Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (742)

Search Parameters:
Keywords = inkjet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1504 KB  
Review
Bioprinted Scaffolds for Biomimetic Applications: A State-of-the-Art Technology
by Ille C. Gebeshuber, Sayak Khawas, Rishi Sharma and Neelima Sharma
Biomimetics 2025, 10(9), 595; https://doi.org/10.3390/biomimetics10090595 - 5 Sep 2025
Viewed by 238
Abstract
This review emphasizes the latest developments in bioprinted scaffolds in tissue engineering, with a focus on their biomimetic applications. The accelerated pace of development of 3D bioprinting technologies has transformed the ability to fabricate scaffolds with the potential to replicate the structure and [...] Read more.
This review emphasizes the latest developments in bioprinted scaffolds in tissue engineering, with a focus on their biomimetic applications. The accelerated pace of development of 3D bioprinting technologies has transformed the ability to fabricate scaffolds with the potential to replicate the structure and function of native tissues. Bioprinting methods such as inkjet, extrusion-based, laser-assisted, and digital light processing (DLP) approaches have the potential to fabricate complex, multi-material structures with high precision in geometry, material composition, and cellular microenvironments. Incorporating biomimetic design principles to replicate the mechanical and biological behaviors of native tissues has been of major research interest. Scaffold geometries that support cell adhesion, growth, and differentiation essential for tissue regeneration are mainly of particular interest. The review also deals with the development of bioink, with an emphasis on the utilization of natural, synthetic, and composite materials for enhanced scaffold stability, printability, and biocompatibility. Rheological characteristics, cell viability, and the utilization of stimuli-responsive bioinks are also discussed in detail. Their utilization in bone, cartilage, skin, neural, and cardiovascular tissue engineering demonstrates the versatility of bioprinted scaffolds. Despite the significant advancements, there are still challenges that include achieving efficient vascularization, long-term integration with host tissues, and scalability. The review concludes by underlining future trends such as 4D bioprinting, artificial intelligence-augmented scaffold design, and the regulatory and ethical implications involved in clinical translation. By considering these challenges in detail, this review provides insight into the future of bioprinted scaffolds in regenerative medicine. Full article
Show Figures

Figure 1

12 pages, 7012 KB  
Article
Organic Field-Effect Transistors Based on Chemical-Plated Pt/Ag Electrodes
by Chenyang Zhao and Xiaochen Ren
Materials 2025, 18(17), 4130; https://doi.org/10.3390/ma18174130 - 2 Sep 2025
Viewed by 407
Abstract
In this study, we successfully prepared silver electrodes through a silver mirror reaction. By carefully regulating the amount of ammonia complexing agent in the silver–ammonia solution, we effectively suppressed the decomposition of the plating solution while reducing the surface roughness of silver films [...] Read more.
In this study, we successfully prepared silver electrodes through a silver mirror reaction. By carefully regulating the amount of ammonia complexing agent in the silver–ammonia solution, we effectively suppressed the decomposition of the plating solution while reducing the surface roughness of silver films from 9.22 nm to 4.42 nm. The electrical conductivity of our solution-processed silver layers was nearly one order of magnitude higher than that of conventional inkjet-printed silver electrodes. When applied as source-drain electrodes in organic field-effect transistors (OFETs), these electrodes enabled devices with an average mobility of 0.13 cm2/(V·s) and remarkably low mobility variation of only 8.7%. Furthermore, we modified the silver electrodes through chemical platinum plating, achieving a significant 0.74 eV alteration in work function, which demonstrates the great potential of chemical plating for surface functionalization in solution-processed organic electronic devices. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

