Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (432)

Search Parameters:
Keywords = insecticidal properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 1582 KiB  
Review
The Chemical Composition, Pharmacological Activity, Quality Control, Toxicity, and Pharmacokinetics of the Genus Clinopodium L.
by Wen Li, Jianping Pan, Xiaobing Chen, Senhui Guo and Xilin Ouyang
Molecules 2025, 30(11), 2425; https://doi.org/10.3390/molecules30112425 - 31 May 2025
Viewed by 154
Abstract
The genus Clinopodium L. (Lamiaceae) comprises perennial herbaceous plants known for their diverse pharmacological properties. Clinically, these plants are mainly used for the treatment of various hemorrhagic disorders. This review systematically summarizes the research progress on the chemical composition, pharmacological activity, quality control, [...] Read more.
The genus Clinopodium L. (Lamiaceae) comprises perennial herbaceous plants known for their diverse pharmacological properties. Clinically, these plants are mainly used for the treatment of various hemorrhagic disorders. This review systematically summarizes the research progress on the chemical composition, pharmacological activity, quality control, toxicity, and pharmacokinetics of the genus Clinopodium by searching Google Scholar, Scopus-Elsevier, Wiley, Springer, Taylor & Francis, Medline, Web of Science, CNKI, Weipu, Wanfang, and other academic databases over the last decade (March 2015–February 2025). To date, more than one hundred and thirty structurally diverse secondary metabolites have been isolated and identified from this genus, including flavonoids, triterpenoid saponins, diterpenoid glycosides, lignans, and phenylpropanoids. In addition, numerous volatile oil constituents have been identified in over forty species of the genus Clinopodium. Crude extracts and purified compounds exhibit a variety of pharmacological activities, including hemostatic, anti-myocardial cell injury, cardiovascular protective, anti-inflammatory, antimicrobial, antitumor, hypoglycemic, and insecticidal properties. However, current quality assessment protocols in the genus Clinopodium are limited to flavonoid- and saponin-based evaluations in C. chinense (Benth.) O. Kuntze and C. gracile (Benth.) O. Matsum. Further research is needed to elucidate the pharmacological mechanisms, toxicity, and possible interactions with other drugs. Therefore, the genus Clinopodium has a wide range of biologically active compounds with potential applications in drug development for hemostasis and cardiovascular protection. Nevertheless, there is also an urgent need to establish standardized methodologies to address uncertainties concerning the safety and efficacy of injectable extracts or compounds. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

18 pages, 1103 KiB  
Review
Health Hazards Associated with Exposure to Endosulfan: A Mini-Review
by Agnieszka Berdowska and Katarzyna Bandurska
Toxics 2025, 13(6), 455; https://doi.org/10.3390/toxics13060455 - 29 May 2025
Viewed by 143
Abstract
Endosulfan, a persistent organochlorine pesticide, has raised global concern due to its toxicological effects on human health and the environment. The popularity of endosulfan was driven by its effectiveness and low cost compared to alternative insecticides. The compound’s environmental persistence and bioaccumulative properties [...] Read more.
Endosulfan, a persistent organochlorine pesticide, has raised global concern due to its toxicological effects on human health and the environment. The popularity of endosulfan was driven by its effectiveness and low cost compared to alternative insecticides. The compound’s environmental persistence and bioaccumulative properties also contributed to its sustained use over several decades. Despite regulatory bans in many countries, residues of endosulfan continue to be detected in soil, water, and food sources, posing a threat through chronic exposure. Although endosulfan has been listed in the Stockholm Convention as a persistent organic pollutant targeted for global elimination, it is still used illegally in some countries. This mini-review synthesizes current knowledge on its toxicological profile, including neurotoxicity, endocrine disruption, reproductive toxicity, potential carcinogenicity, and acute poisoning, based on the latest scientific literature. The paper also highlights current regulatory frameworks, historical usage trends, global distribution and alternatives to endosulfan in agriculture. Understanding the scope of its health impacts and ongoing risks is crucial for policymakers, researchers, and public health authorities seeking to protect populations from legacy pollutants. In addition, recognizing the long-term impacts of endosulfan is essential for effective health risk assessment, environmental monitoring, and the promotion of safer alternatives. Full article
(This article belongs to the Special Issue Environmental Toxicology and Risk Assessment of Priority Substances)
Show Figures

