Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = inland navigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1950 KB  
Review
Remote Sensing Approaches for Water Hyacinth and Water Quality Monitoring: Global Trends, Techniques, and Applications
by Lakachew Y. Alemneh, Daganchew Aklog, Ann van Griensven, Goraw Goshu, Seleshi Yalew, Wubneh B. Abebe, Minychl G. Dersseh, Demesew A. Mhiret, Claire I. Michailovsky, Selamawit Amare and Sisay Asress
Water 2025, 17(17), 2573; https://doi.org/10.3390/w17172573 - 31 Aug 2025
Abstract
Water hyacinth (Eichhornia crassipes), native to South America, is a highly invasive aquatic plant threatening freshwater ecosystems worldwide. Its rapid proliferation negatively impacts water quality, biodiversity, and navigation. Remote sensing offers an effective means to monitor such aquatic environments by providing extensive spatial [...] Read more.
Water hyacinth (Eichhornia crassipes), native to South America, is a highly invasive aquatic plant threatening freshwater ecosystems worldwide. Its rapid proliferation negatively impacts water quality, biodiversity, and navigation. Remote sensing offers an effective means to monitor such aquatic environments by providing extensive spatial and temporal coverage with improved resolution. This systematic review examines remote sensing applications for monitoring water hyacinth and water quality in studies published from 2014 to 2024. Seventy-eight peer-reviewed articles were selected from the Web of Science, Scopus, and Google Scholar following strict criteria. The research spans 25 countries across five continents, focusing mainly on lakes (61.5%), rivers (21%), and wetlands (10.3%). Approximately 49% of studies addressed water quality, 42% focused on water hyacinth, and 9% covered both. The Sentinel-2 Multispectral Instrument (MSI) was the most used sensor (35%), followed by the Landsat 8 Operational Land Imager (OLI) (26%). Multi-sensor fusion, especially Sentinel-2 MSI with Unmanned Aerial Vehicles (UAVs), was frequently applied to enhance monitoring capabilities. Detection accuracies ranged from 74% to 98% using statistical, machine learning, and deep learning techniques. Key challenges include limited ground-truth data and inadequate atmospheric correction. The integration of high-resolution sensors with advanced analytics shows strong promise for effective inland water monitoring. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

22 pages, 3256 KB  
Article
Research on the Loran-C Pseudorange Positioning Method Based on an Ellipsoidal Geodesic Model and Its Application in Inland Areas
by Ao Gao, Bing Ji, Miao Wu, Sisi Chang, Guang Zheng, Deying Yu and Wenkui Li
Sensors 2025, 25(16), 5110; https://doi.org/10.3390/s25165110 - 18 Aug 2025
Viewed by 273
Abstract
The Loran-C system employs the spherical hyperbola positioning (SHP) method. However, SHP has three drawbacks in inland regions: first, approximating the Earth’s ellipsoid as a sphere introduces positioning errors; second, hyperbola positioning inherently suffers from a high geometric dilution of precision (GDOP) value; [...] Read more.
The Loran-C system employs the spherical hyperbola positioning (SHP) method. However, SHP has three drawbacks in inland regions: first, approximating the Earth’s ellipsoid as a sphere introduces positioning errors; second, hyperbola positioning inherently suffers from a high geometric dilution of precision (GDOP) value; third, it is not easy to simultaneously receive long-wave signals from an entire chain of stations under complex propagation paths, which, to some extent, limits the application and development of the Loran-C system in inland areas. This paper addresses the limitations of the SHP algorithm and introduces the ellipsoidal pseudorange positioning (EPP) method, which eliminates the need to approximate the Earth’s ellipsoid as a sphere. This pseudorange positioning algorithm reduces the GDOP value, enabling navigation and positioning with signals from just three stations, thereby breaking through the restriction of requiring signals from a single chain. Simulation analyses were conducted for various Loran-C chains in China. Due to differences in the geometric layout of the chains, the EPP algorithm improved the positioning coverage area by 129.1% to 284.6% compared to the SHP algorithm. In field test data from the Maoming region of Guangdong Province, China (a typical inland mountainous environment), the EPP algorithm significantly reduced the root mean square error (RMSE), from 417.2 m with the SHP algorithm to 43.1 m, representing an improvement of 89.7%. Both the simulation and experimental results demonstrate that the EPP method effectively addresses errors in Earth ellipsoid modeling, significantly reduces the GDOP, and substantially improves the positioning accuracy and usable area of the Loran-C system in complex inland terrain. This provides more reliable technical support for Loran-C applications in inland navigation, timing, and timing backup. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

