Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (842)

Search Parameters:
Keywords = instrumented particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1611 KB  
Review
Blazars as Probes for Fundamental Physics
by Giorgio Galanti
Universe 2025, 11(10), 327; https://doi.org/10.3390/universe11100327 - 27 Sep 2025
Viewed by 125
Abstract
Blazars are a class of active galactic nuclei characterized by having one of their relativistic jets oriented close to our line of sight. Their broad emission spectrum makes them exceptional laboratories for probing fundamental physics. In this review, we explore the potential impact [...] Read more.
Blazars are a class of active galactic nuclei characterized by having one of their relativistic jets oriented close to our line of sight. Their broad emission spectrum makes them exceptional laboratories for probing fundamental physics. In this review, we explore the potential impact on blazar observations of three scenarios beyond the standard paradigm: (i) the hadron beam model, (ii) the interaction of photons with axion-like particles (ALPs), and (iii) Lorentz invariance violation. We focus on the very-high-energy spectral features these scenarios induce in the blazars Markarian 501 and 1ES 0229+200, making them ideal targets for testing such effects. Additionally, we examine ALP-induced effects on the polarization of UV-X-ray and high-energy photons from the blazar OJ 287. The unique signatures produced by these models are accessible to current and upcoming instruments—such as the ASTRI Mini Array, CTAO, LHAASO, IXPE, COSI, and AMEGO—offering new opportunities to probe and constrain fundamental physics through blazar observations. Full article
(This article belongs to the Special Issue Multi-wavelength Properties of Active Galactic Nuclei)
Show Figures

Figure 1

10 pages, 1581 KB  
Article
A Simple, Highly Sensitive, and Highly Specific Dot-Blot-Based Immunoassay for Serodiagnosis of HTLV-1 in Resource-Limited Settings
by Haohan Zhuang, Shanhai Ou, Lixing Wang and Hongzhi Gao
Trop. Med. Infect. Dis. 2025, 10(10), 279; https://doi.org/10.3390/tropicalmed10100279 - 26 Sep 2025
Viewed by 214
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the first identified human retrovirus, is associated with adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The lack of effective antiviral therapies or vaccines highlights the critical importance of early diagnosis in managing HTLV-1-associated [...] Read more.
Human T-cell leukemia virus type 1 (HTLV-1), the first identified human retrovirus, is associated with adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The lack of effective antiviral therapies or vaccines highlights the critical importance of early diagnosis in managing HTLV-1-associated diseases. However, current commercial immunoassays, including enzyme immunoassays, line immunoassays, particle agglutination tests, and Western blots, are often limited by the need for specialized equipment and high costs, which restrict their accessibility in resource-poor regions. To address these challenges, we developed a novel dot-blot immunoassay using HTLV-1 P19 and GP46 synthetic peptides in combination with a precipitating tetramethylbenzidine (TMB) substrate. This innovative approach enables instrument-free visual detection through the formation of distinct blue-brown precipitates. Validation of this immunoassay with 179 clinical serum samples demonstrated 100% specificity and 91% sensitivity. Our assay offers a simple, cost-effective, and field-applicable diagnostic solution for HTLV-1 screening in resource-limited settings, potentially enhancing global surveillance of this neglected pathogen. Full article
Show Figures

Figure 1

22 pages, 4674 KB  
Article
Fe3O4/Poly(acrylic acid) Composite Hydrogel for the Removal of Methylene Blue and Crystal Violet from Aqueous Media
by Fiorela Ccoyo Ore, Flor de Liss Meza López, Ana Cecilia Valderrama Negrón and Michael Azael Ludeña Huaman
Chemistry 2025, 7(5), 156; https://doi.org/10.3390/chemistry7050156 - 26 Sep 2025
Viewed by 335
Abstract
An increase in the production of cationic dyes is expected over the next decade, which will have an impact on health and the environment. This work reports an adsorbent hydrogel composed of poly(acrylic acid) [poly(AA)] and Fe3O4 particles, prepared by [...] Read more.
An increase in the production of cationic dyes is expected over the next decade, which will have an impact on health and the environment. This work reports an adsorbent hydrogel composed of poly(acrylic acid) [poly(AA)] and Fe3O4 particles, prepared by radical polymerization and in situ co-precipitation of Fe3+ and Fe2+. This Fe3O4/poly(AA) composite hydrogel was used to evaluate its potential for removing the cationic dyes methylene blue (MB) and crystal violet (CV) from aqueous solutions. Instrumental characterization of the hydrogel was performed by FTIR, XRD, TGA, VSM, and physicochemical analysis (swelling and response to changes in pH). The results show that the incorporation of Fe3O4 particles improves the adsorption capacity of MB and CV dyes to a maximum adsorption of 571 and 321 mg/g, respectively, under the best conditions (pH 6.8, dose 1 g/L, time 24 h). The adsorption data best fit the pseudo-first order (PFO) kinetic model and the Freundlich isothermal model, indicating mass transfer via internal and/or external diffusion and active sites with different adsorption potentials. Moreover, the thermodynamic analysis confirmed that the adsorption process was spontaneous and exothermic, with physisorption as the dominant mechanism. In addition, the Fe3O4/poly(AA) hydrogel is capable of removing 95% of the dyes after ten consecutive adsorption–desorption cycles, demonstrating the potential of hydrogels loaded with Fe3O4 particles for the treatment of wastewater contaminated with dyes. Full article
(This article belongs to the Section Catalysis)
Show Figures