Figure 1

13 pages, 1056 KiB  
Article
Adulticidal and Repellent Activity of Essential Oils from Three Cultivated Aromatic Plants Against Musca domestica L.
by Gabriela Antonieta Oyarce, Patricia Loyola, Michelle Iubini-Aravena, Álvaro Romero, J. Concepción Rodríguez-Maciel, José Becerra and Gonzalo Silva-Aguayo
Insects 2025, 16(5), 542; https://doi.org/10.3390/insects16050542 - 20 May 2025
Viewed by 266
Abstract
The house fly, Musca domestica L., is a pest of great medical and agricultural importance, serving as a vector for various diseases and undermining the quality of agricultural products. Traditionally, synthetic insecticides have been the primary means of control; however, their efficacy has [...] Read more.
The house fly, Musca domestica L., is a pest of great medical and agricultural importance, serving as a vector for various diseases and undermining the quality of agricultural products. Traditionally, synthetic insecticides have been the primary means of control; however, their efficacy has declined over time, and they are now less preferred due to their safety and environmental concerns. This study evaluated the insecticidal and repellent properties of essential oils from Eucalyptus globulus, Foeniculum vulgare and Salvia officinalis against M. domestica. All EOs exhibited insecticidal activity: eucalyptus achieved 100% fumigant mortality at 34 µL L−1 air and showed the lowest LC50 (18.1 µL L−1 air), while fennel and sage required 50 µL L−1 air. In contrast, fennel showed the highest contact toxicity (100% mortality at 150 µL L−1). Repellency exceeded 87% for all EOs, with sage being the most repellent at the lowest concentration tested (94% at 5 µL L−1). These results highlight the potential use of essential oils and their constituents as environmentally friendly alternatives for the control of M. domestica. However, further field validation and studies on individual components and their synergistic combinations are needed to understand their efficacy and fully optimize their use. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

19 pages, 5512 KiB  
Article
Nature-Identical Safranal and Dihydrocoumarin from Ageratina adenophora ((Spreng., 1970) King and H. Rob.) Target Energy Metabolism to Control Solenopsis invicta Buren, 1972 (Hymenoptera: Formicidae)
by Mingqi Wu, Rongchao Luo, Mehboob Hussain, Wenmei Wu, Shini Li, Zijun Guo, Boyu Jia, Gaofeng Bi, Xi Gao, Guoxing Wu and Deqiang Qin
Insects 2025, 16(5), 540; https://doi.org/10.3390/insects16050540 - 20 May 2025
Viewed by 323
Abstract
The bio-prospecting of bioactive phytochemicals from invasive flora presents a sustainable paradigm for the ecologically conscious management of major invasive pest S. invicta. Ageratina adenophora, while recognized for its allelopathic insecticidal properties, exhibits poorly characterized toxicological profiles and mechanistic underpinnings against [...] Read more.
The bio-prospecting of bioactive phytochemicals from invasive flora presents a sustainable paradigm for the ecologically conscious management of major invasive pest S. invicta. Ageratina adenophora, while recognized for its allelopathic insecticidal properties, exhibits poorly characterized toxicological profiles and mechanistic underpinnings against S. invicta, warranting systematic investigation to elucidate its mode of action. This study elucidates the bioactive insecticidal compounds of A. adenophora and their toxicological impacts on S. invicta, including behavioral, metabolic, and enzymatic perturbations, via liquid chromatography–mass spectrometry (LC-MS) profiling. The ethanol extracts of the roots, stems, and leaves of A. adenophora have shown control effects on S. invicta, with an LC50 (50% lethal concentration) of 331.847, 188.256, and 166.253 mg/mL at 48 h, respectively. Metabolite profiling of A. adenophora revealed that safranal and dihydrocoumarin are relatively high in plant leaves, and they showed significant insecticidal activity and behavioral inhibitory effects on S. invicta with LC50 349.042 mg/L and 118.336 mg/L at 48 h, respectively. Notably, these two bioactive compounds disrupted the normal energy production through glucose metabolism and the citrate cycle, which eventually led to the death of S. invicta. Further, these two compounds also activated the detoxification metabolic pathway of S. invicta. These findings provide a theoretical basis for the use of these bioactive compounds in the integrated management of S. invicta and may lead to the development of a new biopesticide. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