26 pages, 3478 KB  
Article
Rethinking Routes: The Case for Regional Ports in a Decarbonizing World
by Dong-Ping Song
Logistics 2025, 9(3), 103; https://doi.org/10.3390/logistics9030103 - 4 Aug 2025
Viewed by 556
Abstract
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in [...] Read more.
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in a decarbonizing world. Methods: A scenario-based analysis is used to evaluate total costs and CO2 emissions across the entire container shipping supply chain, incorporating deep-sea shipping, port operations, feeder services, and inland rail/road transport. The Port of Liverpool serves as the primary case study for rerouting Asia–Europe services from major ports. Results: Analysis indicates Liverpool’s competitiveness improves with shipping lines’ slow steaming, growth in hinterland shipment volume, reductions in the emission factors of alternative low-carbon fuels, and an increased modal shift to rail matching that of competitor ports (e.g., Southampton). A dual-port strategy, rerouting services to call at both Liverpool and Southampton, shows potential for both economic and environmental benefits. Conclusions: The study concludes that rerouting deep-sea services to regional ports can offer cost and emission advantages under specific operational and market conditions. Findings on factors and conditions influencing competitiveness and the dual-port strategy provide insights for shippers, ports, shipping lines, logistics agents, and policymakers navigating maritime decarbonization. Full article
(This article belongs to the Section Maritime and Transport Logistics)
Show Figures

Figure 1

14 pages, 2532 KB  
Article
Machine Learning for Spatiotemporal Prediction of River Siltation in Typical Reach in Jiangxi, China
by Yong Fu, Jin Luo, Die Zhang, Lingjia Liu, Gan Luo and Xiaofang Zu
Appl. Sci. 2025, 15(15), 8628; https://doi.org/10.3390/app15158628 - 4 Aug 2025
Viewed by 280
Abstract
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal [...] Read more.
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal sedimentation and hydrological variability. To enable fine-scale prediction, we developed a data-driven framework using a random forest regression model that integrates high-resolution bathymetric surveys with hydrological and meteorological observations. Based on the field data from April to July 2024, the model was trained to forecast monthly siltation volumes at a 30 m grid scale over a six-month horizon (July–December 2024). The results revealed a marked increase in siltation from July to September, followed by a decline during the winter months. The accumulation of sediment, combined with falling water levels, was found to significantly reduce the channel depth and width, particularly in the upstream sections, posing a potential risk to navigation safety. This study presents an initial, yet promising attempt to apply machine learning for spatially explicit siltation prediction in data-constrained river systems. The proposed framework provides a practical tool for early warning, targeted dredging, and adaptive channel management. Full article
Show Figures

