) technology combines CO2 geological storage with natural gas development, providing both economic [...] Read more.
Tight gas reservoirs, as important unconventional natural gas resources, face low recovery rates due to low porosity, low permeability, and strong heterogeneity. CO2 Storage with Enhanced Gas Recovery (CSEGR) technology combines CO2 geological storage with natural gas development, providing both economic and environmental benefits. However, the main controlling factors and influence mechanisms remain unclear. This study utilized the PR-EOS to investigate CH4, CO2, and natural gas physical properties, established a numerical simulation model considering CO2 dissolution and geochemical reactions, and explored the influence of injection scheme, injection rate, production rate, and shut-in condition on CO2 enhanced recovery and storage effectiveness through orthogonal design. Results show that CO2 exhibits significant differences in compressibility factor, density, and viscosity compared to natural gas, enabling piston-like displacement. Intermittent injection slightly outperforms continuous injection in recovery enhancement, while continuous injection provides greater CO2 storage capacity. The ranking of the significance of different influencing factors for enhanced oil recovery is as follows: injection rate > production rate > injection scheme > shut-in condition. For the effect of geological storage of CO2, it is as follows: injection rate > injection scheme > production rate > shut-in condition. During gas injection, supercritical, ionic, and dissolved CO2 continuously increase while mineral CO2 decreases, with storage mechanisms dominated by structural and residual trapping. The study provides scientific basis for optimizing CO2 flooding strategies in tight gas reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 4295 KB  
Article
Mesenchymal Stem Cells in Liver Fibrosis: A Dose-Dependent Recovery
by Aleksey Lyundup, Murat Shagidulin, Nina Onishchenko, Valery Beregovykh, Mikhail Krasheninnikov, Artem Venediktov, Ksenia Pokidova, Alla Nikolskaya, Egor Kuzmin, Andrey Kostin, Aglaya Arzhanova, Pavel Fadeev, Natalia Kuznetsova, Gennadii Piavchenko and Sergey Gautier
Appl. Sci. 2025, 15(19), 10471; https://doi.org/10.3390/app151910471 - 27 Sep 2025
Abstract
Mesenchymal stem cells (MSCs) are known to assist liver regeneration. In this study, we show a dose-dependent mode of recovery from liver fibrosis after intravenous injections of MSCs. Male Wistar rats experienced a 42-day-long modeling of liver fibrosis via CCl4 poisoning and [...] Read more.
Mesenchymal stem cells (MSCs) are known to assist liver regeneration. In this study, we show a dose-dependent mode of recovery from liver fibrosis after intravenous injections of MSCs. Male Wistar rats experienced a 42-day-long modeling of liver fibrosis via CCl4 poisoning and received either a single injection of 2.5 × 106 MSCs on Day 3 after the last CCl4 dose or two MSC injections on Days 3 and 10. We dynamically monitored levels of liver cytolysis markers and cytokines in the venous blood and performed a histological study of Mallory-stained liver sections. All experimental groups experienced a nearly complete recovery of biochemical markers up to 4 weeks after the end of CCl4 administration, although we observed anti-inflammatory changes in the cytokine levels only in animals treated by two MSC injections. Histological study revealed minor signs of liver damage up to Day 90 in animals receiving two MSC doses with worse pathology in those who received a single MSC dose. Morphometric values stayed consistent with visual data, demonstrating a significantly larger number of binuclear hepatocytes, a smaller number of false lobules, and a lesser area of connective tissue proper in animals treated by two MSC injections. Our results reflect MSC grafting in applied doses to affect liver fibrosis in a dose-dependent mode. These findings provide a deeper understanding of MSC action in liver fibrosis, and the doses applied may serve as a milestone for further studies in humans. Full article
(This article belongs to the Special Issue Cell Biology: Latest Advances and Prospects)
Show Figures