Graphical abstract

27 pages, 23938 KB  
Article
Galaxy Clusters in Dark Matter Window: The Case of the Shapley Supercluster
by Maksym Stepanov, Lidiia Zadorozhna, Valentyna Babur, Olexandr Gugnin and Bohdan Hnatyk
Universe 2025, 11(9), 316; https://doi.org/10.3390/universe11090316 - 13 Sep 2025
Viewed by 264
Abstract
Dark matter dominates the matter content of the Universe, yet its particle nature remains elusive. Among the promising multi-messenger astronomy dark matter candidates are weakly interacting massive particles and superheavy dark matter, both of which may manifest themselves in cosmic ray, γ-ray, [...] Read more.
Dark matter dominates the matter content of the Universe, yet its particle nature remains elusive. Among the promising multi-messenger astronomy dark matter candidates are weakly interacting massive particles and superheavy dark matter, both of which may manifest themselves in cosmic ray, γ-ray, and neutrino signatures through annihilation or decay. Here, we explore potential multi-messenger signals from these candidates in galaxy clusters of the Shapley Supercluster—one of the most massive known structures in the local Universe (located at a distance of ∼200 Mpc and containing over 1016M of dark matter). Using the CLUMPY code, we model γ-ray and neutrino fluxes for weakly interacting massive particle masses between 0.1 and 100 TeV across various final states, comparing the predictions with the sensitivities of current and forthcoming observatories, including CTAO, IceCube, and KM3NeT. For superheavy dark matter scenarios with masses from 1019 to 1028 eV, we employ HDMSpectra code to compute ultra-high-energy cosmic ray proton and neutrino fluxes in the ranges available for observations using present (Pierre Auger Observatory, IceCube, KM3NeT) and future (GRAND, GCOS, etc.) instruments. Full article
Show Figures

Figure 1

19 pages, 2861 KB  
Article
Airborne Hirst Volumetric Sampling Gives an Insight into Atmospheric Dispersion of Pollen and Fungal Spores
by Branko Sikoparija, Slobodan Birgermajer, Bojana Ivosevic, Vasko Sazdovski, Pia Viuf Ørby, Mathilde Kloster and Ulrich Gosewinkel
Atmosphere 2025, 16(9), 1060; https://doi.org/10.3390/atmos16091060 - 9 Sep 2025
Viewed by 553
Abstract
The volumetric Hirst method is considered a golden standard in aerobiology for determining particle number concentrations of bioaerosols. Using Hirst-type pollen and spore traps on mobile platforms (i.e., aircraft, cars, motorbikes, bicycles or carried by pedestrians) is anticipated to significantly enhance the spatial [...] Read more.
The volumetric Hirst method is considered a golden standard in aerobiology for determining particle number concentrations of bioaerosols. Using Hirst-type pollen and spore traps on mobile platforms (i.e., aircraft, cars, motorbikes, bicycles or carried by pedestrians) is anticipated to significantly enhance the spatial and temporal granularity of data for bioaerosol monitoring. Mobile sampling promises to enhance our understanding of bioaerosol dynamics, ecological interactions and the impact of human activities on airborne biological particles. In this article, we present the design and test of an airborne Hirst-type volumetric sampler. We followed a structured approach and incorporated the fundamental principles of the original design, while optimizing for size, weight, power and cost. Our portable Hirst-type volumetric sampler (FlyHirst) was attached to an ultralight aircraft, together with complementing instrumentation, and was tested for collection of atmospheric concentrations of pollen, fungal spores and hyphae. By linking the temporal resolution of the samples with the spatial position of the aircraft, using flight time, we calculated the spatial resolution of our measurements in 3D. In six summer flights over Denmark, our study revealed that the diversity of the recorded spores corresponded to the seasonal expectance. Urtica pollen was recorded up to 1300 m above ground (a.g.l.), and fungal spores up to 2100 m a.g.l. We suggest that, based on this proof-of-concept, FlyHirst can be applied on other mobile platforms or as a personal sampler. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