Figure 1

17 pages, 5257 KB  
Article
Research on Draft Control Optimization of Ship Passing a Lock Based on CFD Method
by Yuan Zhuang, Yu Ding, Jialun Liu and Song Zhang
J. Mar. Sci. Eng. 2025, 13(8), 1406; https://doi.org/10.3390/jmse13081406 - 23 Jul 2025
Viewed by 267
Abstract
Waterborne transportation serves as a critical pillar of trunk-line freight systems, offering unparalleled advantages in transport capacity, energy efficiency, and cost-effectiveness. As cargo throughput demands escalate, optimizing lock capacity becomes imperative. This study investigates ship sinkage dynamics through computational fluid dynamics (CFD) simulations [...] Read more.
Waterborne transportation serves as a critical pillar of trunk-line freight systems, offering unparalleled advantages in transport capacity, energy efficiency, and cost-effectiveness. As cargo throughput demands escalate, optimizing lock capacity becomes imperative. This study investigates ship sinkage dynamics through computational fluid dynamics (CFD) simulations for a representative inland cargo vessel navigating the Three Gorges on the Yangtze River. We develop a predictive sinkage model that integrates four key hydrodynamic parameters: ship velocity, draft, water depth, and bank clearance, applicable to both open shallow water and lockage conditions. The model enables determination of maximum safe drafts for lock transit by analyzing upstream/downstream water levels and corresponding chamber depths. Our results demonstrate the technical feasibility of enhancing single-lock cargo capacity while maintaining safety margins. These findings provide (1) a scientifically grounded framework for draft control optimization, and (2) actionable insights for lock operation management. The study establishes a methodological foundation for balancing navigational safety with growing throughput requirements in constrained waterways. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 28883 KB  
Article
Exploring Precipitable Water Vapor (PWV) Variability and Subregional Declines in Eastern China
by Taixin Zhang, Jiayu Xiong, Shunqiang Hu, Wenjie Zhao, Min Huang, Li Zhang and Yu Xia
Sustainability 2025, 17(15), 6699; https://doi.org/10.3390/su17156699 - 23 Jul 2025
Viewed by 469
Abstract
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite [...] Read more.
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite System (GNSS) observations in typical cities in eastern China and proposes a comprehensive multiscale frequency-domain analysis framework that integrates the Fourier transform, Bayesian spectral estimation, and wavelet decomposition to extract the dominant PWV periodicities. Time-series analysis reveals an overall increasing trend in PWV across most regions, with notably declining trends in Beijing, Wuhan, and southern Taiwan, primarily attributed to groundwater depletion, rapid urban expansion, and ENSO-related anomalies, respectively. Frequency-domain results indicate distinct latitudinal and coastal–inland differences in the PWV periodicities. Inland stations (Beijing, Changchun, and Wuhan) display annual signals alongside weaker semi-annual components, while coastal stations (Shanghai, Kinmen County, Hong Kong, and Taiwan) mainly exhibit annual cycles. High-latitude stations show stronger seasonal and monthly fluctuations, mid-latitude stations present moderate-scale changes, and low-latitude regions display more diverse medium- and short-term fluctuations. In the short-term frequency domain, GNSS stations in most regions demonstrate significant PWV periodic variations over 0.5 days, 1 day, or both timescales, except for Changchun, where weak diurnal patterns are attributed to local topography and reduced solar radiation. Furthermore, ERA5-derived vertical temperature profiles are incorporated to reveal the thermodynamic mechanisms driving these variations, underscoring region-specific controls on surface evaporation and atmospheric moisture capacity. These findings offer novel insights into how human-induced environmental changes modulate the behavior of atmospheric water vapor. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

36 pages, 3656 KB  
Review
Current Status of Application of Spaceborne GNSS-R Raw Intermediate-Frequency Signal Measurements: Comprehensive Review
by Qiulan Wang, Jinwei Bu, Yutong Wang, Donglan Huang, Hui Yang and Xiaoqing Zuo
Remote Sens. 2025, 17(13), 2144; https://doi.org/10.3390/rs17132144 - 22 Jun 2025
Viewed by 609
Abstract
In recent years, spaceborne Global Navigation Satellite System reflectometry (GNSS-R) technology has made significant progress in the fields of Earth observation and remote sensing, with a wide range of applications, important research value, and broad development prospects. However, despite existing research focusing on [...] Read more.
In recent years, spaceborne Global Navigation Satellite System reflectometry (GNSS-R) technology has made significant progress in the fields of Earth observation and remote sensing, with a wide range of applications, important research value, and broad development prospects. However, despite existing research focusing on the application of spaceborne GNSS-R L1-level data, the potential value of raw intermediate-frequency (IF) signals has not been fully explored for special applications that require a high accuracy and spatiotemporal resolution. This article provides a comprehensive overview of the current status of the measurement of raw IF signals from spaceborne GNSS-R in multiple application fields. Firstly, the development of spaceborne GNSS-R microsatellites launch technology is introduced, including the ability of microsatellites to receive GNSS signals and receiver technique, as well as related frequency bands and technological advancements. Secondly, the key role of coherence detection in spaceborne GNSS-R is discussed. By analyzing the phase and amplitude information of the reflected signals, parameters such as scattering characteristics, roughness, and the shape of surface features are extracted. Then, the application of spaceborne GNSS-R in inland water monitoring is explored, including inland water detection and the measurement of the surface height of inland (or lake) water bodies. In addition, the widespread application of group delay sea surface height measurement and carrier-phase sea surface height measurement technology in the marine field are also discussed. Further research is conducted on the progress of spaceborne GNSS-R in the retrieval of ice height or ice sheet height, as well as tropospheric parameter monitoring and the study of atmospheric parameters. Finally, the existing research results are summarized, and suggestions for future prospects are put forward, including improving the accuracy of signal processing and reflection signal analysis, developing more advanced algorithms and technologies, and so on, to achieve more accurate and reliable Earth observation and remote sensing applications. These research results have important application potential in fields such as environmental monitoring, climate change research, and weather prediction, and are expected to provide new technological means for global geophysical parameter retrieval. Full article
(This article belongs to the Special Issue Satellite Observations for Hydrological Modelling)
Show Figures

