Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = instant water use efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1862 KB  
Article
Yield and Plant Gas Exchange in Perennial Biomass Crops (BPGs) Under Different Water Regimes
by Elena Crapio, Sebastiano Andrea Corinzia, Alessandra Piccitto, Salvatore Luciano Cosentino and Giorgio Testa
Agronomy 2025, 15(8), 2007; https://doi.org/10.3390/agronomy15082007 - 21 Aug 2025
Viewed by 335
Abstract
The increasing demand for renewable energy, coupled with the urgent challenges posed by climate change, has positioned perennial biomass crops (BPGs) as essential and sustainable alternatives for bioenergy production. This study investigated the impact of irrigation regimes on the physiological performance of three [...] Read more.
The increasing demand for renewable energy, coupled with the urgent challenges posed by climate change, has positioned perennial biomass crops (BPGs) as essential and sustainable alternatives for bioenergy production. This study investigated the impact of irrigation regimes on the physiological performance of three BPG species—Arundo donax L., Saccharum spontaneum, and Miscanthus—with a focus on leaf gas exchange (net assimilation rate and transpiration rate) and instantaneous water use efficiency (iWUE) at varying levels of irrigation input, adopting a split-plot experimental design under the Mediterranean climatic conditions of Sicily (Italy). The results clearly showed that A. donax, a C3 species, outperformed the C4 species S. spontaneum and Miscanthus, exhibiting significantly higher stomatal conductance and net photosynthesis, especially under irrigated conditions. S. spontaneum demonstrated the highest iWUE, particularly in rainfed treatments, reflecting its efficient use of water. Miscanthus showed the greatest sensitivity to water stress, with a more pronounced decline in photosynthesis during drought periods. This study accentuated the role of effective water management and genotype selection in optimizing biomass yield and resource efficiency, providing valuable insights for improving crop productivity in Mediterranean and other semi-arid regions. Full article
Show Figures

Figure 1

21 pages, 1902 KB  
Article
Mobile Platform for Continuous Screening of Clear Water Quality Using Colorimetric Plasmonic Sensing
by Rima Mansour, Caterina Serafinelli, Rui Jesus and Alessandro Fantoni
Information 2025, 16(8), 683; https://doi.org/10.3390/info16080683 - 10 Aug 2025
Viewed by 369
Abstract
Effective water quality monitoring is very important for detecting pollution and protecting public health. However, traditional methods are slow, relying on costly equipment, central laboratories, and expert staffing, which delays real-time measurements. At the same time, significant advancements have been made in the [...] Read more.
Effective water quality monitoring is very important for detecting pollution and protecting public health. However, traditional methods are slow, relying on costly equipment, central laboratories, and expert staffing, which delays real-time measurements. At the same time, significant advancements have been made in the field of plasmonic sensing technologies, making them ideal for environmental monitoring. However, their reliance on large, expensive spectrometers limits accessibility. This work aims to bridge the gap between advanced plasmonic sensing and practical water monitoring needs, by integrating plasmonic sensors with mobile technology. We present BioColor, a mobile platform that consists of a plasmonic sensor setup, mobile application, and cloud services. The platform processes captured colorimetric sensor images in real-time using optimized image processing algorithms, including region-of-interest segmentation, color extraction (mean and dominant), and comparison via the CIEDE2000 metric. The results are visualized within the mobile app, providing instant and automated access to the sensing outcome. In our validation experiments, the system consistently measured color differences in various sensor images captured under media with different refractive indices. A user experience test with 12 participants demonstrated excellent usability, resulting in a System Usability Scale (SUS) score of 93. The BioColor platform brings advanced sensing capabilities from hardware into software, making environmental monitoring more accessible, efficient, and continuous. Full article
(This article belongs to the Special Issue Optimization Algorithms and Their Applications)
Show Figures