Figure 1

41 pages, 7341 KB  
Article
Dynamics of Pathomorphological and Pathophysiological Alterations in Rainbow Trout (Oncorhynchus mykiss) During Acute Aeromonas salmonicida Infection
by Dmitry Nikiforov-Nikishin, Nikita Kochetkov, Kirill Gavrilin, Viktoria Gaffarova, Kirill Medvedev, Svetlana Smorodinskaya, Anastasia Klimuk, Yuri Kuchikhin, Ivan Svinarev, Natalya Gladysh, Anna Kudryavtseva, Egor Shitikov and Alexei Nikiforov-Nikishin
Biology 2025, 14(10), 1330; https://doi.org/10.3390/biology14101330 - 26 Sep 2025
Abstract
Furunculosis caused by Aeromonas salmonicida is one of the most common diseases in aquaculture, leading to significant economic losses. This study comprehensively investigated the dynamics of pathophysiological and histopathological disorders in rainbow trout (Oncorhynchus mykiss) infected with the moderately virulent strain [...] Read more.
Furunculosis caused by Aeromonas salmonicida is one of the most common diseases in aquaculture, leading to significant economic losses. This study comprehensively investigated the dynamics of pathophysiological and histopathological disorders in rainbow trout (Oncorhynchus mykiss) infected with the moderately virulent strain A. salmonicida SL0n. Whole-genome analysis showed that strain SL0n belongs to the A. salmonicida species complex, possessing a single circular chromosome. The genome encodes a wide range of virulence factors, including adhesion systems (type IV pili, fimbriae), toxins (aerolysin, hemolysins), and a type II secretion system (T2SS), but notably lacks plasmids and a type III secretion system (T3SS). This genomic profile likely dictates a pathogenic mechanism reliant on secreted exotoxins (via T2SS), explaining the observed systemic cytotoxic damage. In an acute experiment, the 4-day LD50 was determined to be 1.63 × 106 CFU/fish. In a prolonged experiment, fish were injected with a sublethal dose (1.22 × 106 CFU/fish—75% of LD50). The disease progressed through three consecutive stages. The early stage (1–2 DPI) was characterized by maximal bacterial load and activation of nonspecific immunity. The acute stage (4 DPI) manifested as severe septicemia and anemia, associated with systemic organ damage, which correlated with peak AST and ALT enzyme activity. The recovery stage (6 DPI) was marked by partial regression of inflammation, key biochemical and histological parameters indicated persistent liver and kidney dysfunction, signifying an incomplete recovery. These results demonstrate the pathogenesis of acute furunculosis and reveal that the genomic profile of the SL0n strain causes a sequential, systemic infection characterized by severe organ dysfunction. Full article
(This article belongs to the Special Issue Aquatic Animal Pathogens and Immunity)
Show Figures

Figure 1

18 pages, 3189 KB  
Article
Optimizing Hole Cleaning in Horizontal Shale Wells: Integrated Simulation Modeling in Bakken Formation Through Insights from South Pars Gas Field
by Sina Kazemi, Farshid Torabi and Ali Cheperli
Processes 2025, 13(10), 3077; https://doi.org/10.3390/pr13103077 - 25 Sep 2025
Abstract
Horizontal wells in shale formations, such as those in the South Pars gas field (Iran) and the Bakken shale (Canada/USA), are essential for production from ultralow-permeability reservoirs but remain limited by poor hole cleaning, high torque, and unstable fluid transport. This study integrates [...] Read more.
Horizontal wells in shale formations, such as those in the South Pars gas field (Iran) and the Bakken shale (Canada/USA), are essential for production from ultralow-permeability reservoirs but remain limited by poor hole cleaning, high torque, and unstable fluid transport. This study integrates real-time field data from South Pars with Drillbench simulations in the Bakken to develop practical strategies for improving drilling efficiency. A water-based mud system (9–10.2 ppg, 29–35 cP) supplemented with 2 wt.% sulphonated asphalt was applied to mitigate shale hydration, enhance cuttings transport, and preserve near-wellbore injectivity. Field implementation in South Pars demonstrated that adjusting drillstring rotation to 90 RPM and circulation rates to 1100 GPM reduced torque by ~70% (24 to 7 klbf·ft) and increased the rate of penetration (ROP) by ~25% (8 to 10 m/h) across a 230 m interval. Simulations in the Bakken confirmed these improvements, showing consistent torque and pressure trends, with cuttings transport efficiency above 95%. Inducing controlled synchronous whirl further improved sweep efficiency by ~15% and stabilized annular velocities at 0.7 m/s. Overall, these optimizations enhanced drilling efficiency by up to 25%, reduced operational risks, and created better well conditions for field development and EOR applications. The results provide clear, transferable guidelines for designing and drilling shale wells that balance immediate operational gains with long-term reservoir recovery. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