22 pages, 4995 KiB  
Article
Comprehensive In Vitro and In Silico Analysis of Antimicrobial and Insecticidal Properties of Essential Oil of Myrtus communis L. from Algeria
by Ghozlane Barboucha, Noureddine Rahim, Amina Bramki, Houssem Boulebd, Anna Andolfi, Khaoula Boulacheb, Amina Boulacel, Maria Michela Salvatore and Marco Masi
Int. J. Mol. Sci. 2025, 26(10), 4754; https://doi.org/10.3390/ijms26104754 - 15 May 2025
Viewed by 347
Abstract
This study investigated the phytochemical composition and biological activities of Myrtus communis essential oil (EO) from Algeria, focusing on its antimicrobial, antifungal, and insecticidal properties using in vitro and in silico approaches. Gas chromatography–mass spectrometry (GC-MS) analysis identified myrtenyl acetate (57.58%), 1,8-cineole (17.82%), [...] Read more.
This study investigated the phytochemical composition and biological activities of Myrtus communis essential oil (EO) from Algeria, focusing on its antimicrobial, antifungal, and insecticidal properties using in vitro and in silico approaches. Gas chromatography–mass spectrometry (GC-MS) analysis identified myrtenyl acetate (57.58%), 1,8-cineole (17.82%), and α-terpineol (6.82%) as the major constituents. M. communis EO exhibited significant antibacterial activity, particularly against Staphylococcus aureus (13.00 ± 0.70 mm) and Salmonella typhimurium (13.00 ± 1.50 mm), with moderate inhibition of Bacillus subtilis (10 ± 1.00 mm) and Escherichia coli (9.00 ± 0.70 mm), while Pseudomonas aeruginosa showed resistance. The antifungal activity was notable against Fusarium oxysporum (16.50 ± 0.50 mm), Aspergillus fumigatus (11.00 ± 1.00 mm), and Penicillium sp. (9.00 ± 0.60 mm) but ineffective against Aspergillus niger. Insecticidal activity against Tribolium castaneum was evaluated using contact toxicity, fumigation toxicity, and repellent activity assays. The EO demonstrated potent insecticidal effects, with an LC50 value of 0.029 µL/insect for contact toxicity and 162.85 µL/L air for fumigation after 96 h. Additionally, the EO exhibited strong repellent activity, achieving 99.44% repellency at a concentration of 0.23 mg/cm2 after 24 h. Density functional theory (DFT) calculations provided insights into the molecular geometry and electronic properties of the key bioactive compounds. Molecular docking studies evaluated their binding affinities to bacterial enzymes (DNA gyrase, dihydrofolate reductase6, and Gyrase B) and insecticidal targets (acetylcholinesterase), revealing strong interactions, particularly for geranyl acetate and methyleugenol. These findings highlight M. communis EO as a promising natural antimicrobial and insecticidal agent, with potential applications in plant protection and biopesticide development. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Graphical abstract