Figure 1

23 pages, 7071 KB  
Article
Numerical Simulation of Ship Wave Characteristics Under Different Navigation Conditions in the Restricted Waterway of the Pinglu Canal
by Chu Zhang, Tiejun Cheng, Shishuang Wu, Jian Pan, Jiacheng You, Xiangyu Xu, Jianan Shi, Sudong Xu and Jianxin Hao
Water 2025, 17(12), 1822; https://doi.org/10.3390/w17121822 - 18 Jun 2025
Viewed by 483
Abstract
The Pinglu Canal is a strategic inland restricted waterway under construction in southwest China. Its ship wave superposition characteristics under conditions of high-density shipping and large ships may threaten navigation safety, but little related research has been performed. Based on the Pinglu Canal [...] Read more.
The Pinglu Canal is a strategic inland restricted waterway under construction in southwest China. Its ship wave superposition characteristics under conditions of high-density shipping and large ships may threaten navigation safety, but little related research has been performed. Based on the Pinglu Canal project, this study uses the XBeach numerical model, which is validated by field observations on the Chengzi River waterway, to analyze the ship wave characteristics under single-ship navigation (SN) and two-ship navigation in opposite directions (2NOD). The results show the influences of ship type and water depth. For SN, secondary waves of the navigation administration boat (NAB) dominate, with wave height decreasing as water depth increases. Larger cargo ships (CSs) present significant primary wave effects and a complex relationship between the secondary wave’s height and water depth. For 2NOD, the NAB wave effect is stronger due to superposition. As for larger CSs, the primary wave effect is significantly enhanced and occupies the dominant position, with secondary wave height tending to increase with the increase in water depth. The study reveals the characteristics of single-ship and two-ship waves in the Pinglu Canal, providing a theoretical basis and technical support for ship wave risk assessment and ecological revetment design. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

38 pages, 11886 KB  
Article
The Estimation of Suspended Solids Concentration from an Acoustic Doppler Current Profiler in a Tidally Dominated Continental Shelf Sea Setting and Its Use as a Numerical Modelling Validation Technique
by Shauna Creane, Michael O’Shea, Mark Coughlan and Jimmy Murphy
Water 2025, 17(12), 1788; https://doi.org/10.3390/w17121788 - 14 Jun 2025
Viewed by 587
Abstract
Reliable coastal and offshore sediment transport data is a requirement for many engineering and environmental projects including port and harbour design, dredging and beach nourishment, sea shoreline protection, inland navigation, marine pollution monitoring, benthic habitat mapping, and offshore renewable energy (ORE). Novel sediment [...] Read more.
Reliable coastal and offshore sediment transport data is a requirement for many engineering and environmental projects including port and harbour design, dredging and beach nourishment, sea shoreline protection, inland navigation, marine pollution monitoring, benthic habitat mapping, and offshore renewable energy (ORE). Novel sediment transport numerical modelling approaches allow engineers and scientists to investigate the physical interactions involved in these projects both in the near and far field. However, a lack of confidence in simulated sediment transport results is evident in many coastal and offshore studies, mainly due to limited access to validation datasets. This study addresses the need for cost-effective sediment validation datasets by investigating the applicability of four new suspended load validation techniques to a 2D model of the south-western Irish Sea. This involves integrating an estimated spatial time series of suspended solids concentration (SSCsolids) derived from acoustic Doppler current profiler (ADCP) acoustic backscatter with several in situ water sample-based SSCsolids datasets. Ultimately, a robust spatial time series of ADCP-based SSCsolids was successfully calculated in this offshore, tidally dominated setting, where the correlation coefficient between estimated SSCsolids and directly measured SSCsolids is 0.87. Three out of the four assessed validation techniques are deemed advantageous in developing an accurate 2D suspended sediment transport model given the assumptions of the depth-integrated approach. These recommended techniques include (i) the validation of 2D modelled suspended sediment concentration (SSCsediment) using water sample-based SSCsolids, (ii) the validation of the flood–ebb characteristics of 2D modelled suspended load transport and SSCsediment using ADCP-based datasets, and (iii) the validation of the 2D modelled peak SSCsediment over a spring–neap cycle using the ADCP-based SSCsolids. Overall, the multi-disciplinary method of collecting in situ metocean and sediment dynamic data via acoustic instruments (ADCPs) is a cost-effective in situ data collection method for future ORE developments and other engineering and scientific projects. Full article
Show Figures