Figure 1

35 pages, 2556 KB  
Article
Technical Trends, Radical Innovation, and the Economics of Sustainable, Industrial-Scale Electric Heating for Energy Efficiency and Water Savings
by A. A. Vissa and J. A. Sekhar
Sustainability 2025, 17(13), 5916; https://doi.org/10.3390/su17135916 - 27 Jun 2025
Viewed by 1201
Abstract
This article examines the energy efficiency and climate impact of various heating methods commonly employed across industrial sectors. Fossil fuel combustion heat sources, which are predominantly employed for industrial heating, contribute significantly to atmospheric pollution and associated asset losses. The electrification of industrial [...] Read more.
This article examines the energy efficiency and climate impact of various heating methods commonly employed across industrial sectors. Fossil fuel combustion heat sources, which are predominantly employed for industrial heating, contribute significantly to atmospheric pollution and associated asset losses. The electrification of industrial heating has the potential to substantially reduce the total energy consumed in industrial heating processes and significantly mitigate the rate of global warming. Advances in electrical heating technologies are driven by enhanced energy conversion, compactness, and precision control capabilities, ensuring attractive financial payback periods for clean, energy-efficient equipment. These advancements stem from the use of improved performance materials, process optimization, and waste heat utilization practices, particularly at high temperatures. The technical challenges associated with large-scale, heavy-duty electric process heating are addressed through the novel innovations discussed in this article. Electrification and the corresponding energy efficiency improvements reduce the water consumed for industrial steam requirements. The article reviews new technologies that replace conventional process gas heaters and pressure boilers with efficient electric process gas heaters and instant steam generators, operating in the high kilowatt and megawatt power ranges with very high-temperature capabilities. Financial payback calculations for energy-optimized processes are illustrated with examples encompassing a range of comparative energy costs across various temperatures. The economics and implications of waste heat utilization are also examined in this article. Additionally, the role of futuristic, radical technical innovations is evaluated as a sustainable pathway that can significantly lower energy consumption without compromising performance objectives. The potential for a new paradigm of self-organization in processes and final usage objectives is briefly explored for sustainable innovations in thermal engineering and materials development. The policy implications and early adoption of large-scale, energy-efficient thermal electrification are discussed in the context of temperature segmentation for industrial-scale processes and climate-driven asset losses. Policy shifts towards incentivizing energy efficiency at the manufacturing level of heater use are recommended as a pathway for deep decarbonization. Full article
Show Figures

Figure 1

27 pages, 9022 KB  
Article
The Effects of AI-Supported Autonomous Irrigation Systems on Water Efficiency and Plant Quality: A Case Study of Geranium psilostemon Ledeb
by Gülcay Ercan Oğuztürk, Caner Murat, Meryem Yurtseven and Türker Oğuztürk
Plants 2025, 14(5), 770; https://doi.org/10.3390/plants14050770 - 3 Mar 2025
Cited by 7 | Viewed by 2931
Abstract
This study investigates the effects of an AI-supported irrigation system on the production of natural plant species and irrigation efficiency at Rize Recep Tayyip Erdoğan University. To enhance water resource efficiency while utilizing Turkey’s rich plant diversity, Geranium psilostemon Ledeb. (Black-Eyed Crane’s-Bill) was [...] Read more.
This study investigates the effects of an AI-supported irrigation system on the production of natural plant species and irrigation efficiency at Rize Recep Tayyip Erdoğan University. To enhance water resource efficiency while utilizing Turkey’s rich plant diversity, Geranium psilostemon Ledeb. (Black-Eyed Crane’s-Bill) was selected for cultivation. The research includes adaptation trials and growth monitoring of this perennial taxon, which naturally grows at an altitude of 2000 m. The experiments were conducted in two different environments: one utilizing an AI-supported irrigation system and the other relying on manual irrigation. The findings reveal that AI-supported irrigation systems optimize irrigation strategies, providing a more efficient and effective plant cultivation process compared to manual irrigation. The AI-supported irrigation system continuously monitors air and soil moisture levels, ensuring optimal irrigation conditions and instant adaptation to seasonal variations. This innovative approach minimizes water losses while preventing soil salinization, thereby offering a significant solution for sustainable agricultural practices. In conclusion, this study demonstrates that natural plant species can be effectively cultivated using AI-supported irrigation systems and that these systems hold great potential for water conservation and ecological balance. These findings present a crucial step toward developing effective solutions for global water challenges and promoting sustainable landscape and agricultural practices. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