17 pages, 7205 KB  
Article
Evolution of Microstructure and the Influence of Carbides on Hardness Properties in Martensitic Stainless Steel 90Cr18MoV During Heat Treatment
by Shengfu Yuan, Ruizhi Wang, Xuelin Wang, Fajian Jiang, Chengjia Shang and Xinghua Wu
Metals 2025, 15(9), 999; https://doi.org/10.3390/met15090999 - 9 Sep 2025
Viewed by 605
Abstract
In this study, we utilized Thermo-Calc software (2023a) to optimize the heat treatment process of martensitic stainless steel 90Cr18MoV through phase diagram calculations. The microhardness of 90Cr18MoV was characterized using a nanoindentation instrument. The microstructural morphology of the samples was analyzed using scanning [...] Read more.
In this study, we utilized Thermo-Calc software (2023a) to optimize the heat treatment process of martensitic stainless steel 90Cr18MoV through phase diagram calculations. The microhardness of 90Cr18MoV was characterized using a nanoindentation instrument. The microstructural morphology of the samples was analyzed using scanning electron microscopy (SEM). The composition of the samples was characterized through scanning electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). Additionally, laser confocal microscopy (FIB) and transmission electron microscopy (TEM) were employed to characterize the precipitate phase composition and size before and after heat treatment, while also observing the dislocation structure within the samples. The relationship between the quenching temperature and the percentage of residual austenite content in the material was established. The influence of the dislocation structure and precipitate size on the hardness of the samples was investigated. The research findings confirm that the observed secondary hardening phenomenon in tempered samples is attributed to the co-precipitation of two types of carbides, M23C6 and MC, within the matrix. The study investigated the effects of the tempering temperature and duration on the size of secondary precipitates, indicating that M23C6 and MC particles with sizes less than or equal to 20 nm contribute to enhancing the matrix, while particles larger than 30 nm lead to a reduction in hardness after tempering. Notably, during the tempering process, M23C6 precipitated from the matrix nucleates on MC. Full article
(This article belongs to the Special Issue Design, Preparation and Properties of High Performance Steels)
Show Figures

Figure 1

27 pages, 2932 KB  
Article
Increasing the Ecological Efficiency of Monocrystalline Photovoltaic Power Plants by Management Their Life Cycle Assessment
by Adam Idzikowski, Patryk Leda, Izabela Piasecka, Tomasz Cierlicki and Magdalena Mazur
Energies 2025, 18(17), 4775; https://doi.org/10.3390/en18174775 - 8 Sep 2025
Viewed by 663
Abstract
This study’s objectives were to evaluate the life cycle of a 2 MW solar power plant in northern Poland and provide suggestions for enhancing this kind of installation’s environmental performance. Eight years of operating data were examined under the assumption that 2000 MWh [...] Read more.
This study’s objectives were to evaluate the life cycle of a 2 MW solar power plant in northern Poland and provide suggestions for enhancing this kind of installation’s environmental performance. Eight years of operating data were examined under the assumption that 2000 MWh of energy was produced annually on average. The evaluation took into account two waste management scenarios—landfill and recycling—and was carried out in accordance with the ReCiPe 2016 methodology. Human health and water resource usage had the most environmental effects (7.08 × 105 Pt—landfill), but recycling greatly reduced these effects (−3.08 × 105 Pt). Terrestrial ecosystems were negatively impacted by the turbines’ water consumption (8.94 × 105 Pt—landfill), which was lessened in the recycling scenario. The water and soil environment was greatly impacted by released pollutants, such as zinc and chlorinated hydrocarbons, whose emissions were greatly decreased by material recovery. Particularly detrimental was sulfur dioxide (SO2), which is the cause of PM 2.5 particle matter, which is dangerous to the public’s health. Recycling has helped to lower these pollutants and enhance the quality of the air. Reducing methane and other greenhouse gas emissions can help reduce CO2 emissions, which were the most significant factor in the context of climate change (1.91 × 104 Pt—landfilling). Recycling lessened these impacts and decreased the need to acquire virgin raw materials, but landfilling was linked to soil acidification and the depletion of mineral resources. According to the findings, even “green” technology, like photovoltaics, can have detrimental effects on the environment if they are not properly handled at the end of their useful lives. Recycling is turning out to be a crucial instrument for lowering negative effects on the environment, increasing resource efficiency, and safeguarding public health. Full article
(This article belongs to the Special Issue Energy Management and Life Cycle Assessment for Sustainable Energy)
Show Figures