40 pages, 2146 KiB  
Article
Global Dynamics of a Predator–Prey System with Variation Multiple Pulse Intervention Effects
by Gang Wang, Ming Yi and Zaiyun Zhang
Mathematics 2025, 13(10), 1597; https://doi.org/10.3390/math13101597 - 13 May 2025
Viewed by 171
Abstract
A continuous point of a trajectory for an ordinary differential equation can be viewed as a special impulsive point; i.e., the pulsed proportional change rate and the instantaneous increment for the prey and predator populations can be taken as 0. By considering the [...] Read more.
A continuous point of a trajectory for an ordinary differential equation can be viewed as a special impulsive point; i.e., the pulsed proportional change rate and the instantaneous increment for the prey and predator populations can be taken as 0. By considering the variation multiple pulse intervention effects (i.e., several indefinite continuous points are regarded as impulsive points), an impulsive predator–prey model for characterizing chemical and biological control processes at different fixed times is first proposed. Our modeling approach can describe all possible realistic situations, and all of the traditional models are some special cases of our model. Due to the complexity of our modeling approach, it is essential to examine the dynamical properties of the periodic solutions using new methods. For example, we investigate the permanence of the system by constructing two uniform lower impulsive comparison systems, indicating the mathematical (or biological) essence of the permanence of our system; furthermore, the existence and global attractiveness of the pest-present periodic solution is analyzed by constructing an impulsive comparison system for a norm V(t), which has not been addressed to date. Based on the implicit function theorem, the bifurcation of the pest-present periodic solution of the system is investigated under certain conditions, which is more rigorous than the corresponding traditional proving method. In addition, by employing the variational method, the eigenvalues of the Jacobian matrix at the fixed point corresponding to the pest-free periodic solution are determined, resulting in a sufficient condition for its local stability, and the threshold condition for the global attractiveness of the pest-free periodic solution is provided in terms of an indicator Ra. Finally, the sensitivity of indicator Ra and bifurcations with respect to several key parameters are determined through numerical simulations, and then the switch-like transitions among two coexisting attractors show that varying dosages of insecticide applications and the numbers of natural enemies released are crucial. Full article
Show Figures

Figure 1

12 pages, 484 KiB  
Review
Prodigiosin: A Potential Eco-Friendly Insecticide for Sustainable Crop Protection
by Gabriela Elizabeth Quintanilla-Villanueva, Esther Emilia Ríos-Del Toro, Iris Cristina Arvizu-De León, Donato Luna-Moreno, Melissa Marlene Rodríguez-Delgado and Juan Francisco Villarreal-Chiu
Colorants 2025, 4(2), 18; https://doi.org/10.3390/colorants4020018 - 11 May 2025
Viewed by 424
Abstract
Globally, insect pests adversely affect approximately 75% of the most important crops. However, the widespread use of chemical insecticides has significant drawbacks, including non-specific biological activity, toxicity to humans, detrimental effects on beneficial insects, and the rapid development of resistance. In this context, [...] Read more.
Globally, insect pests adversely affect approximately 75% of the most important crops. However, the widespread use of chemical insecticides has significant drawbacks, including non-specific biological activity, toxicity to humans, detrimental effects on beneficial insects, and the rapid development of resistance. In this context, prodigiosin—a tripyrrolic secondary metabolite produced by various microorganisms—emerges as a promising alternative due to its favourable properties, such as being non-toxic, environmentally safe, non-irritant, and non-allergenic, and having non-carcinogenic potential. Prodigiosin has demonstrated insecticidal efficiency against pests at various developmental stages. Studies suggest that prodigiosin inhibits enzymes like acetylcholine esterase, protease, and acid phosphatase and induces oxidative stress. This review explores the potential of prodigiosin as an eco-friendly insecticide, discussing its production, extraction, and purification processes and its advantages, disadvantages, and mechanism of action, and future perspectives. Special emphasis is given to using non-pathogenic strains to mitigate biosafety concerns. Full article
Show Figures

