Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,750)

Search Parameters:
Keywords = integrated assessment model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2980 KB  
Article
Deep Learning-Based Identification of Kazakhstan Apple Varieties Using Pre-Trained CNN Models
by Jakhfer Alikhanov, Tsvetelina Georgieva, Eleonora Nedelcheva, Aidar Moldazhanov, Akmaral Kulmakhambetova, Dmitriy Zinchenko, Alisher Nurtuleuov, Zhandos Shynybay and Plamen Daskalov
AgriEngineering 2025, 7(10), 331; https://doi.org/10.3390/agriengineering7100331 (registering DOI) - 1 Oct 2025
Abstract
This paper presents a digital approach for the identification of apple varieties bred in Kazakhstan using deep learning methods and transfer learning. The main objective of this study is to develop and evaluate an algorithm for automatic varietal classification of apples based on [...] Read more.
This paper presents a digital approach for the identification of apple varieties bred in Kazakhstan using deep learning methods and transfer learning. The main objective of this study is to develop and evaluate an algorithm for automatic varietal classification of apples based on color images obtained under controlled conditions. Five representative cultivars were selected as research objects: Aport Alexander, Ainur, Sinap Almaty, Nursat, and Kazakhskij Yubilejnyj. The fruit samples were collected in the pomological garden of the Kazakh Research Institute of Fruit and Vegetable Growing, ensuring representativeness and taking into account the natural variability of the cultivars. Two convolutional neural network (CNN) architectures—GoogLeNet and SqueezeNet—were fine-tuned using transfer learning with different optimization settings. The data processing pipeline included preprocessing, training and validation set formation, and augmentation techniques to improve model generalization. Network performance was assessed using standard evaluation metrics such as accuracy, precision, and recall, complemented by confusion matrix analysis to reveal potential misclassifications. The results demonstrated high recognition efficiency: the classification accuracy exceeded 95% for most cultivars, while the Ainur variety achieved 100% recognition when tested with GoogLeNet. Interestingly, the Nursat variety achieved the best results with SqueezeNet, which highlights the importance of model selection for specific apple types. These findings confirm the applicability of CNN-based deep learning for varietal recognition of Kazakhstan apple cultivars. The novelty of this study lies in applying neural network models to local Kazakhstan apple varieties for the first time, which is of both scientific and practical importance. The practical contribution of the research is the potential integration of the developed method into industrial fruit-sorting systems, thereby increasing productivity, objectivity, and precision in post-harvest processing. The main limitation of this study is the relatively small dataset and the use of controlled laboratory image acquisition conditions. Future research will focus on expanding the dataset, testing the models under real production environments, and exploring more advanced deep learning architectures to further improve recognition performance. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

10 pages, 480 KB  
Article
Diagnostic Performance of AI-Assisted Software in Sports Dentistry: A Validation Study
by André Júdice, Diogo Brandão, Carlota Rodrigues, Cátia Simões, Gabriel Nogueira, Vanessa Machado, Luciano Maia Alves Ferreira, Daniel Ferreira, Luís Proença, João Botelho, Peter Fine and José João Mendes
AI 2025, 6(10), 255; https://doi.org/10.3390/ai6100255 (registering DOI) - 1 Oct 2025
Abstract
Artificial Intelligence (AI) applications in sports dentistry have the potential to improve early detection and diagnosis. We aimed to validate the diagnostic performance of AI-assisted software in detecting dental caries, periodontitis, and tooth wear using panoramic radiographs in elite athletes. This cross-sectional validation [...] Read more.