Figure 1

11 pages, 2031 KB  
Article
Monte Carlo Simulation of the HERO Orbital Detector Calorimeter
by Orazaly Kalikulov, Nurzhan Saduyev, Yerzhan Mukhamejanov, Khussein Karatash, Ilyas Satyshev, Yeldos Sholtan, Aliya Baktoraz and Anatoliy Pan
Symmetry 2025, 17(9), 1449; https://doi.org/10.3390/sym17091449 - 4 Sep 2025
Viewed by 454
Abstract
The High-Energy Ray Observatory (HERO) is a space-based experiment designed to measure the spectrum and composition of cosmic rays using an ionization calorimeter. The instrument’s effective geometric factor is at least 12 m2·sr for protons and 16 m2·sr or [...] Read more.
The High-Energy Ray Observatory (HERO) is a space-based experiment designed to measure the spectrum and composition of cosmic rays using an ionization calorimeter. The instrument’s effective geometric factor is at least 12 m2·sr for protons and 16 m2·sr or more for nuclei and electrons. Over an exposure period of approximately 5 to 7 years, the mission will enable high-resolution, element-by-element measurements of cosmic ray spectra in the energy range of 1012 to 1016 eV per particle. A Monte Carlo simulation of the calorimeter—based on a scintillation detector with and without boron additives—was carried out using the GEANT4 software package. In this study, we examine the impact of boron additives in scintillator materials on energy resolution and their potential for discriminating between electromagnetic and hadronic components of cosmic rays. The primary objectives are to demonstrate that boron does not degrade detector characteristics and that it enables an additional timing-based method for cosmic-ray component rejection. The planned launch of the orbital experiment is scheduled for no earlier than 2029. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

18 pages, 5980 KB  
Article
Effect of Solidity on the Leakage Flow and Related Noise in Axial-Flow Fans with Rotating Shroud Operating at Fixed Performance
by Tayyab Akhtar, Edward Canepa, Andrea Cattanei, Matteo Dellacasagrande and Alessandro Nilberto
Int. J. Turbomach. Propuls. Power 2025, 10(3), 27; https://doi.org/10.3390/ijtpp10030027 - 2 Sep 2025
Viewed by 454
Abstract
This work presents an experimental study of the effect of blade count on the flow field and the radiated noise in a low-speed axial fan with a rotating shroud. A two-component Laser Doppler Velocimetry (LDV) system and Particle Image Velocimetry (PIV) instrumentation have [...] Read more.
This work presents an experimental study of the effect of blade count on the flow field and the radiated noise in a low-speed axial fan with a rotating shroud. A two-component Laser Doppler Velocimetry (LDV) system and Particle Image Velocimetry (PIV) instrumentation have been employed to investigate the flow in the gap region and in front of the rotor blades. Additionally, the fan has been installed in a hemi-anechoic chamber and far-field acoustic measurements have been taken with a microphone mounted on-axis upstream of the rotor to show changes in the spectral features of the radiated noise. The tested rotor is a variable-geometry one that has allowed for studying rotor configurations with different numbers of blades of the same chord and shape, i.e., of the same geometry but different solidity. Rotor pressure rise and flow rate are average quantities that have a relevant effect on the leakage flow. Keeping them fixed while varying solidity allows us to highlight the local effects of circumferential pressure non-uniformity caused by differing blade loading. The results show that, at low solidity, the flow leaving the gap is mainly directed radially outward and follows a longer path before being ingested by the rotor, thus losing strength due to mixing with the main flow. As solidity increases, the flow becomes less radial and is more rapidly ingested by the rotor. In all cases, the sound pressure level spectrum shows marked subharmonic humps and peaks originating from the interaction between the leakage flow and rotor. The departure of such peaks from the blade passing frequency increases with the solidity, while the associated energy increases up to seven blades and then decreases. Full article
Show Figures