14 pages, 4004 KB  
Article
Instant Degradation of Organic Dyes in Contaminated Rivers Using Iron-Doped Zinc Quaternary-Based Quantum Dots Nanocatalyst
by Nande Mgedle and Oluwatobi Samuel Oluwafemi
Reactions 2024, 5(4), 999-1012; https://doi.org/10.3390/reactions5040052 - 1 Dec 2024
Viewed by 974
Abstract
Organic dyes such as methylene blue (MB) and rhodamine 6G (Rh 6G), when dissolved in water, pose a serious threat to the environment, humans, and aquatic life. In this study, we report the synthesis of Fe-doped ZnCuInS/ZnS core/shell quantum dots (FeZCIS/ZnS QDs) in [...] Read more.
Organic dyes such as methylene blue (MB) and rhodamine 6G (Rh 6G), when dissolved in water, pose a serious threat to the environment, humans, and aquatic life. In this study, we report the synthesis of Fe-doped ZnCuInS/ZnS core/shell quantum dots (FeZCIS/ZnS QDs) in aqueous solution by varying the iron concentrations (0%, 1%, 3%, 5%, 7%, and 10%) for the instant removal of these organic pollutants in contaminated water. The as-synthesized FeZCIS/ZnS QDs were negatively charged and spherical in shape with a diameter of 2.97 nm ± 0.73 nm. Furthermore, it showed improved quantum yield (QYs) compared to the undoped with an average lifetime of 37.15 ns (3% Fe-doped QDs). The undoped ZCIS/ZnS QDs showed percentage removal efficiency of 94.42% and 93.97% for MB and Rh 6G in contaminated deionized water, respectively, and 90.73% (MB) and 1.28% (Rh 6G), respectively, in contaminated rivers. However, the 3% FeZCIS/ZnS QDs showed a percentage removal efficiency of 99.94% and 95.79% for MB and Rh 6G in contaminated deionized water, respectively, and 91.42% and 11.11%, respectively, in rivers contaminated with the dyes. Increasing the concentration of the nanocatalyst to 4 mg/mL improved the removal efficiency of Rh 6G in contaminated rivers to 93.28% and 94.40% using ZCIS/ZnS QDs and FeZCIS/ZnS QDs, respectively. Full article
Show Figures

Graphical abstract

30 pages, 11351 KB  
Article
Rapid Immobilisation of Chemical Reactions in Alkali-Activated Materials Using Solely Microwave Irradiation
by Anže Tesovnik and Barbara Horvat
Minerals 2024, 14(12), 1219; https://doi.org/10.3390/min14121219 - 29 Nov 2024
Cited by 1 | Viewed by 1960
Abstract
Efflorescence, a time-dependent and water-driven phenomenon, is a major concern in alkali-activated materials (AAMs), impacting their practical use and preservation in a time-frozen state for post-characterisation. Although a method for stopping chemical reactions in conventional cements exists, it is time-consuming and not chemical-free. [...] Read more.
Efflorescence, a time-dependent and water-driven phenomenon, is a major concern in alkali-activated materials (AAMs), impacting their practical use and preservation in a time-frozen state for post-characterisation. Although a method for stopping chemical reactions in conventional cements exists, it is time-consuming and not chemical-free. Therefore, this study explored the effects of low-power microwave-induced dehydration on efflorescence, mechanical performance, and structural integrity in AAMs, to create an alternative and more “user-friendly” dehydration method. For this purpose, several mixtures based on secondary raw (slag, fly ash, glass wool, and rock wool) and non-waste (metakaolin) materials were activated with a commercial Na-silicate solution in ratios that promoted or prevented efflorescence. Characterisation techniques, including Fourier-transform infrared spectroscopy and X-ray diffraction, showed that microwave dehydration effectively removed water without altering crystallinity, while mercury intrusion porosimetry and compressive strength tests confirmed increased porosity. In addition to being an efficient, time-saving, and solvent-free manner of stopping the reactions in AAMs, microwave irradiation emerged as an innovative, chemical-free method for evaluating curing finalisation and engineering foams in a stage when all other existing methods fail. However, the artificially provoked efflorescence in aged dehydrated AAMs connected the slipperiness of AAM with the instant extraction of Na, which raised the need for further research into alternative alkali replacements to evaluate the practical use of AAM. Full article
(This article belongs to the Special Issue Alkali Activation of Clay-Based Materials)
Show Figures