39 pages, 27477 KB  
Review
Three-Dimensional Printing and Bioprinting Strategies for Cardiovascular Constructs: From Printing Inks to Vascularization
by Min Suk Kim, Yuri Choi and Keel Yong Lee
Polymers 2025, 17(17), 2337; https://doi.org/10.3390/polym17172337 - 28 Aug 2025
Viewed by 622
Abstract
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that [...] Read more.
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that support surgical planning and biomedical applications. In contrast, 3D bioprinting has emerged as a transformative biofabrication technology that allows for the spatially controlled deposition of living cells and biomaterials to construct functional tissues in vitro. Bioinks—derived from natural biomaterials such as collagen and decellularized matrix, synthetic polymers such as polyethylene glycol (PEG) and polycaprolactone (PCL), or hybrid combinations—have been engineered to replicate extracellular environments while offering tunable mechanical properties. These formulations ensure biocompatibility, appropriate mechanical strength, and high printing fidelity, thereby maintaining cell viability, structural integrity, and precise architectural resolution in the printed constructs. Advanced bioprinting modalities, including extrusion-based bioprinting (such as the FRESH technique), droplet/inkjet bioprinting, digital light processing (DLP), two-photon polymerization (TPP), and melt electrowriting (MEW), enable the fabrication of complex cardiovascular structures such as vascular patches, ventricle-like heart pumps, and perfusable vascular networks, demonstrating the feasibility of constructing functional cardiac tissues in vitro. This review highlights the respective strengths of these technologies—for example, extrusion’s ability to print high-cell-density bioinks and MEW’s ultrafine fiber resolution—as well as their limitations, including shear-induced cell stress in extrusion and limited throughput in TPP. The integration of optimized bioink formulations with appropriate printing and bioprinting platforms has significantly enhanced the replication of native cardiac and vascular architectures, thereby advancing the functional maturation of engineered cardiovascular constructs. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Graphical abstract

37 pages, 3005 KB  
Review
Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions
by Amal M. Al-Amri
Chemosensors 2025, 13(8), 285; https://doi.org/10.3390/chemosensors13080285 - 4 Aug 2025
Viewed by 1191
Abstract
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors [...] Read more.
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors enable the real-time monitoring of air, water, soil, and climate, providing significant data for data-driven decision-making technologies and policy development to improve the quality of the environment. The development of new materials, such as graphene, conductive polymers, and biodegradable substrates, has significantly enhanced the environmental applications of printed sensors by improving sensitivity, enabling flexible designs, and supporting eco-friendly and disposable solutions. The development of inkjet, screen, and roll-to-roll printing technologies has also contributed to the achievement of mass production without sacrificing quality or performance. This review presents the current progress in printed sensors for environmental applications, with a focus on technological advances, challenges, applications, and future directions. Moreover, the paper also discusses the challenges that still exist due to several issues, e.g., sensitivity, stability, power supply, and environmental sustainability. Printed sensors have the potential to revolutionize ecological monitoring, as evidenced by recent innovations such as Internet of Things (IoT) integration, self-powered designs, and AI-enhanced data analytics. By addressing these issues, printed sensors can develop a better understanding of environmental systems and help promote the UN sustainable development goals. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

18 pages, 16074 KB  
Article
DGMN-MISABO: A Physics-Informed Degradation and Optimization Framework for Realistic Synthetic Droplet Image Generation in Inkjet Printing
by Jiacheng Cai, Jiankui Chen, Wei Tang, Jinliang Wu, Jingcheng Ruan and Zhouping Yin
Machines 2025, 13(8), 657; https://doi.org/10.3390/machines13080657 - 27 Jul 2025
Viewed by 334
Abstract
The Online Droplet Inspection system plays a vital role in closed-loop control for OLED inkjet printing. However, generating realistic synthetic droplet images for reliable restoration and precise measurement of droplet parameters remains challenging due to the complex, multi-factor degradation inherent to microscale droplet [...] Read more.
The Online Droplet Inspection system plays a vital role in closed-loop control for OLED inkjet printing. However, generating realistic synthetic droplet images for reliable restoration and precise measurement of droplet parameters remains challenging due to the complex, multi-factor degradation inherent to microscale droplet imaging. To address this, we propose a physics-informed degradation model, Diffraction–Gaussian–Motion–Noise (DGMN), that integrates Fraunhofer diffraction, defocus blur, motion blur, and adaptive noise to replicate real-world degradation in droplet images. To optimize the multi-parameter configuration of DGMN, we introduce the MISABO (Multi-strategy Improved Subtraction-Average-Based Optimizer), which incorporates Sobol sequence initialization for search diversity, lens opposition-based learning (LensOBL) for enhanced accuracy, and dimension learning-based hunting (DLH) for balanced global–local optimization. Benchmark function evaluations demonstrate that MISABO achieves superior convergence speed and accuracy. When applied to generate synthetic droplet images based on real droplet images captured from a self-developed OLED inkjet printer, the proposed MISABO-optimized DGMN framework significantly improves realism, enhancing synthesis quality by 37.7% over traditional manually configured models. This work lays a solid foundation for generating high-quality synthetic data to support droplet image restoration and downstream inkjet printing processes. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