26 pages, 8981 KB  
Article
Insights into Foamy Oil Phenomenon in Porous Media: Experimental and Numerical Investigation
by Morteza Sabeti, Farshid Torabi and Ali Cheperli
Processes 2025, 13(10), 3067; https://doi.org/10.3390/pr13103067 - 25 Sep 2025
Abstract
Cyclic Solvent Injection (CSI) is a method for enhanced heavy oil recovery, offering a reduced environmental impact. CSI processes typically involve fluid flow through both wormholes and the surrounding porous media in reservoirs. Therefore, understanding how foamy oil behavior differs between bulk phases [...] Read more.
Cyclic Solvent Injection (CSI) is a method for enhanced heavy oil recovery, offering a reduced environmental impact. CSI processes typically involve fluid flow through both wormholes and the surrounding porous media in reservoirs. Therefore, understanding how foamy oil behavior differs between bulk phases and porous media is crucial for optimizing CSI operations. However, despite CSI’s advantages, limited research has explained why foamy oil, a key mechanism in CSI, displays weaker strength and stability in bulk phases than in porous media. To address this gap, three advanced visual micromodels were employed to monitor bubble behavior from nucleation through collapse under varying porosity with a constant pressure reduction. A sandpack depletion test in a large cylindrical model further validated the non-equilibrium bubble-reaction kinetics observed in the micromodels. Experiments showed that, under equivalent operating conditions, bubble nucleation in porous media required less energy and initiated more rapidly than in a bulk phase. Micromodels with lower porosity demonstrated up to a 2.5-fold increase in foamy oil volume expansion and higher bubble stability. Moreover, oil production in the sandpack declined sharply at pressures below 1800 kPa, indicating the onset of critical gas saturation, and yielded a maximum recovery of 37% of the original oil in place. These findings suggest that maintaining reservoir pressure above critical gas saturation pressure enhances oil recovery performance during CSI operations. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Graphical abstract

20 pages, 5625 KB  
Article
Dynamic Changes in Microbial Communities in Oil Reservoirs Under a Long-Term Bio-Chemical Flooding Operation
by Gui-Na Qi, Guo-Jun Li, Yi-Fan Liu, Lei Zhou, Ya-Qing Ge, Jin-Feng Liu, Shi-Zhong Yang, Ji-Dong Gu and Bo-Zhong Mu
Microorganisms 2025, 13(10), 2246; https://doi.org/10.3390/microorganisms13102246 - 25 Sep 2025
Abstract
Huge amounts of water and chemicals have been injected into subsurface oil reservoirs in secondary and tertiary oil recovery processes. Although the effects of injected water and chemicals on microbial communities have been investigated, knowledge about their long-term dynamic changes in oil reservoirs [...] Read more.
Huge amounts of water and chemicals have been injected into subsurface oil reservoirs in secondary and tertiary oil recovery processes. Although the effects of injected water and chemicals on microbial communities have been investigated, knowledge about their long-term dynamic changes in oil reservoirs remains limited. To address this gap, we used 16S rRNA sequencing from cDNA and chemical analysis to track the dynamic changes in microbial communities in oil reservoirs under a long-term flooding operation over three years and five months using bio-chemical flooding in the Daqing Oilfield, China. Researchers observed dynamic changes in microbial composition and diversity during the flooding process. Long-term bio-chemical drainage leads to alterations in dominant bacterial community structure, with a decrease in methanogenic archaeal abundance. Bacterial metabolic functions remained stable, but archaeal functions changed notably. Our results indicate that the microbial community and its functions in the oil reservoirs have experienced significant dynamic changes under the long-term flooding intervention of bio-chemical flooding, which opens up a new window for further understanding the impact of injected water and chemicals on microbial community in oil reservoirs and expands our knowledge about the role of microbial community changes in reservoirs under the flooding process. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Graphical abstract