Figure 1

25 pages, 3464 KB  
Article
A Comparative Analysis of the Usability of Consumer Graphics Cards for Deep Learning in the Aspects of Inland Navigational Signs Detection for Vision Systems
by Pawel Adamski and Jacek Lubczonek
Appl. Sci. 2025, 15(9), 5142; https://doi.org/10.3390/app15095142 - 6 May 2025
Viewed by 1410
Abstract
Consumer-grade graphics processing units (GPUs) offer a potentially affordable and energy-efficient alternative to enterprise-class hardware for real-time image processing tasks, but systematic multi-criteria analyses of their suitability remain rare. This article fills that gap by evaluating the performance, power consumption, and cost-effectiveness of [...] Read more.
Consumer-grade graphics processing units (GPUs) offer a potentially affordable and energy-efficient alternative to enterprise-class hardware for real-time image processing tasks, but systematic multi-criteria analyses of their suitability remain rare. This article fills that gap by evaluating the performance, power consumption, and cost-effectiveness of GPUs from three leading vendors, AMD, Intel, and Nvidia, in an inland water transport (ITW) context. The main objective is to assess the feasibility of using consumer GPUs for deep learning tasks involving navigational sign detection, a critical component for ensuring safe and efficient inland transportation. The evaluation includes the use of image datasets of inland water transport signs processed by widely used detector and classifier models such as YOLO (you only look once), ResNet (residual neural network l), and MobileNet. To achieve this, we propose a multi-criteria framework based on a weighted scoring method (WSM), covering 21 different characteristics such as compatibility, resting power, energy efficiency in learning and inference, and the financial threshold for technology adoption. The results confirm that consumer-grade GPUs can deliver competitive performance with lower initial costs and lower power consumption. The findings underscore the enduring value of our analysis, as its framework can be adapted for ongoing comparisons of evolving GPU technologies using the proposed methodology. Full article
Show Figures

Figure 1

28 pages, 1556 KB  
Article
A Sector-Specific Digital Maturity Model for Inland Waterway Transport
by Agnieszka A. Tubis, Emilia T. Skupień, Kasper K. Jędrzychowski and Hubert Jędrzychowski
Systems 2025, 13(5), 347; https://doi.org/10.3390/systems13050347 - 3 May 2025
Viewed by 1076
Abstract
This article presents a sector-specific digital maturity model (DMM) to assess digital transformation in inland waterway transport (IWT). Inland waterway transport plays a crucial yet underutilized role, and digitalization can enhance its efficiency, safety, and competitiveness. This study proposes a structured model to [...] Read more.
This article presents a sector-specific digital maturity model (DMM) to assess digital transformation in inland waterway transport (IWT). Inland waterway transport plays a crucial yet underutilized role, and digitalization can enhance its efficiency, safety, and competitiveness. This study proposes a structured model to evaluate digital maturity in four key areas: (i) Customer Area: manages orders and cargo handling, (ii) System Management and Compliance: covers documentation and regulatory processes, (iii) Ship Maintenance: shifts from reactive to predictive maintenance, and (iv) Operational Management: enhances navigation and communication. The model uses a five-level maturity scale, assessing technological adoption and operational efficiency. It is validated through the assessment of two European inland waterway transport systems: the Oder and the Rhine. The analysis shows that the Rhine system has higher digital maturity, particularly in customer service and system management, while both systems exhibit similar gaps in operational ship maintenance. The results demonstrate that the model can be used as both a benchmarking tool and roadmap for digital transformation. The study underscores the need for continuous technological advancements and contributes to both academic research and practical applications in transport system digitalization. Full article
(This article belongs to the Special Issue Performance Analysis and Optimization in Transportation Systems)
Show Figures