Artificial Intelligence (AI) applications in sports dentistry have the potential to improve early detection and diagnosis. We aimed to validate the diagnostic performance of AI-assisted software in detecting dental caries, periodontitis, and tooth wear using panoramic radiographs in elite athletes. This cross-sectional validation study included secondary data from 114 elite athletes from the Sports Dentistry department at Egas Moniz Dental Clinic. The AI software’s performance was compared to clinically validated assessments. Dental caries and tooth wear were inspected clinically and confirmed radiographically. Periodontitis was registered through self-reports. We calculated sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), as well as the area under the curve and respective 95% confidence intervals. Inter-rater agreement was assessed using Cohen’s kappa statistic. The AI software showed high reproducibility, with kappa values of 0.82 for caries, 0.91 for periodontitis, 0.96 for periapical lesions, and 0.76 for tooth wear. Sensitivity was highest for periodontitis (1.00; AUC = 0.84), moderate for caries (0.74; AUC = 0.69), and lower for tooth wear (0.53; AUC = 0.68). Full agreement between AI and clinical reference was achieved in 86.0% of cases. The software generated a median of 3 AI-specific suggestions per case (range: 0–16). In 21.9% of cases, AI’s interpretation of periodontal level was deemed inadequate; among these, only 2 cases were clinically confirmed as periodontitis. Of the 34 false positives for periodontitis, 32.4% were misidentified by the AI. The AI-assisted software demonstrated substantial agreement with clinical diagnosis, particularly for periodontitis and caries. The relatively high false-positive rate for periodontitis and limited sensitivity for tooth wear underscore the need for cautious clinical integration, supervision, and further model refinements. However, this software did show overall adequate performance for application in Sports Dentistry. Full article
19 pages, 1042 KB  
Article
Integration of the PortionSize Ed App into SNAP-Ed for Improving Diet Quality Among Adolescents in Hawaiʻi: A Randomized Pilot Study
by Emerald S. Proctor, Kiari H. L. Aveiro, Ian Pagano, Lynne R. Wilkens, Leihua Park, Leilani Spencer, Jeannie Butel, Corby K. Martin, John W. Apolzan, Rachel Novotny, John Kearney and Chloe P. Lozano
Nutrients 2025, 17(19), 3145; https://doi.org/10.3390/nu17193145 (registering DOI) - 1 Oct 2025
Abstract
Background/Objectives: Coupling mobile health (mHealth) technology with community-based nutrition programs may enhance diet quality in adolescents. This pilot study evaluated the feasibility, acceptability, and preliminary efficacy of integrating PortionSize Ed (PSEd), an image-assisted dietary assessment and education app, into the six-week Hawaiʻi Food [...] Read more.
Background/Objectives: Coupling mobile health (mHealth) technology with community-based nutrition programs may enhance diet quality in adolescents. This pilot study evaluated the feasibility, acceptability, and preliminary efficacy of integrating PortionSize Ed (PSEd), an image-assisted dietary assessment and education app, into the six-week Hawaiʻi Food and Lifeskills for Youth (HI-FLY) curriculum delivered via Supplemental Nutrition Assistance Program Education (SNAP-Ed). Methods: Adolescents (grades 6–8) from two classrooms were cluster-randomized into HI-FLY or HI-FLY + PSEd. Both groups received HI-FLY and completed Youth Questionnaires (YQ) and food records (written or app-based) at Weeks 0 and 7. Feasibility and acceptability were assessed via enrollment, attrition, and User Satisfaction Surveys (USS). Diet quality was measured using Healthy Eating Index-2020 (HEI-2020) scores and analyzed via mixed-effects models. Results: Of 50 students, 42 (84%) enrolled and attrition was minimal (2.4%). The sample was 49% female and 85% at least part Native Hawaiian or Pacific Islander (NHPI). PSEd was acceptable, with average USS scores above the scale midpoint. No significant HEI-2020 changes were observed, though YQ responses indicated improvements in sugary drink intake (p = 0.03) and use of nutrition labels in HI-FLY + PSEd (p = 0.0007). Conclusions: Integrating PSEd into SNAP-Ed was feasible, acceptable, and demonstrated potential healthy behavior change among predominantly NHPI youth in Hawaiʻi. Full article
20 pages, 990 KB  
Article
Hybrid Stochastic–Machine Learning Framework for Postprandial Glucose Prediction in Type 1 Diabetes
by Irina Naskinova, Mikhail Kolev, Dilyana Karova and Mariyan Milev
Algorithms 2025, 18(10), 623; https://doi.org/10.3390/a18100623 (registering DOI) - 1 Oct 2025
Abstract
This research introduces a hybrid framework that integrates stochastic modeling and machine learning for predicting postprandial glucose levels in individuals with Type 1 Diabetes (T1D). The primary aim is to enhance the accuracy of glucose predictions by merging a biophysical Glucose–Insulin–Meal (GIM) model [...] Read more.