Figure 1

16 pages, 3401 KiB  
Article
Biochar-Enhanced Sulfur: Mechanistic Insights into a Novel and Effective Bactericide
by Yuanqi Peng, Lezhu Su, Meng Liu, Chen Zeng, Bo Xiang, Zhuoyao Xie, Zijing Hu and Nan Zhou
Nanomaterials 2025, 15(9), 697; https://doi.org/10.3390/nano15090697 - 6 May 2025
Viewed by 273
Abstract
The development of green, efficient, and stable pesticides for controlling agricultural pathogens remains a critical research focus. Elemental sulfur, although widely used for its bactericidal and insecticidal properties, suffers from aggregation, poor dispersibility, and limited contact with target organisms, restricting its effectiveness. In [...] Read more.
The development of green, efficient, and stable pesticides for controlling agricultural pathogens remains a critical research focus. Elemental sulfur, although widely used for its bactericidal and insecticidal properties, suffers from aggregation, poor dispersibility, and limited contact with target organisms, restricting its effectiveness. In this study, we synthesized a novel biochar–sulfur composite by combining sustainable biochar with sulfur at low temperatures. The resulting material exhibited enhanced dispersibility and a five-fold increase in bactericidal efficacy compared to sulfur alone, as demonstrated in tests against R. solanacearum and E. coli. Additionally, the composite maintained 80% efficacy after five cycles of use, highlighting its favorable cyclic performance. Mechanistic studies revealed that biochar accelerates sulfur’s redox reaction, generating free radicals that drive efficient bactericidal action. This work provides a simple and sustainable approach for developing sulfur-based antimicrobial pesticides, offering new opportunities for sulfur utilization in agriculture. Full article
(This article belongs to the Topic Advances in Carbon-Based Materials)
Show Figures

Graphical abstract

20 pages, 6089 KiB  
Review
Influencing Factors, Kinetics, and Pathways of Pesticide Degradation by Chlorine Dioxide and Ozone: A Comparative Review
by Zhaoguo Liu, Riya Jin, Yina Qiao, Jiaoqin Liu, Zengdi He, Mengye Jia and Yu Jiang
Appl. Sci. 2025, 15(9), 5154; https://doi.org/10.3390/app15095154 - 6 May 2025
Viewed by 334
Abstract
In agricultural production, pesticides play an important role in increasing crop yields. However, pesticide residues are caused by improper handling by users during the production process. Chlorine dioxide and ozone, as strong oxidants with similarity in spatial structure, effectively degrade pesticide residues and [...] Read more.
In agricultural production, pesticides play an important role in increasing crop yields. However, pesticide residues are caused by improper handling by users during the production process. Chlorine dioxide and ozone, as strong oxidants with similarity in spatial structure, effectively degrade pesticide residues and are widely used in water treatment and the food industry. In order to better understand the mechanism of chlorine dioxide and ozone on pesticides, the properties of chlorine dioxide and ozone are introduced in this review. Herbicides, insecticides, and fungicides were selected for this study, and the influencing factors, kinetics, and degradation pathways of degraded pesticides are presented. The degradation of pesticides by chlorine dioxide follows the second-order kinetic model, reacting with functional groups with high electron density in pesticides by electron transfer. Ozone selectively undergoes electrophilic reactions with pesticides in solution. In addition, when the reaction system is alkaline, ozone accelerates the decomposition to form hydroxyl radicals (·OH), which react with pesticides. Ozone degradation of pesticides satisfies the pseudo-first-order kinetic model. By comparing the mechanism of pesticide degradation by chlorine dioxide and ozone, this paper provides a theoretical basis for solving the problem of pesticide residues in the food industry and water treatment in the future. Full article
Show Figures