Graphical abstract

20 pages, 3631 KB  
Article
Yield Response and Leaf Gas Exchange of Sicilian Wheat Landraces
by Sebastiano Andrea Corinzia, Paolo Caruso, Alessio Scandurra, Umberto Anastasi, Salvatore Luciano Cosentino and Giorgio Testa
Agronomy 2024, 14(5), 1038; https://doi.org/10.3390/agronomy14051038 - 13 May 2024
Cited by 4 | Viewed by 1477
Abstract
Wheat landraces are traditional varieties that have evolved over generations in response to local environments and farming practices and therefore exhibit remarkable adaptability to challenging climatic conditions and low-input farming systems. While the suitability of Mediterranean landraces to non-optimal climatic conditions during anthesis [...] Read more.
Wheat landraces are traditional varieties that have evolved over generations in response to local environments and farming practices and therefore exhibit remarkable adaptability to challenging climatic conditions and low-input farming systems. While the suitability of Mediterranean landraces to non-optimal climatic conditions during anthesis and grain ripening stage have been previously assessed, the role of photosynthesis efficiency and stomatal control on this resilience remains unexplored. This study aims to evaluate the relationship between grain yield and the post-anthesis flag leaf gas exchanges of Sicilian wheat landraces under irrigated and rainfed conditions and to compare these traits to modern durum (Triticum turgidum subsp. durum) and bread wheat (T. aestivum) varieties. Results indicate that wheat landraces respond to water availability similarly to modern varieties, reducing stomatal conductance by 26.8% and net photosynthesis by 18.1% under rainfed conditions, resulting in 10.6% lower grain yield compared to irrigated conditions. However, some landraces demonstrate comparable or even higher flag leaf net photosynthesis rates and lower transpiration levels, leading to higher yields in both rainfed and irrigated conditions, confirming their value as a source of gene pool for wheat breeding programs in drought-prone Mediterranean regions. Full article
Show Figures

Figure 1

20 pages, 44617 KB  
Article
Pull-Out Resistance of Rebar Stake Depending on Installation Conditions and Compaction Levels of Agricultural Soil
by Giseok Heo, Inhyeok Choi, Jinyoung Lee, Heedu Lee, Seongyoon Lim and Dongyoup Kwak
Horticulturae 2024, 10(3), 277; https://doi.org/10.3390/horticulturae10030277 - 13 Mar 2024
Cited by 1 | Viewed by 2124
Abstract
Strong winds, particularly in the absence of disaster-resistant designs, significantly impact the stability of greenhouse foundations and eventually lead to structural damage and potential harm to crops. As a countermeasure, rebar stakes are commonly used to reinforce the foundations of non-disaster-resistant greenhouses. This [...] Read more.
Strong winds, particularly in the absence of disaster-resistant designs, significantly impact the stability of greenhouse foundations and eventually lead to structural damage and potential harm to crops. As a countermeasure, rebar stakes are commonly used to reinforce the foundations of non-disaster-resistant greenhouses. This study evaluates the pull-out resistance (Rpull-out) of rebar stakes considering various factors like soil compaction, embedded length, installation duration and angle, and changes in soil water content against uplift pressure by strong winds. A combination of field (i.e., the cone penetration test and rebar stake pull-out test) and laboratory (i.e., the compaction test, soil compaction meter test, and soil box test) tests are performed for the assessment of Rpull-out. The results indicate that Rpull-out increases with higher soil compaction, greater embedded length, longer installation duration, and an inclined installation angle. The soil compaction exerts the most significant impact; 90% to 100% of the soil compaction rate has approximately 10 folds higher Rpull-out than the 60–70% compaction rate. If the embedded length is increased from 20 cm to 40 cm, there is a two-fold increase in the average of Rpull-out. Inclined installation of rebar stakes increases Rpull-out by 250% to 350% compared to vertical installation, and rebar stakes installed prior to the uplift event have 1.5 to 6.4 fold increases in Rpull-out than those with instant installation. Additionally, we observed variations in the surface soil moisture due to climatic changes introducing variability in Rpull-out. These findings lead to the proposition of efficient rebar stake installation methods, contributing to the enhanced stability of a greenhouse. Full article
Show Figures