This research introduces a hybrid framework that integrates stochastic modeling and machine learning for predicting postprandial glucose levels in individuals with Type 1 Diabetes (T1D). The primary aim is to enhance the accuracy of glucose predictions by merging a biophysical Glucose–Insulin–Meal (GIM) model with advanced machine learning techniques. This framework is tailored to utilize the Kaggle BRIST1D dataset, which comprises real-world data from continuous glucose monitoring (CGM), insulin administration, and meal intake records. The methodology employs the GIM model as a physiological prior to generate simulated glucose and insulin trajectories, which are then utilized as input features for the machine learning (ML) component. For this component, the study leverages the Light Gradient Boosting Machine (LightGBM) due to its efficiency and strong performance with tabular data, while Long Short-Term Memory (LSTM) networks are applied to capture temporal dependencies. Additionally, Bayesian regression is integrated to assess prediction uncertainty. A key advancement of this research is the transition from a deterministic GIM formulation to a stochastic differential equation (SDE) framework, which allows the model to represent the probabilistic range of physiological responses and improves uncertainty management when working with real-world data. The findings reveal that this hybrid methodology enhances both the precision and applicability of glucose predictions by integrating the physiological insights of Glucose Interaction Models (GIM) with the flexibility of data-driven machine learning techniques to accommodate real-world variability. This innovative framework facilitates the creation of robust, transparent, and personalized decision-support systems aimed at improving diabetes management. Full article
28 pages, 1003 KB  
Article
A Multi-Dimensional Framework for Data Quality Assurance in Cancer Imaging Repositories
by Olga Tsave, Alexandra Kosvyra, Dimitrios T. Filos, Dimitris Th. Fotopoulos and Ioanna Chouvarda
Cancers 2025, 17(19), 3213; https://doi.org/10.3390/cancers17193213 - 1 Oct 2025
Abstract
Background/Objectives: Cancer remains a leading global cause of death, with breast, lung, colorectal, and prostate cancers being among the most prevalent. The integration of Artificial Intelligence (AI) into cancer imaging research offers opportunities for earlier diagnosis and personalized treatment. However, the effectiveness of [...] Read more.
Background/Objectives: Cancer remains a leading global cause of death, with breast, lung, colorectal, and prostate cancers being among the most prevalent. The integration of Artificial Intelligence (AI) into cancer imaging research offers opportunities for earlier diagnosis and personalized treatment. However, the effectiveness of AI models depends critically on the quality, standardization, and fairness of the input data. The EU-funded INCISIVE project aimed to create a federated, pan-European repository of imaging and clinical data for cancer cases, with a key objective to develop a robust framework for pre-validating data prior to its use in AI development. Methods: We propose a data validation framework to assess clinical (meta)data and imaging data across five dimensions: completeness, validity, consistency, integrity, and fairness. The framework includes procedures for deduplication, annotation verification, DICOM metadata analysis, and anonymization compliance. Results: The pre-validation process identified key data quality issues, such as missing clinical information, inconsistent formatting, and subgroup imbalances, while also demonstrating the added value of structured data entry and standardized protocols. Conclusions: This structured framework addresses common challenges in curating large-scale, multimodal medical data. By applying this approach, the INCISIVE project ensures data quality, interoperability, and equity, providing a transferable model for future health data repositories supporting AI research in oncology. Full article
(This article belongs to the Section Methods and Technologies Development)
15 pages, 25292 KB  
Article
Reconstructing Ancient Iron-Smelting Furnaces of Guéra (Chad) Through 3D Modeling and AI-Assisted Video Generation
by Jean-Baptiste Barreau, Djimet Guemona and Caroline Robion-Brunner
Electronics 2025, 14(19), 3923; https://doi.org/10.3390/electronics14193923 - 1 Oct 2025
Abstract
This article presents an innovative methodological approach for the documentation and enhancement of ancient ironworking heritage in the Guéra region of Chad. By combining ethno-historical and archaeological surveys, 3D modeling with Blender, and the generation of images and video sequences through artificial intelligence [...] Read more.
This article presents an innovative methodological approach for the documentation and enhancement of ancient ironworking heritage in the Guéra region of Chad. By combining ethno-historical and archaeological surveys, 3D modeling with Blender, and the generation of images and video sequences through artificial intelligence (AI), we propose an integrated production pipeline enabling the faithful reconstruction of three types of metallurgical furnaces. Our method relies on rigorously collected field data to generate multiple and plausible representations from fragmentary information. A standardized evaluation grid makes it possible to assess the archaeological fidelity, cultural authenticity, and visual quality of the reconstructions, thereby limiting biases inherent to generative models. The results offer strong potential for integration into immersive environments, opening up perspectives in education, digital museology, and the virtual preservation of traditional ironworking knowledge. This work demonstrates the relevance of multimodal approaches in reconciling scientific rigor with engaging visual storytelling. Full article
(This article belongs to the Special Issue Augmented Reality, Virtual Reality, and 3D Reconstruction)
21 pages, 1106 KB  
Article
Risk Assessment Method for CPS-Based Distributed Generation Cluster Control in Active Distribution Networks Under Cyber Attacks
by Jinxin Ouyang, Fan Mo, Fei Huang and Yujie Chen
Sensors 2025, 25(19), 6053; https://doi.org/10.3390/s25196053 - 1 Oct 2025
Abstract
In modern power systems, distributed generation (DG) clusters such as wind and solar resources are increasingly being integrated into active distribution networks through DG cluster control, which enhances the economic efficiency and adaptability of the DGs. However, cyber attacks on cyber–physical systems (CPS) [...] Read more.