Figure 1

16 pages, 2649 KiB  
Article
Electrophysiological Mechanism and Identification of Effective Compounds of Ginger (Zingiber officinale Roscoe) Shoot Volatiles Against Aphis gossypii Glover (Hemiptera: Aphididae)
by Jiawei Ma, Ye Tian, Xuli Liu, Shengyou Fang, Chong Sun, Junliang Yin, Yongxing Zhu and Yiqing Liu
Horticulturae 2025, 11(5), 490; https://doi.org/10.3390/horticulturae11050490 - 30 Apr 2025
Viewed by 205
Abstract
Aphis gossypii Glover (Homoptera: Aphidinae), a major pest of Chinese pepper (Zanthoxylum bungeanum Maxim), causes significant agricultural damage. Ginger (Zingiber officinale Roscoe) has shown potential as a source for developing botanical pesticides due to its strong bacteriostatic [...] Read more.
Aphis gossypii Glover (Homoptera: Aphidinae), a major pest of Chinese pepper (Zanthoxylum bungeanum Maxim), causes significant agricultural damage. Ginger (Zingiber officinale Roscoe) has shown potential as a source for developing botanical pesticides due to its strong bacteriostatic and insecticidal properties; however, the underlying mechanisms remain poorly understood. This study evaluated the repellent activity of ginger shoot extract (GSE) across four solvent phases—petroleum ether, trichloromethane, ethyl acetate, and methanol—against A. gossypii. The results demonstrated that GSE exhibited significant repellent effects, with the methanol phase showing the most pronounced activity. Twelve fractions were chromatographically separated from the methanol phase, and electroantennography (EAG) analysis revealed that fraction 4 induced strong EAG responses in both winged and wingless aphids. Further identification of active compounds in fraction 4 by gas chromatography–mass spectrometry (GC–MS) indicated the presence of terpenes, aromatics, alkanes, esters, and phenols as major constituents. Subsequent EAG analysis identified several key compounds—octahydro-pentalene (C1), (Z)-cyclooctene (C2), dimethylstyrene (C3), tetramethyl-heptadecane (C5), tetrahydro-naphthalene (C6), and heptacosane (C9)—as responsible for eliciting EAG responses in both aphid forms. Additionally, results from Y-tube olfactometer assays showed that (Z)-cyclooctene and heptacosane were significantly attractive, while octahydro-pentalene acted as a strong repellent to both winged and wingless aphids. These findings offer valuable insights for the development of synthetic attractants and repellents for A. gossypii and provide a theoretical foundation for utilizing ginger in the creation of botanical pesticides targeting this pest. Full article
(This article belongs to the Special Issue Advances in Bioactive Compounds of Horticultural Plants)
Show Figures

Figure 1

14 pages, 1972 KiB  
Article
Larvicidal Potential of Trattinnickia Burserifolia Mart. Essential Oil in Controlling the Malaria Vector in the Amazon
by Gisele Guimarães de Oliveira, Stherfany Mac Donald da Silva, Alessandro Pereira de Souza, Leticia Vieira Anchieta da Silva, Anauara Lima e Silva, Ana Cristina Gonçalves Reis de Melo, Rosemary Aparecida Roque, André Correa de Oliveira, Antonio Alves de Melo Filho and Andreimar Martins Soares
Pharmaceuticals 2025, 18(5), 604; https://doi.org/10.3390/ph18050604 - 22 Apr 2025
Viewed by 407
Abstract
Background: Among major public health problems, malaria stands out as a tropical disease caused by the Plasmodium protozoan, with mosquitoes of the Anopheles genus serving as its vectors. This disease affects a significant portion of the population, with the highest incidence in the [...] Read more.
Background: Among major public health problems, malaria stands out as a tropical disease caused by the Plasmodium protozoan, with mosquitoes of the Anopheles genus serving as its vectors. This disease affects a significant portion of the population, with the highest incidence in the Legal Amazon, a region responsible for 99% of cases. Although vector control strategies, such as the use of chemical insecticides, are commonly employed, mosquito resistance, environmental impacts, and risks to human health are driving the search for natural alternatives, including the application of essential oils. Objectives: This study investigates the larvicidal activity of Trattinnickia burserifolia Mart. essential oil against Anopheles darlingi. Methods: The essential oil was obtained through hydrodistillation, and its chemical composition was identified using gas chromatography–mass spectrometry. The larvicidal assay followed WHO protocols, testing oil concentrations ranging from 20 to 100 µg mL−1. Results: Efficacy was evaluated after 24, 48, and 72 h to determine LC50, LC90, and other parameters. Chemical composition analysis revealed the presence of 40 compounds, primarily terpenes such as tricyclene, β-pinene, limonene, and α-pinene, which possess bioactive properties that contribute to vector control. The larvicidal activity test showed that LC50 decreased with longer exposure times, indica ting increased efficacy over time. After 72 h, the LC50 was 14.51 µg mL−1, classifying the essential oil as highly effective. Conclusions: Therefore, T. burserifolia Mart. essential oil represents a promising natural alternative for malaria vector control. Full article
(This article belongs to the Special Issue Advances in the Chemical-Biological Knowledge of Essential Oils)
Show Figures