Graphical abstract

15 pages, 3007 KB  
Article
A Personalized and Smart Flowerpot Enabled by 3D Printing and Cloud Technology for Ornamental Horticulture
by Yecheng Li, Jiaxing Luo, Zixuan Liu, Daosheng Wu and Cheng Zhang
Sensors 2023, 23(13), 6116; https://doi.org/10.3390/s23136116 - 3 Jul 2023
Cited by 1 | Viewed by 3984
Abstract
This paper presents a personalized and smart flowerpot for ornamental horticulture, integrating 3D printing and cloud technology to address existing design limitations and enable real-time monitoring of environmental parameters in plant cultivation. While 3D printing and cloud technology have seen widespread adoption across [...] Read more.
This paper presents a personalized and smart flowerpot for ornamental horticulture, integrating 3D printing and cloud technology to address existing design limitations and enable real-time monitoring of environmental parameters in plant cultivation. While 3D printing and cloud technology have seen widespread adoption across industries, their combined application in agriculture, particularly in ornamental horticulture, remains relatively unexplored. To bridge this gap, we developed a flowerpot that maximizes space utilization, simplicity, personalization, and aesthetic appeal. The shell was fabricated using fused deposition modeling (FDM) in 3D printing, and an Arduino-based control framework with sensors was implemented to monitor critical growth factors such as soil moisture, temperature, humidity, and light intensity. Real-time data are transmitted to the Bamfa Cloud through Wi-Fi, and a mobile application provides users with instant access to data and control over watering and lighting adjustments. Our results demonstrate the effectiveness of the smart flowerpot in enabling automated monitoring of plant growth and environmental control. This innovation holds significant promise for advancing smart device development in ornamental horticulture and other related fields, enhancing efficiency, plant health, and overall user experience. Future research in this area has the potential to revolutionize horticultural practices and contribute to the advancement of smart agriculture. Full article
(This article belongs to the Special Issue Smart Machinery and Control System for Precision Agriculture)
Show Figures

Figure 1

17 pages, 4172 KB  
Article
Preparation and Characteristics of Polyethylene Oxide/Curdlan Nanofiber Films by Electrospinning for Biomedical Applications
by Shu-Hung Lin, Sin-Liang Ou, Hung-Ming Hsu and Jane-Yii Wu
Materials 2023, 16(10), 3863; https://doi.org/10.3390/ma16103863 - 20 May 2023
Cited by 8 | Viewed by 2175
Abstract
In this study, polyethylene oxide (PEO) and curdlan solutions were used to prepare PEO/curdlan nanofiber films by electrospinning using deionized water as the solvent. In the electrospinning process, PEO was used as the base material, and its concentration was fixed at 6.0 wt.%. [...] Read more.
In this study, polyethylene oxide (PEO) and curdlan solutions were used to prepare PEO/curdlan nanofiber films by electrospinning using deionized water as the solvent. In the electrospinning process, PEO was used as the base material, and its concentration was fixed at 6.0 wt.%. Moreover, the concentration of curdlan gum varied from 1.0 to 5.0 wt.%. For the electrospinning conditions, various operating voltages (12–24 kV), working distances (12–20 cm) and feeding rates of polymer solution (5–50 μL/min) were also modified. Based on the experimental results, the optimum concentration for the curdlan gum was 2.0 wt.%. Additionally, the most suitable operating voltage, working distance and feeding rate for the electrospinning process were 19 kV, 20 cm and 9 μL/min, respectively, which can help to prepare relatively thinner PEO/curdlan nanofibers with higher mesh porosity and without the formation of beaded nanofibers. Finally, the PEO/curdlan nanofiber instant films containing 5.0 wt.% quercetin inclusion complex were used to perform wetting and disintegration processes. It was found that the instant film can be dissolved significantly on the low-moisture wet wipe. On the other hand, when the instant film touched water, it can be disintegrated very quickly within 5 s, and the quercetin inclusion complex was dissolved in water efficiently. Furthermore, when the instant film encountered the water vapor at 50 °C, it almost completely disintegrated after immersion for 30 min. The results indicate that the electrospun PEO/curdlan nanofiber film is highly feasible for biomedical applications consisting of instant masks and quick-release wound dressings, even in the water vapor environment. Full article
Show Figures