Graphical abstract

15 pages, 3389 KB  
Article
Preparation, Performance Research and Field Application Practice of Temperature-Sensitive Lost Circulation Material for Shale Oil Wells
by Wenzhe Zhang, Jinsheng Sun, Feng Shen, Wei Li, Xianbin Huang, Kaihe Lv, Meichun Li, Shaofei Xue, Shiyu Wang and Hongmei Li
Polymers 2025, 17(17), 2395; https://doi.org/10.3390/polym17172395 - 2 Sep 2025
Viewed by 702
Abstract
Drilling fluid losses into formation voids are among the major issues that lead to increases in the costs and nonproductive time of operations. Lost circulation materials have been widely used to stop or mitigate losses. In most cases, the size of the loss [...] Read more.
Drilling fluid losses into formation voids are among the major issues that lead to increases in the costs and nonproductive time of operations. Lost circulation materials have been widely used to stop or mitigate losses. In most cases, the size of the loss zone is not known, making conventional lost circulation materials unsuitable for plugging the loss zone. In this study, novel temperature-sensitive LCM (TS-LCM) particles composed of diglycidyl ether of bisphenol A (DGEBA) and 4,4′-diaminodiphenyl methane were prepared. It is a thermal-response shape-memory polymer. The molecular structure was analyzed by Fourier transform infrared spectroscopy. The glass transition temperature (Tg) was tested by Different scanning calorimetry (DSC). The shape-memory properties were evaluated by a bend-recovery test instrument. The expansion and mechanical properties of particles were investigated under high temperature and high pressure. Fracture sealing testing apparatus was used to evaluate sealing performance. The mechanism of sealing fracture was discussed. Research results indicated that the Tg of the TS-LCM was 70.24 °C. The shape fixation ratio was more than 99% at room temperature, and the shape recovery ratio was 100% above the Tg. The particle was flaky before activation. It expanded to a cube shape, and the thickness increased when activated. The rate of particle size increase for D90 was more than 60% under 120 °C and 20 MPa. The activated TS-LCM particles had high crush strength. The expansion of the TS-LCM particles could self-adaptively bridge and seal the fracture without knowing the width. The addition of TS-LCM particles could seal the tapered slot with entrance widths of 2 mm, 3 mm and 4 mm without changing the lost circulation material formulation. The developed TS-LCM has good compatibility with local saltwater-based drilling fluid. In field tests in the Yan’an area of the Ordos Basin, 15 shale oil horizontal wells were plugged with excellent results. The equivalent circulating density of drilling fluid leakage increased by an average of 0.35 g/cm3, and the success rate of plugging malignant leakage increased from 32% to 82.5%. The drilling cycle was shortened by an average of 14.3%, and the effect of enhancing the pressure-bearing capacity of the well wall was significant. The prepared TS-LCM could cure fluid loss in a fractured formation efficiently. It has good prospects for promotion. Full article
Show Figures

Figure 1

24 pages, 5700 KB  
Article
Performance Study of the Vibrating Wire Technique to Determine Longitudinal Magnetic Field Profile Using Scans to High Wire Harmonic
by Cameron Kenneth Baribeau
Metrology 2025, 5(3), 53; https://doi.org/10.3390/metrology5030053 - 1 Sep 2025
Viewed by 422
Abstract
Particle accelerator laboratories, which enable world-class research across many scientific fields, depend on the magnets used to manipulate their particle beams for successful operation. The community employs various techniques, typically based on Hall probes and induction sensors/coils, to verify the performance of these [...] Read more.
Particle accelerator laboratories, which enable world-class research across many scientific fields, depend on the magnets used to manipulate their particle beams for successful operation. The community employs various techniques, typically based on Hall probes and induction sensors/coils, to verify the performance of these accelerator magnets. When the transverse access around a magnet is restricted, conventional Hall probe systems cannot be deployed or require significant modification, while moving wire/coil systems tend to provide information only on the magnetic field’s integral. This research builds upon a vibrating wire setup first commissioned to locate the magnetic center of quadrupole magnets. Scans up to the n = 200 wire harmonic (∼10 kHz drive frequency) were measured to reconstruct the magnetic field across a wire strung through a test magnet. New software was developed to systematically process the many frequency response scans needed for a detailed field reconstruction. This research investigated the speed and precision of the measurement, identifying limitations due to both instrumentation and nonlinear wire behavior. The vibrating wire data agreed with a reference Hall probe scan on the order of 6%; roughly 0.7% RMS error persisted after calibrating the vibrating wire data to the reference scan via scaling factor. Full article
(This article belongs to the Special Issue Advances in Magnetic Measurements)
Show Figures