Figure 1

18 pages, 5098 KB  
Article
Waterway Regulation Effects on River Hydrodynamics and Hydrological Regimes: A Numerical Investigation
by Chuanjie Quan, Dasheng Wang, Xian Li, Zhenxing Yao, Panpan Guo, Chen Jiang, Haodong Xing, Jianyang Ren, Fang Tong and Yixian Wang
Water 2025, 17(9), 1261; https://doi.org/10.3390/w17091261 - 23 Apr 2025
Cited by 1 | Viewed by 754
Abstract
As a critical intervention for enhancing inland navigation efficiency, waterway regulation projects profoundly modify riverine hydrodynamic conditions while optimizing navigability. This study employs the MIKE21 hydrodynamic model to establish a two-dimensional numerical framework for assessing hydrological alterations induced by channel regulation in the [...] Read more.
As a critical intervention for enhancing inland navigation efficiency, waterway regulation projects profoundly modify riverine hydrodynamic conditions while optimizing navigability. This study employs the MIKE21 hydrodynamic model to establish a two-dimensional numerical framework for assessing hydrological alterations induced by channel regulation in the Hui River, China. Through comparative simulations of pre- and post-project scenarios across dry, normal, and wet hydrological years, the research quantifies impacts on water levels, flow velocity distribution, and geomorphic stability. Results reveal that channel dredging and realignment reduced upstream water levels by up to 0.26 m during drought conditions, while concentrating flow velocities in the main channel by 0.5 m/s. However, localized hydrodynamic restructuring triggered bank erosion risks at cut-off bends and sedimentation in anchorage basins. The integrated analysis demonstrates that although regulation measures enhance flood conveyance and navigation capacity, they disrupt sediment transport equilibrium, destabilize riparian ecosystems, and compromise hydrological monitoring consistency. To mitigate these trade-offs, the study proposes design optimizations—including ecological revetments and adaptive dredging strategies—coupled with enhanced hydrodynamic monitoring and riparian habitat restoration. These findings provide a scientific foundation for balancing navigation improvements with the sustainable management of fluvial systems. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

26 pages, 1779 KB  
Article
Multi-Ship Collision Avoidance in Inland Waterways Using Actor–Critic Learning with Intrinsic and Extrinsic Rewards
by Shaojun Gan, Ziqi Zhang, Yanxia Wang and Dejun Wang
Symmetry 2025, 17(4), 613; https://doi.org/10.3390/sym17040613 - 18 Apr 2025
Viewed by 495
Abstract
Inland waterway navigation involves complex traffic conditions with frequent multi-ship encounters. Benefiting from its straightforward structure and robust adaptability, reinforcement learning has found applications in navigation. This article proposes a deep actor–critic collision avoidance model which is based on the weighted summation of [...] Read more.
Inland waterway navigation involves complex traffic conditions with frequent multi-ship encounters. Benefiting from its straightforward structure and robust adaptability, reinforcement learning has found applications in navigation. This article proposes a deep actor–critic collision avoidance model which is based on the weighted summation of intrinsic reward and extrinsic reward, overcoming the sparsity of the reward function in navigation tasks. For the proposed algorithm, the extrinsic reward considers factors of collision risk, economic reward, and penalties for violating collision avoidance rules, while the intrinsic reward explores the novelty of agent states. The optimization of the own ship’s actions is achieved through the utilization of a weighted summation of these two types of rewards, providing valuable guidance for decision-making in a symmetrical interaction framework. To validate the performance of the proposed multi-ship collision avoidance model, simulations of both two-ship encounters and complex multi-ship scenarios involving dynamic and static obstacles are conducted. The following conclusions can be drawn: (1) The proposed model could provide effective decisions for ship navigation in inland waterways, maintaining symmetrical coordination between vessels. (2) The hybrid reward mechanism successfully guides ship behavior in collision avoidance scenarios. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