Figure 1

17 pages, 2180 KB  
Article
Simulation and Exergoeconomic Analysis of a Trigeneration System Based on Biofuels from Spent Coffee Grounds
by Diana L. Tinoco Caicedo, Myrian Santos Torres, Medelyne Mero-Benavides, Oscar Patiño Lopez, Alexis Lozano Medina and Ana M. Blanco Marigorta
Energies 2023, 16(4), 1816; https://doi.org/10.3390/en16041816 - 11 Feb 2023
Cited by 7 | Viewed by 2512
Abstract
Biofuels have become a source of renewable energy to offset the use of fossil fuels and meet the demand for electricity, heat, and cooling in the industrial sector. This study aims to (a) develop a simulation of a trigeneration system based on a [...] Read more.
Biofuels have become a source of renewable energy to offset the use of fossil fuels and meet the demand for electricity, heat, and cooling in the industrial sector. This study aims to (a) develop a simulation of a trigeneration system based on a gas turbine cycle and an absorption chiller unit, using biomass and syngas from spent coffee grounds (SCGs) to replace the conventional system currently supplying the energy requirements of an instant coffee plant located in Guayaquil, Ecuador, and (b) carry out an exergoeconomic analysis of the simulated system to compare the effects of different fuels. The results showed an increase in the exergetic efficiency from 51.9% to 84.5% when using a trigeneration system based on biomass instead of the conventional non-integrated system. Furthermore, the biomass-based system was found to have the lowest operating costs ($154.7/h) and the lowest heating, cooling, and power costs ($10.3/GJ, $20.2/GJ, and $23.4/GJ, respectively). Therefore, the results of this analysis reveal that using SCGs as biofuel in this instant coffee plant is feasible for producing steam, chilled water, and power. Full article
(This article belongs to the Special Issue Sustainable Energy from Biomass and Waste)
Show Figures

Figure 1

16 pages, 2531 KB  
Article
Variation in Leaf Type, Canopy Architecture, and Light and Nitrogen Distribution Characteristics of Two Winter Wheat (Triticum aestivum L.) Varieties with High Nitrogen-Use Efficiency
by Zhiyong Zhang, Saijun Xu, Qiongru Wei, Yuxiu Yang, Huqiang Pan, Xinlu Fu, Zehua Fan, Butan Qin, Xiaochun Wang, Xinming Ma and Shuping Xiong
Agronomy 2022, 12(10), 2411; https://doi.org/10.3390/agronomy12102411 - 5 Oct 2022
Cited by 7 | Viewed by 3078
Abstract
Studies of traits related to nitrogen (N)-use efficiency (NUE) in wheat cultivars are important for breeding N-efficient cultivars. Canopy structure has a major effect on NUE, as it determines the distribution of light and N. However, the mechanism by which canopy structure affects [...] Read more.
Studies of traits related to nitrogen (N)-use efficiency (NUE) in wheat cultivars are important for breeding N-efficient cultivars. Canopy structure has a major effect on NUE, as it determines the distribution of light and N. However, the mechanism by which canopy structure affects the distribution of light and N within the canopy remains unclear. The N-efficient winter wheat varieties YM49 and ZM27 and N-inefficient winter wheat varieties XN509 and AK58 were grown in the field under two N levels. Light transmittance was enhanced, and the leaf area index and photosynthetically active radiation were lower in the N-efficient cultivar population, which was characterized by moderately sized flag leaves, a low frequency of canopy leaf curling, a low light attenuation coefficient (KL), and high plant compactness. Reductions in the amount of shade increased the distribution of light and N resources to the middle and lower layers. The photosynthetic rate, transpiration rate, instant water-use efficiency, and canopy photosynthetic NUE were higher, N remobilization of the upper and middle canopy leaves was reduced, and the leaf N content was high in the N-efficient cultivars. A higher ratio of the N extinction coefficient (KN) to KL reflects the assimilation ability of the N-efficient winter wheat cultivars, resulting in improved canopy structure and distribution of light and N, higher 1000-grain weight and grain yield, and significantly increased light and NUE. An improved match between gradients of light and N in the leaf canopy promotes balanced C and N metabolism and reduces energy and nutrient losses. This should be a goal when breeding N-efficient wheat cultivars and implementing tillage regimes. Full article
(This article belongs to the Special Issue Multiple Cropping Systems for Improving Crop Yield and Soil Quality)
Show Figures