Figure 1

56 pages, 37635 KB  
Review
Faraday Cups: Principles, Designs, and Applications Across Scientific Disciplines—A Review
by Bharat Singh Rawat, Narender Kumar, Debdeep Ghosal, Daliya Aflyatunova, Benjamin Rienäcker and Carsten. P. Welsch
Instruments 2025, 9(3), 20; https://doi.org/10.3390/instruments9030020 - 28 Aug 2025
Viewed by 2493
Abstract
Beam diagnostics are essential tools for monitoring the performance of charged particle beams and the safe operation of particle accelerators. The performance of an accelerator is determined by evaluating the properties of beam particles, such as energy, charge, spatial, and temporal density distributions, [...] Read more.
Beam diagnostics are essential tools for monitoring the performance of charged particle beams and the safe operation of particle accelerators. The performance of an accelerator is determined by evaluating the properties of beam particles, such as energy, charge, spatial, and temporal density distributions, which require very specific instruments. Faraday Cups (FCs) have emerged as important beam diagnostic devices because of their ability to accurately measure the beam charge and, in some cases, the charge distribution, which can be subsequently used to reconstruct transverse beam profiles. This paper aims to provide a detailed review of FCs, their principles, and their design challenges. FCs have applications in various scientific disciplines that include the measurement of beam current/intensity in particle accelerators, in addition to those for mass spectrometry, beam profiles/total beam currents for broad ion beams, thermonuclear fusion, and antimatter experiments. This review also covers and discusses the versatility of FCs in various scientific disciplines, along with showcasing the technological advancements that include improved collector materials, novel designs, enhanced measurement techniques, and developments in electronics and data acquisition (D.A.Q). A summary of the challenges faced while working with the FCs, such as sensitivity, calibration, and potential errors, is included in this review. Full article
Show Figures

Figure 1

20 pages, 4551 KB  
Article
Numerical Simulation and Influence Analysis of Geometrical Parameters in Gas–Solid Separation Process for a Cyclone Separator
by Chuan Zhou, Xianling Dai, Mingluo Zhou and Yunmin Zeng
Processes 2025, 13(9), 2723; https://doi.org/10.3390/pr13092723 - 26 Aug 2025
Viewed by 441
Abstract
The cyclone separator is a widely used separation instrument that can be applied in dust removal, mist removal, etc. The geometrical parameters that directly affect the airflow and separation process of a cyclone separator play a significant role in operating performance. In the [...] Read more.
The cyclone separator is a widely used separation instrument that can be applied in dust removal, mist removal, etc. The geometrical parameters that directly affect the airflow and separation process of a cyclone separator play a significant role in operating performance. In the present paper, numerical simulations are conducted to understand the flue gas flow and solid particle motion involved in the separation process of a dust removal cyclone separator. The effects of geometrical parameters on separation efficiency and pressure drop are thoroughly discussed. It is revealed that the separation of flue gas and dust particles depends on the reversible spiral flow arising from the cyclone structure. While the L/D ratio is 1.7, an undesirable flow and particle motion is obtained. As the H/D ratio is increased, the separation efficiency and the separator resistance both drop. In the process, the de/D ratio is increased from 0.6 to 0.7, and flue gas flow becomes worse, resulting in a dramatical descent in separation efficiency and pressure drop. The cut-off particle diameter is about 6 μm, and the particle size has little influence on pressure drop. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