12 pages, 6938 KB  
Article
Development of Water-Based Inks with Bio-Based Pigments for Digital Textile Printing Using Valve-Jet Printhead Technology
by Jéssica Antunes, Marisa Lopes, Beatriz Marques, Augusta Silva, Helena Vilaça and Carla J. Silva
Colorants 2025, 4(3), 24; https://doi.org/10.3390/colorants4030024 - 24 Jul 2025
Viewed by 713
Abstract
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and [...] Read more.
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and quinacridone (red)—were incorporated into ink formulations and applied on cotton and polyester fabrics through valve-jet inkjet printing (ChromoJet). The physical properties of the inks were analyzed to ensure compatibility with the equipment, and printed fabrics were assessed as to their color fastness to washing, rubbing, artificial weathering, and artificial light. The results highlight the good performance of the bio-based inks, with excellent light and weathering fastness and satisfactory wash and rub resistance. The effect of different pre-treatments, including a biopolymer and a synthetic binder, was also investigated. Notably, the biopolymer pre-treatment enhanced pigment fixation on cotton, while the synthetic binder improved wash fastness on polyester. These findings support the integration of biotechnologically sourced pigments into eco-friendly textile digital printing workflows. Full article
Show Figures

Graphical abstract

18 pages, 4528 KB  
Article
Behavior of Aqueous Medicated Inks on Porous Tablet Surfaces
by Krisztina Ludasi, Anna Sass, Katalin Kristó, András Kelemen, Klára Pintye-Hódi and Tamás Sovány
Pharmaceutics 2025, 17(7), 908; https://doi.org/10.3390/pharmaceutics17070908 - 14 Jul 2025
Viewed by 424
Abstract
Background/Objectives: Although technology has progressed and novel dosage forms have been developed, tablets are still the most used form of medication. However, the present manufacturing methods of these oral solid dosage forms offer limited capacity for personalized treatment and adaptable dosing. Personalized therapy, [...] Read more.
Background/Objectives: Although technology has progressed and novel dosage forms have been developed, tablets are still the most used form of medication. However, the present manufacturing methods of these oral solid dosage forms offer limited capacity for personalized treatment and adaptable dosing. Personalized therapy, with a few exceptions, is not yet a part of routine clinical practice. Drug printing could be a possible approach to increase the use of personalized therapy. The aim of this work was to investigate the role of surface tension and the viscosity of inks in the formation of the printing pattern and to investigate how the porosity of substrate tablets influences the behavior of inks on the surface. Methods: Spray-dried mannitol served as a binder and filler, while magnesium stearate functioned as a lubricant in the preparation of substrate tablets. Brilliant Blue dye was a model “drug”. The ink formulation was applied to the substrates in three varying quantities. Results: Increasing the viscosity enhanced the drug content, potentially improving printing speed and pattern accuracy. However, it negatively impacted the dosing accuracy due to nozzle clogging and prolonged drying time. Viscosity had a significantly higher impact on the ink behavior than surface tension. Lowering the surface tension improved the dosing accuracy and reduced the drying time but resulted in smaller drop sizes and decreases in pattern accuracy. Reducing the substrate porosity led to longer drying times and diminished pattern accuracy. Conclusions: A target surface tension of around 30 mN/m is suggested for inkjet printing. It is necessary to further investigate the applicability of the technology with solutions of inks with high viscosity and low surface tension, including the API. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