Figure 1

28 pages, 5719 KB  
Article
Efficient IoT-Based Control for a Smart Subsurface Irrigation System to Enhance Irrigation Management of Date Palm
by Maged Mohammed, Khaled Riad and Nashi Alqahtani
Sensors 2021, 21(12), 3942; https://doi.org/10.3390/s21123942 - 8 Jun 2021
Cited by 55 | Viewed by 9249
Abstract
Drought is the most severe problem for agricultural production, and the intensity of this problem is increasing in most cultivated areas around the world. Hence improving water productivity is the primary purpose of sustainable agriculture. This study aimed to use cloud IoT solutions [...] Read more.
Drought is the most severe problem for agricultural production, and the intensity of this problem is increasing in most cultivated areas around the world. Hence improving water productivity is the primary purpose of sustainable agriculture. This study aimed to use cloud IoT solutions to control a modern subsurface irrigation system for improving irrigation management of date palms in arid regions. To achieve this goal, we designed, constructed, and validated the performance of a fully automated controlled subsurface irrigation system (CSIS) to monitor and control the irrigation water amount remotely. The CSIS is based on an autonomous sensors network to instantly collect the climatic parameters and volumetric soil water content in the study area. Therefore, we employed the ThingSpeak cloud platform to host sensor readings, perform algorithmic analysis, instant visualize the live data, create event-based alerts to the user, and send instructions to the IoT devices. The validation of the CSIS proved that automatically irrigating date palm trees controlled by the sensor-based irrigation scheduling (S-BIS) is more efficient than the time-based irrigation scheduling (T-BIS). The S-BIS provided the date palm with the optimum irrigation water amount at the opportune time directly in the functional root zone. Generally, the S-BIS and T-BIS of CSIS reduced the applied irrigation water amount by 64.1% and 61.2%, respectively, compared with traditional surface irrigation (TSI). The total annual amount of applied irrigation water for CSIS with S-BIS method, CSIS with T-BIS method, and TSI was 21.04, 22.76, and 58.71 m3 palm−1, respectively. The water productivity at the CSIS with S-BIS (1.783 kg m−3) and T-BIS (1.44 kg m−3) methods was significantly higher compared to the TSI (0.531 kg m−3). The CSIS with the S-BIS method kept the volumetric water content in the functional root zone next to the field capacity compared to the T-BIS method. The deigned CSIS with the S-BIS method characterized by the positive impact on the irrigation water management and enhancement on fruit yield of the date palm is quite proper for date palm irrigation in the arid regions. Full article
(This article belongs to the Special Issue IoT for Smart Agriculture)
Show Figures