18 pages, 2442 KB  
Article
Rapid Screening of 20 Pesticide Residues in Tea by Thermal-Assisted Plasma Ionization–Time-of-Flight Mass Spectrometry
by Jiangsheng Mao, Weiqing Zhang, Chao Zhu, Wenjun Zhang, Mengmeng Yan, Hongxia Du, Hongwei Qin and Hui Li
Foods 2025, 14(19), 3310; https://doi.org/10.3390/foods14193310 - 24 Sep 2025
Viewed by 67
Abstract
To achieve rapid screening and semi-quantitative analysis of pesticide residues in mobile laboratories and on-site tea testing, a novel method based on thermal-assisted plasma ionization–time-of-flight mass spectrometry (TAPI-TOF/MS) has been developed for the detection of 20 pesticide residues, including insecticides and fungicides, in [...] Read more.
To achieve rapid screening and semi-quantitative analysis of pesticide residues in mobile laboratories and on-site tea testing, a novel method based on thermal-assisted plasma ionization–time-of-flight mass spectrometry (TAPI-TOF/MS) has been developed for the detection of 20 pesticide residues, including insecticides and fungicides, in tea. This method eliminates the need for liquid chromatography, or column connections. Instead, it utilizes the high temperature of the sample inlet and stage to fully volatilize and inject the sample. By integrating TAPI-TOF/MS with an automated pesticide residue pretreatment instrument, the entire sample extraction process can be performed automatically. The analysis time for each sample has been reduced to 1.5 min, allowing for the processing of 60 samples per batch. An accurate mass spectrometry database has been established for screening and confirmation purposes. The software automatically matches the mass spectrometry database by analyzing the measured ion mass deviation, ion abundance ratio, and the relative contribution weight of each ion, generating a qualitative score ranging from 0 to 100. The lowest concentration yielding a qualitative score of ≥75 was defined as the screening limit, which ranged from 0.10 to 5.00 mg/kg for the 20 pesticides. Within their respective linear ranges, the method demonstrated good linearity with correlation coefficients (R2) ranging from 0.983 to 0.999. The average recovery rates (n = 5) of the target pesticides ranged from 70.6% to 117.0% at the set standard concentrations, with relative standard deviations (RSD) ranging from 1.7% to 13.1%. Using this method, 15 tea samples purchased from the Rizhao market in China were analyzed. Ten samples were found to contain residues of metalaxyl or pyraclostrobin, yielding a detection rate of 66.7%. This technology provides technical support for the rapid detection and quality control of multiple pesticide residues in tea, meeting the requirements for high-throughput and on-site analysis. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

15 pages, 906 KB  
Article
Sustainable Enhanced Oil Recovery Using Polyfraction Nanoemulsions with Alternating Injection Strategies
by Klaudia Wilk-Zajdel, Piotr Kasza and Marek Czupski
Appl. Sci. 2025, 15(19), 10334; https://doi.org/10.3390/app151910334 - 23 Sep 2025
Viewed by 96
Abstract
Enhanced oil recovery (EOR) can significantly contribute to sustainable energy by improving oil recovery efficiency, integrating renewable technologies, and reducing the environmental impact of extraction. This study builds on previous work involving polyfraction nanoemulsions by introducing more realistic experimental conditions using live crude [...] Read more.
Enhanced oil recovery (EOR) can significantly contribute to sustainable energy by improving oil recovery efficiency, integrating renewable technologies, and reducing the environmental impact of extraction. This study builds on previous work involving polyfraction nanoemulsions by introducing more realistic experimental conditions using live crude oil and undiluted reservoir water. The base fluid, modified with nanoemulsion and polymer additives, was injected using an alternating strategy with varying concentrations. The most effective sequence involved reservoir water with 2 wt% nanoemulsion and 0.5 wt% polymer, followed by injections with 0.3% and 0.1% polymer. This method achieved a displacement efficiency of 68.2%, with oil recovery 21.2% higher than that obtained when using reservoir water with 0.2% of polymer with nanoemulsion. These results highlight the potential of polyfraction nanoemulsions to enhance EOR efficiency while supporting sustainable development goals. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

Back to TopTop