11 pages, 1625 KB  
Article
Optimization of Electron Transport Layer Inkjet Printing Towards Fully Solution-Processable OLEDs
by Riccardo Manfredi, Carmela Tania Prontera, Fabrizio Mariano, Marco Pugliese, Antonio Maggiore, Alessandra Zizzari, Marco Cinquino, Iolena Tarantini, Giuseppe Gigli and Vincenzo Maiorano
Materials 2025, 18(14), 3231; https://doi.org/10.3390/ma18143231 - 9 Jul 2025
Viewed by 462
Abstract
The fabrication of high-performance organic optoelectronic devices using solution-based techniques, in particular inkjet printing, is both a desirable and challenging goal. Organic light-emitting diodes (OLEDs) are multilayer devices that have demonstrated great potential in display applications, with ongoing efforts aimed at extending their [...] Read more.
The fabrication of high-performance organic optoelectronic devices using solution-based techniques, in particular inkjet printing, is both a desirable and challenging goal. Organic light-emitting diodes (OLEDs) are multilayer devices that have demonstrated great potential in display applications, with ongoing efforts aimed at extending their use to the lighting sector. A key objective in this context is the reduction in production costs, for which printing techniques offer a promising pathway. The main obstacle to fully printed OLEDs lies in the difficulty of depositing new layers onto pre-existing ones while maintaining high film quality and avoiding damage to the underlying layers. In a bottom-emitting OLED, the electron transport layer (ETL) is the final organic layer to be deposited, making its printing particularly challenging, a process for which only a few successful examples have been reported. In this work, we report on the optimization of a 2,2′,2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)-based ink formulation for ETL printing on an emitting layer composed of 5,10-Bis(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2,6-dimethylphenyl)-5,10-dihydroboranthrene (tBuCzDBA). A specific ratio of methanol to diethyl ether was identified as the most suitable for printing the ETL without compromising the integrity of the underlying layer. The printed ETL was successfully integrated into an OLED device, which exhibited a maximum current efficiency of 6.8 cd/A and a peak luminance of about 8700 cd/m2. These results represent a significant step toward the development of a fully printed OLED architecture. Full article
Show Figures

Figure 1

26 pages, 389 KB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Cited by 1 | Viewed by 2303
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

19 pages, 11146 KB  
Article
Effect of Build Orientation on Surface Finish and Hydrodynamic Stability of Inkjet 3D-Printed Microfluidic Channels
by Emanuela Cutuli, Lorena Saitta, Nunzio Tuccitto, Gianluca Cicala and Maide Bucolo
Polymers 2025, 17(13), 1864; https://doi.org/10.3390/polym17131864 - 3 Jul 2025
Viewed by 470
Abstract
This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed [...] Read more.
This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed in two orientations: along XY (Dev-1) and across YX (Dev-2) the printhead direction. Next, the surface finish was characterized using a profilometer to acquire the primary profile of the surface along the microchannel’s edge. The results indicated that the build orientation had a strong influence on the latter, since Dev-1 displayed a tall and narrow Gaussian distribution for a channel width of 398.43 ± 0.29 µm; Dev-2 presented a slightly lower value of 393.74 ± 1.67 µm, characterized by a flat and broader distribution, highlighting greater variability due to more disruptive, orthogonally oriented, and striated patterns. These results were also confirmed by hydrodynamically testing the two MoF devices with an air–water slug flow process. A large experimental study was conducted by analyzing the mean period trend in the slug flow with respect to the imposed flow rate and build orientation. Dev-1 showed greater sensitivity to flow rate changes, attributed to its smoother, more consistent microchannel geometry. The slightly narrower average channel width in Dev-2 contributed to increased flow velocity at the expense of having worse discrimination capability at different flow rates. This study is relevant for optimizing 3D-printing strategies for the fabrication of high-performance microfluidic devices, where precise flow control is essential for applications in biomedical engineering, chemical processing, and lab-on-a-chip systems. These findings highlight the effect of microchannel morphology in tuning a system’s sensitivity to flow rate modulation. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