Graphical abstract

24 pages, 6165 KiB  
Article
Phytochemical Profiling, Antioxidant Activity, Food Preservation, and Insecticidal Properties of Origanum syriacum and Cymbopogon winterianus Extracts
by Marwa Rammal, Maya Kara, Adnan Badran, Chaden Haidar, Hawraa Zahreddine, Hussein Bassal, Mikhael Bechelany, Mohammad H. El-Dakdouki and Akram Hijazi
Foods 2025, 14(8), 1347; https://doi.org/10.3390/foods14081347 - 14 Apr 2025
Viewed by 460
Abstract
This study examines the phytochemical composition, antioxidant, antifungal, and insecticidal properties of Origanum syriacum (Syrian oregano plant) and Cymbopogon wimterianus (Java citronella plant) extracts. Their potential applications in food preservation and pest control are explored based on their bioactive properties. The phytochemical screening [...] Read more.
This study examines the phytochemical composition, antioxidant, antifungal, and insecticidal properties of Origanum syriacum (Syrian oregano plant) and Cymbopogon wimterianus (Java citronella plant) extracts. Their potential applications in food preservation and pest control are explored based on their bioactive properties. The phytochemical screening indicated a rich presence of secondary metabolites in the extract. The hydrodistillation of plant leaves resulted in an extraction yield of 4.3% Syrian oregano essential oil. The major component of the essential oil was carvacrol (79.30%). The Syrian oregano ethanolic extract contained 110.674 ± 1.842 mg GAE/g total phenols and 52.57 ± 0.086 mg RE/g total flavonoids, and exhibited a high antioxidant activity with a half-maximal inhibitory concentration (IC50) equal to 168.28 μg/mL. Flatbread was prepared with additions of Syrian oregano and Java citronella powders, followed by analysis of moisture content, visual appearance, and sensory characteristics. The results showed that the powders of Syrian oregano and Java citronella have promising food preservative effects. These findings were supported by a significant decrease in fungal growth in several samples and a shelf life extension of one day. The inclusion of a 2% mixture of Syrian oregano and Java citronella powder in the flatbread resulted in the sample receiving the highest overall acceptability mark from consumers, while also extending its shelf life. To assess the insecticidal activity, weevils (Sitophilus granarius L.) were exposed to Syrian oregano and Java citronella essential oils. The insecticidal activity was at its peak when Syrian oregano and Java citronella essential oils were combined resulting in 7% lethal dose (LD50) towards grain weevils. Future research should focus on optimizing extraction methods, evaluating long-term storage effects, and assessing the broader applicability of these extracts in various food products and agricultural settings. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

26 pages, 1038 KiB  
Review
Advances in Stored-Product Pest Management: Combined Effects of Diatomaceous Earths with Botanicals, Insecticides, Entomopathogenic/Plant Pathogenic Fungi, and Silica Gel
by Waqas Wakil, Maria C. Boukouvala, Nickolas G. Kavallieratos, Demeter Lorentha S. Gidari, Anna Skourti and Tahira Riasat
Sustainability 2025, 17(8), 3316; https://doi.org/10.3390/su17083316 - 8 Apr 2025
Viewed by 366
Abstract
Diatomaceous earth (DE) consists of fossilized remnants of diatoms, which are marine or freshwater unicellular algae. Most DEs originate from fossilized sedimentary layers of diatoms deposited in water bodies during the Eocene and Miocene periods, much more than 20 million years ago. Processed [...] Read more.
Diatomaceous earth (DE) consists of fossilized remnants of diatoms, which are marine or freshwater unicellular algae. Most DEs originate from fossilized sedimentary layers of diatoms deposited in water bodies during the Eocene and Miocene periods, much more than 20 million years ago. Processed DE, a soft, chalky powder, is widely used as an insecticide due to the highly absorptive and abrasive nature of its particles. As an insecticide, DE removes the wax coating of the insect epicuticle, the primary barrier against water loss. This results in water evaporation, leading to desiccation and death of the targeted insects. This review emphasizes the co-treatment of DEs with biological agents that have insecticidal properties (e.g., essential oils, plant powders, silica gel, and species/isolates of fungi), reducing the quantities used in single-application treatments and suggesting paths for the sustainable management of insects damaging stored products. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