23 pages, 11577 KB  
Article
Study on the Parameter Distributions of Three Types of Cloud Precipitation in Xi’an Based on Millimeter-Wave Cloud Radar and Precipitation Data
by Qinze Chen, Yun Yuan, Jia Sun, Ning Chen, Huige Di and Dengxin Hua
Remote Sens. 2025, 17(17), 2947; https://doi.org/10.3390/rs17172947 - 25 Aug 2025
Viewed by 708
Abstract
This study utilizes Ka-band millimeter-wave cloud radar (MMCR), assisted by a precipitation phenomenon instrument, to conduct case studies and analyses of convective precipitation, cumulus precipitation, and stratus precipitation in the Xi’an region. Using the Doppler spectral data of the MMCR, dynamic parameters such [...] Read more.
This study utilizes Ka-band millimeter-wave cloud radar (MMCR), assisted by a precipitation phenomenon instrument, to conduct case studies and analyses of convective precipitation, cumulus precipitation, and stratus precipitation in the Xi’an region. Using the Doppler spectral data of the MMCR, dynamic parameters such as vertical air motion velocity (updraft and downdraft) and particle terminal fall velocity within these three types of cloud precipitation were retrieved. The results show that above the melting layer, the maximum updraft velocity in convective clouds reaches 15 m·s−1, and the strong updraft drives cloud droplets to move upward at an average velocity of about 5 m·s−1. The average updraft velocity in cumulus clouds is greater than that in stratus clouds, with updrafts in cumulus and stratus mainly distributed within 1.5–3 m·s−1 and 1–2 m·s−1, respectively. The reflectivity factor of precipitation particles (Ze) is used to correct the equivalent reflectivity factor (Ka-Ze) after attenuation correction below the MMCR melting layer. The accuracy of calculating the raindrop concentration using the Ka-Ze of MMCR was improved below the melting layer. Based on the relationship between terminal fall velocity and particle diameter and using the conversion between the MMCR power spectrum and raindrop spectrum, the concentration, fall velocity, and particle diameter of raindrops are calculated below the melting layer. The results show that the average reflectivity factor, average concentration, and average particle diameter of raindrops follow the order of convective precipitation > cumulus precipitation > stratiform precipitation. However, the average terminal fall velocity distribution of raindrop particles follows a different order: convective precipitation > stratiform precipitation > cumulus precipitation. Full article
Show Figures

Figure 1

20 pages, 4150 KB  
Article
Testing and EDEM Simulation Analysis of Material Properties of Small Vegetable Seeds for Sustainable Seeding Process
by Jiaoyang Duan, Xingrui Shi and Baolong Wang
Sustainability 2025, 17(16), 7292; https://doi.org/10.3390/su17167292 - 12 Aug 2025
Viewed by 541
Abstract
In the design of operating procedures, structures, and control systems for agricultural machinery and equipment, it is necessary to fully consider data on the properties of relevant agricultural materials as the basis for research and design. Therefore, studying the physical properties of agricultural [...] Read more.
In the design of operating procedures, structures, and control systems for agricultural machinery and equipment, it is necessary to fully consider data on the properties of relevant agricultural materials as the basis for research and design. Therefore, studying the physical properties of agricultural materials is of great significance. The basic physical parameters of agricultural materials include their shape, size, density, porosity, and moisture content. This study focuses on the triaxial dimensions, 1000-grain weight, moisture content, and tribological properties (sliding friction angle, natural repose angle) of the seeds of 16 varieties of small-seeded vegetables commonly grown in Hainan, including flowering Chinese cabbage, Chinese cabbage, lettuce, and leaf lettuce. Measurements were conducted using instruments such as a digital vernier caliper (Deli, Ningbo, China; accuracy 0.01 mm), an electronic balance (LICHEN, Shanghai, China; accuracy 0.001 g), a constant-temperature oven (Shangyi, Shanghai, China), and self-developed sliding friction angle and natural repose angle testers. Discrete element simulations were performed via EDEM 2021 software to validate the tribological properties by establishing particle models (spherical for flowering Chinese cabbage and Chinese cabbage; long–flat for lettuce and leaf lettuce) and instrument geometric models. Additionally, seed germinability (germination potential, germination rate, and germination speed) was tested using a constant-temperature incubation method. The results showed distinct differences between near-spherical and long–flat seeds in geometric characteristics, 1000-grain weight (2.27–3.06 g vs. 1.00–1.29 g), and tribological behavior (e.g., smaller natural repose angles for near-spherical seeds indicating better flowability). Plastic plates were identified as optimal for seed box guides due to lower sliding friction coefficients. EDEM 2021 simulations effectively verified the experimental data. High-germination-rate seeds (e.g., Hong Kong flowering Chinese cabbage, and Lifeng No.3 Chinese cabbage) were recommended for subsequent trials. These findings provide data support for the selection, design, and optimization of seed rope braiding machine components and sustainable seeding process. Full article
(This article belongs to the Special Issue Agricultural Engineering for Sustainable Development)
Show Figures

Figure 1

Back to TopTop