28 pages, 622 KB  
Review
Preclinical Evaluation and Advancements in Vascularized Bone Tissue Engineering
by Toshiyuki Kawai
Biomimetics 2025, 10(7), 412; https://doi.org/10.3390/biomimetics10070412 - 20 Jun 2025
Cited by 1 | Viewed by 1715
Abstract
Large segmental bone defects present significant challenges due to the insufficient vascularization of implanted grafts, necessitating advances in vascularized bone tissue engineering. Recent innovations focus primarily on enhancing graft vascularization through advanced biomaterial scaffolds, precise three-dimensional (3D) bioprinting technologies, biochemical interventions, and co-culture [...] Read more.
Large segmental bone defects present significant challenges due to the insufficient vascularization of implanted grafts, necessitating advances in vascularized bone tissue engineering. Recent innovations focus primarily on enhancing graft vascularization through advanced biomaterial scaffolds, precise three-dimensional (3D) bioprinting technologies, biochemical interventions, and co-culture techniques. Biomaterial scaffolds featuring microchannels and high-surface-area architectures facilitate endothelial cell infiltration and subsequent vessel formation. Concurrently, sophisticated 3D-bioprinting methods, including inkjet, extrusion, and laser-assisted approaches, enable the precise placement of endothelial and osteogenic cells, promoting anatomically accurate vascular networks. Biochemical strategies that utilize the simultaneous delivery of angiogenic factors (e.g., vascular endothelial growth factor) and osteogenic factors (e.g., bone morphogenetic protein-2) effectively couple angiogenesis and osteogenesis. Additionally, co-culturing mesenchymal stem cells and endothelial progenitors accelerates the development of functional capillary networks. Preclinical studies consistently demonstrate superior outcomes for prevascularized grafts, as evidenced by enhanced vascular inosculation, increased bone formation, and improved mechanical stability compared to non-vascularized controls. These technological advancements collectively represent significant progress toward the clinical translation of engineered vascularized bone grafts capable of addressing complex and previously intractable bone defects. Full article
Show Figures

Graphical abstract

17 pages, 18158 KB  
Article
Novel Terpineol-Based Silver Nanoparticle Ink with High Stability for Inkjet Printing
by Aleksandrs Novikovs, Tamara Tsebriienko, Annamarija Trausa, Anete Berzina, George Chikvaidze, Dmitry Bocharov, Mohammad Yusuf Mulla, Juris Purans and Boris Polyakov
Nanomaterials 2025, 15(13), 955; https://doi.org/10.3390/nano15130955 - 20 Jun 2025
Viewed by 735
Abstract
This study presents a novel silver nanoparticle ink formulation designed for inkjet printing applications using terpineol as an eco-friendly solvent and butylamine as a stabilizer to ensure stability, high conductivity, and compatibility with inkjet technology. Silver nanoparticles were synthesized using a modified one-pot [...] Read more.
This study presents a novel silver nanoparticle ink formulation designed for inkjet printing applications using terpineol as an eco-friendly solvent and butylamine as a stabilizer to ensure stability, high conductivity, and compatibility with inkjet technology. Silver nanoparticles were synthesized using a modified one-pot method in the presence of highly effective stabilizers and surface modifiers such as oleic acid and oleylamine, resulting in uniform particles of less than 10 nm in size, which were then dispersed in a mixture of terpineol and butylamine. The resulting ink demonstrated exceptional stability over 85 days, maintaining optimal rheological properties for inkjet printing. The ink exhibited a perfect jetting performance. We were able to obtain silver conductive patterns reaching 81% of bulk silver conductivity. These results highlight the ink’s promise for scalable, sustainable manufacturing, combining environmental advantages with high-performance functionality. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

20 pages, 14795 KB  
Article
Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar Circuits
by Fabricio N. Molinari, Emanuel Bilbao and Leandro N. Monsalve
Appl. Nano 2025, 6(2), 10; https://doi.org/10.3390/applnano6020010 - 18 Jun 2025
Viewed by 608
Abstract
Placing printed conductive patterns onto nonplanar substrates is a challenging task. In this work, we tested a simple method for depositing inkjet-printed conductive patterns onto 3D-printed pieces with cavities and sharp edges. First, a silver nanoparticle ink was used to print conductive patterns [...] Read more.
Placing printed conductive patterns onto nonplanar substrates is a challenging task. In this work, we tested a simple method for depositing inkjet-printed conductive patterns onto 3D-printed pieces with cavities and sharp edges. First, a silver nanoparticle ink was used to print conductive patterns onto a flexible and porous substrate made of electrospun polycaprolactone (PCL). Then, the printed patterns were transferred to 3D-printed pieces made of polylactic acid (PLA) by temperature-promoted adhesion. Finally, the printed patterns were cured to render them conductive. The influence of the number of printed layers on their electrical and mechanical properties was evaluated. The printed patterns were also transferred to flexible substrates, such as thermoplastic polyurethane (TPU) and polyethylene terephthalate (PET) sheets, achieving conductivity after curing. Moreover, the printed patterns were effective for modular interconnection among successive transferred patterns, since it was possible to achieve electrical contact between them during the transfer process. Full article
Show Figures