20 pages, 3225 KB  
Article
Merging Multiple System Perspectives: The Key to Effective Inland Shipping Emission-Reduction Policy Design
by Solange van der Werff, Fedor Baart and Mark van Koningsveld
J. Mar. Sci. Eng. 2025, 13(4), 716; https://doi.org/10.3390/jmse13040716 - 3 Apr 2025
Cited by 1 | Viewed by 791
Abstract
Policymakers in the maritime sector face the challenge of designing and implementing decarbonization policies while maintaining safe navigation. Herein, the inland sector serves as a promising stepping stone due to the possibility of creating a dense energy supply infrastructure and shorter distances compared [...] Read more.
Policymakers in the maritime sector face the challenge of designing and implementing decarbonization policies while maintaining safe navigation. Herein, the inland sector serves as a promising stepping stone due to the possibility of creating a dense energy supply infrastructure and shorter distances compared to marine shipping. A key challenge is to consider the totality of all operational profiles as a result of the range of vessels and routes encountering varying local circumstances. In this study, we use a new scheme called “event table” to transform big data on vessel trajectories (AIS data) combined with energy-estimating algorithms into shipping-emission outcomes that can be evaluated from multiple perspectives. We can subsequently tie observations in one perspective (for example, large-scale spatial patterns on a map) to supporting explanations based on another perspective (for example, water currents, vessel speeds, or engine ages and their contributions to emissions). Hence, combining these outcomes from multiple perspectives and evaluation scales provides an essential understanding of how the system works and what the most effective improvement measures will be. With our approach, we can translate large quantities of data from multiple sources into multiple linked perspectives on the shipping system. Full article
(This article belongs to the Special Issue Green Shipping Corridors and GHG Emissions)
Show Figures

Figure 1

27 pages, 8996 KB  
Article
Research on Decision-Making Methods for Autonomous Navigation in Inland Tributary Waterways
by Liwen Huang, Jiahao Chen, Luping Xu, Haoyu Li, Guozhu Hao and Yixiong He
Appl. Sci. 2025, 15(7), 3823; https://doi.org/10.3390/app15073823 - 31 Mar 2025
Viewed by 591
Abstract
The inherent complexity of traffic patterns in inland river tributary waterways presents significant challenges in predicting ship behavior, resulting in elevated accident risks compared to general waterways. With the intelligent development of inland navigation, conducting research on autonomous navigation decision-making for tributary waterway [...] Read more.
The inherent complexity of traffic patterns in inland river tributary waterways presents significant challenges in predicting ship behavior, resulting in elevated accident risks compared to general waterways. With the intelligent development of inland navigation, conducting research on autonomous navigation decision-making for tributary waterway ships is crucial to improving navigation safety and efficiency. Based on the characteristics of the navigation environment, a digital traffic environment model for inland waterways with tributaries is constructed to meet the information requirements of autonomous navigation decision-making. The ship encounter process is analyzed, and a collision risk identification model based on trajectory derivation is proposed, which accounts for the uncertainty of ship maneuvering in tributary waterways. Under the premise of compliance with the “Rules of the People’s Republic of China for Inland River Collision Avoidance” (RPRCIRCA) and adherence to good seamanship, an autonomous navigation decision-making method is developed by integrating an improved Line-of-Sight tracking model with a collision avoidance strategy based on exhaustive course-speed maneuver combinations. The system’s performance is validated through simulation experiments, with trajectory tracking deviations demonstrated to remain below 49 m under wind-current disturbances while minimum encounter distances with target ships are maintained above 48 m. Adaptive response capabilities to maneuvering variations of target ships are confirmed, along with the preservation of navigation precision in complex tributary environments. Full article
Show Figures

Figure 1

Back to TopTop