Figure 1

6 pages, 959 KB  
Proceeding Paper
Green Optimization of Glutaraldehyde Vapor-Based Crosslinking on Poly(Vinyl Alcohol)/Cellulose Acetate Electrospun Mats for Applications as Chronic Wound Dressings
by Marta A. Teixeira, Joana C. Antunes, M. Teresa P. Amorim and Helena P. Felgueiras
Proceedings 2021, 69(1), 30; https://doi.org/10.3390/CGPM2020-07193 - 4 Nov 2020
Cited by 8 | Viewed by 2738
Abstract
In the last years, chronic wounds have become more prevalent, leading to a huge burden on the healthcare and social systems by requiring specialized protection. Indeed, wound dressings capable of assisting in the healing process are in urgent need. To that effect, nanofibrous [...] Read more.
In the last years, chronic wounds have become more prevalent, leading to a huge burden on the healthcare and social systems by requiring specialized protection. Indeed, wound dressings capable of assisting in the healing process are in urgent need. To that effect, nanofibrous dressings with a structure resembling the extracellular matrix have been engineered by electrospinning from combinations of poly(vinyl alcohol) (PVA) and cellulose acetate (CA) and optimized to endure physiological media contact and mechanical stress after crosslinking. Mats were prepared at different PVA/CA ratios, 100/0, 90/10 and 80/20 v/v%, at 10 w/v% concentration in acetic acid and water in a 75/25 v/v% proportion and processed via electrospinning. Processing conditions were optimized to obtain uniform, continuous, bead free mats, with a flexible structure. The instant solubilization of the PVA portion of the mat in aqueous media was surpassed via crosslinking. Even though there are many chemical agents available to accomplish such task, glutaraldehyde (GA) is by far the most common due to its efficiency, ease of access and processing, and low cost. Further, in its vapor form, GA has demonstrated reduced or no cytotoxic effects. The amount of GA, crosslinking time, temperature, and drying procedure were optimized to guarantee mechanically resilient mats by means of the greenest methodology possible. Indeed, it was determined that GA vapor at 25% in water could be applied for 7 h at 60 °C, using 6 mL of solution, in a 130 × 120 mm2 mat with optimal results. All traces of GA were then eliminated from the mats in a controlled environment (41% relative-humidity and 19 °C). In the end, it was seen that the mechanical resilience and thermal stability of the mats were improved after the application of the modified, green GA-based crosslinking, revealing the engineered methodology potential for applications in biomedical devices. Full article
Show Figures

Figure 1

26 pages, 1614 KB  
Review
Trends and Challenges in Irrigation Scheduling in the Semi-Arid Area of Spain
by Irene Fernández García, Sergio Lecina, M. Carmen Ruiz-Sánchez, Juan Vera, Wenceslao Conejero, María R. Conesa, Alfonso Domínguez, José J. Pardo, Bruno C. Léllis and Pilar Montesinos
Water 2020, 12(3), 785; https://doi.org/10.3390/w12030785 - 12 Mar 2020
Cited by 79 | Viewed by 11095
Abstract
A growing international human population and rising living standards are increasing the demand for agricultural products. Under higher pressure over natural resources, environmental concerns are increasing as well, challenging current water use decision-making processes in irrigated agriculture. Higher agricultural productivity means water should [...] Read more.
A growing international human population and rising living standards are increasing the demand for agricultural products. Under higher pressure over natural resources, environmental concerns are increasing as well, challenging current water use decision-making processes in irrigated agriculture. Higher agricultural productivity means water should be applied more efficiently, which requires instant information on weather, soil, and plant conditions throughout the growing season. An information-based irrigation scheduling application tightened to the spatiotemporal variability of the fields is critical for enhancing the current irrigation system and making better irrigation scheduling decisions. The aim of this study is to review current irrigation scheduling methodologies based on two case studies (woody and field crops) located in semi-arid areas of Southeast Spain. We realize that optimal irrigation programming requires consistent investment in equipment, expenditure on operation and maintenance, and qualified technical and maintenance services. These technological approaches will be worthwhile in farms with low water availability, high profitability, and significant technical-economic capacity. Full article
(This article belongs to the Special Issue Optimization of Irrigation Scheduling: Challenges and Perspectives)
Show Figures

Figure 1

Back to TopTop