Figure 1

13 pages, 2748 KB  
Article
Additive–Subtractive Manufacturing Based on Water-Soluble Sacrificial Layer: High-Adhesion Metal Patterning via Inkjet Printing
by Mengyang Su, Jin Huang, Hongxiao Gong, Zihan Zhu, Pan Li, Huagui Wang, Pengbing Zhao, Jianjun Wang and Jie Zhang
Micromachines 2025, 16(6), 706; https://doi.org/10.3390/mi16060706 - 13 Jun 2025
Viewed by 1212
Abstract
Inkjet printing has become a primary technique for manufacturing flexible and conformal electronics due to its digital control, design flexibility, and material compatibility. However, its direct deposition nature results in weak adhesion between metal films and substrates, as it mainly relies on van [...] Read more.
Inkjet printing has become a primary technique for manufacturing flexible and conformal electronics due to its digital control, design flexibility, and material compatibility. However, its direct deposition nature results in weak adhesion between metal films and substrates, as it mainly relies on van der Waals or capillary forces, which severely limits its broader application in these fields. To address this limitation, we proposed an additive–subtractive manufacturing method based on a water-soluble sacrificial layer. First, the sacrificial material is inkjet-printed onto the substrate. Then, ion sputtering is employed to bombard the surface with high-energy ions, enabling metal atoms to embed into the substrate and form a strongly adhered conductive layer. Finally, the substrate is immersed in water, dissolving the sacrificial layer and detaching the undesired metal, thereby achieving selective retention of the conductive pattern. Experimental results demonstrate that the optimized water-soluble material, with tailored viscosity and surface tension, enables a patterning resolution of ±10 μm. The adhesion strength of the sputtered metal layer is 5.2 times greater than that of inkjet-printed silver nanoparticles. This method was further applied to fabricate conductive patterns on a curved surface with a 91 mm radius confirming its feasibility and adaptability for complex 3D surfaces. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

16 pages, 3519 KB  
Article
Flexible Moisture–Electric Generator Based on Vertically Graded GO–rGO/Ag Films
by Shujun Wang, Geng Li, Jiayue Wen, Jiayun Feng, He Zhang and Yanhong Tian
Materials 2025, 18(12), 2766; https://doi.org/10.3390/ma18122766 - 12 Jun 2025
Viewed by 997
Abstract
Moisture–electricity generators (MEGs) hold great promise for green energy conversion. However, existing devices focus on the need for complex gradient distribution treatments and the improvement in output voltage, overlooking the important role of the graphene oxide (GO) oxidation degree and the response time [...] Read more.
Moisture–electricity generators (MEGs) hold great promise for green energy conversion. However, existing devices focus on the need for complex gradient distribution treatments and the improvement in output voltage, overlooking the important role of the graphene oxide (GO) oxidation degree and the response time and recovery time in practical application. In this work, we develop printed MEGs by synthesizing reduced graphene oxide/silver nanoparticle (rGO/Ag) composites and controlling the GO oxidation degree. The rGO/Ag layer serves as a functional component that enhances cycling stability and shortens the recovery time. Additionally, compared to conventional rigid-structure devices, these flexible MEGs can be produced by inkjet printing and drop-casting techniques. A 1 cm2 MEG can generate a voltage of up to 60 mV within 2.4 s. Notably, higher output voltages can be easily achieved by connecting multiple MEG units in series, with 10 units producing 200 mV even under low relative humidity (RH). This work presents a low-cost, highly flexible, lightweight, and scalable power generator, paving the way for broader applications of GO and further advancement of MEG technology in wearable electronics, respiratory monitoring, and Internet of Things applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

Back to TopTop