22 pages, 2237 KiB  
Article
Development and Perfection of Marine-Based Insecticide Biofilm for Pea Seed Protection: Experimental and Computational Approaches
by Fatouma Mohamed Abdoul-Latif, My Ismail El Mhamdi, Ayoub Ainane, Ali Merito Ali, Khadija Oumaskour, Sanaa Cherroud, Stefano Cacciatore and Tarik Ainane
Molecules 2025, 30(7), 1621; https://doi.org/10.3390/molecules30071621 - 4 Apr 2025
Viewed by 354
Abstract
This work aims to develop an insecticidal biofilm based on Calothrixin A, collagen, and chitosan for the protection of pea seeds. The main objective is to improve the ingredient concentrations maximizing the insecticidal activity of the biofilm and to study the desorption of [...] Read more.
This work aims to develop an insecticidal biofilm based on Calothrixin A, collagen, and chitosan for the protection of pea seeds. The main objective is to improve the ingredient concentrations maximizing the insecticidal activity of the biofilm and to study the desorption of Calothrixin A according to the diffusion parameters. Eight biofilm formulations were prepared with different concentrations of the components and tested on Sitona lineatus and Bruchus pisorum. The results show that a high concentration of Calothrixin A tended to increase insecticidal activity, although this increase was not always significant, while a higher concentration of collagen and chitosan reduced insecticidal activity, probably by limiting the diffusion of the active ingredient. The prediction models for insecticidal activity showed that the interaction of the factors had no significant impact on the responses, but the model for Sitona lineatus presented better accuracy. The diffusion tests revealed that the CB3C-5 biofilm, with high diffusion parameters, correlated with insecticidal activity. The characterization of the CB3C-5 biofilm showed adequate physical, mechanical, thermal, and structural properties for agricultural seed storage application. Moreover, the computational approach showed that Calothrixin A interacts more efficiently with the OR5-Orco complex than with the small OBP, disrupting the olfactory detection of insects. This mechanism highlights the targeting of the olfactory complex as a potential strategy to control insect pests. This research contributes to the understanding of the role of marine-based biofilms for seed protection and opens perspectives for the development of ecological solutions against insect pests, particularly in the field of sustainable agriculture. Full article
Show Figures

Figure 1

9 pages, 1803 KiB  
Article
Effects of Temperature and Bacillus velezensis on the Development, Longevity, and Reproduction of Culex quinquefasciatus
by Abdullah A. Alomar
Biology 2025, 14(4), 357; https://doi.org/10.3390/biology14040357 - 30 Mar 2025
Viewed by 382
Abstract
Temperature is a key environmental factor that influences mosquito phenotypic traits and the effectiveness of vector control strategies. Bacillus velezensis (Bv) has shown promise as a microbial biocontrol agent due to its insecticidal properties; however, its effects on mosquitoes under different [...] Read more.
Temperature is a key environmental factor that influences mosquito phenotypic traits and the effectiveness of vector control strategies. Bacillus velezensis (Bv) has shown promise as a microbial biocontrol agent due to its insecticidal properties; however, its effects on mosquitoes under different environmental conditions are still unexplored. This study investigated the effects of Bv (strain WHk23) exposure on the life history traits of Culex quinquefasciatus at two temperature conditions (20 °C and 30 °C), focusing on development, longevity, and reproductive fitness. Results showed that temperature significantly affected mosquito development and longevity, with faster development and shorter adult longevity observed at 30 °C compared to 20 °C. Exposure to Bv further accelerated larval development and reduced adult emergence, with the effects being more pronounced at 30 °C than at 20 °C. Exposure to Bv reduced adult longevity regardless of temperature. In addition, Bv-exposed females had larger body sizes but lower fecundity and fertility, suggesting that Bv exposure may cause physiological stress that disrupts reproductive processes. These findings highlight the importance of considering environmental factors in mosquito control programs while reinforcing the efficacy of Bv as a sustainable biocontrol agent under a variety of environmental conditions. Full article
Show Figures

Figure 1

Back to TopTop