In modern power systems, distributed generation (DG) clusters such as wind and solar resources are increasingly being integrated into active distribution networks through DG cluster control, which enhances the economic efficiency and adaptability of the DGs. However, cyber attacks on cyber–physical systems (CPS) may disable control links within the DG cluster, leading to the loss of control over slave DGs and resulting in power deficits, thereby threatening system stability. Existing CPS security assessment methods have limited capacity to capture cross-domain propagation effects caused by cyber attacks and lack a comprehensive evaluation framework from the attacker’s perspective. This paper establishes a CPS system model and control–communication framework and then analyzes the cyber–physical interaction characteristics under DG cluster control. A logical model of cyber attack strategies targeting DG cluster inverters is proposed. Based on the control topology and master–slave logic, a probabilistic failure model for DG cluster control is developed. By considering power deficits at cluster point of common coupling (PCC) and results in internal network of the DG cluster, a physical consequence quantification method is introduced. Finally, a cyber risk assessment method is proposed for DG cluster control under cyber attacks. Simulation results validate the effectiveness of the proposed method. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

27 pages, 2745 KB  
Article
Energy Optimization of Compressed Air Systems with Screw Compressors Under Variable Load Conditions
by Guillermo José Barroso García, José Pedro Monteagudo Yanes, Luis Angel Iturralde Carrera, Carlos D. Constantino-Robles, Brenda Juárez Santiago, Juan Manuel Olivares Ramírez, Omar Rodriguez Abreo and Juvenal Rodríguez-Reséndiz
Math. Comput. Appl. 2025, 30(5), 107; https://doi.org/10.3390/mca30050107 - 1 Oct 2025
Abstract
This study evaluates the energy performance of a BOGE C 22-2 oil-injected rotary screw compressor under real industrial conditions. Using direct measurements with a power quality analyzer and thermodynamic modeling, key performance indicators such as compression work, mass flow rate, compressor efficiency, and [...] Read more.
This study evaluates the energy performance of a BOGE C 22-2 oil-injected rotary screw compressor under real industrial conditions. Using direct measurements with a power quality analyzer and thermodynamic modeling, key performance indicators such as compression work, mass flow rate, compressor efficiency, and motor efficiency were determined. The results revealed actual efficiencies of 27–48%, significantly lower than the expected 60–70% for this type of equipment, mainly due to partial-load operation and low airflow demand. A low power factor of approximately 0.72 was also observed, caused by a high share of reactive power consumption. To address these inefficiencies, the study recommends the installation of an automatic capacitor bank to improve power quality and the integration of a secondary variable speed compressor to enhance performance under low-demand conditions. These findings underscore the importance of assessing compressor behavior in real-world environments and implementing techno-economic strategies to increase energy efficiency and reduce industrial electricity consumption. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
15 pages, 2475 KB  
Article
Nationwide Decline of Wet Sulfur Deposition in China from 2013 to 2023
by Yue Xi, Qiufeng Wang, Jianxing Zhu, Tianxiang Hao, Qiongyu Zhang, Yanran Chen, Zihan Tai, Quanhong Lin and Hao Wang
Sustainability 2025, 17(19), 8815; https://doi.org/10.3390/su17198815 - 1 Oct 2025
Abstract
Atmospheric sulfur (S) deposition, a key component of acid deposition, poses risks to ecosystems, human health, and sustainable development. In China, decades of coal-dominated energy use caused severe S pollution, but recent emission-control policies and energy restructuring have sought to reverse this trend. [...] Read more.
Atmospheric sulfur (S) deposition, a key component of acid deposition, poses risks to ecosystems, human health, and sustainable development. In China, decades of coal-dominated energy use caused severe S pollution, but recent emission-control policies and energy restructuring have sought to reverse this trend. However, the effectiveness and regional differences in these measures remain insufficiently quantified. Here, we combined continuous observations from 43 monitoring sites (2013–2023), satellite-derived SO2 vertical column density, and multi-source environmental datasets to construct a high-resolution record of wet S deposition. A random forest model, validated with R2 = 0.52 and RMSE = 1.2 kg ha−1 yr−1, was used to estimate fluxes and spatial patterns, while ridge regression and SHAP analysis quantified the relative contributions of emissions, precipitation, and socioeconomic factors. This framework allows us to assess both the environmental and health-related sustainability implications of sulfur deposition. Results show a nationwide decline of more than 50% in wet S deposition during 2013–2023, with two-thirds of sites and 95% of grids showing significant decreases. Historical hotspots such as the North China Plain and Sichuan Basin improved markedly, while some southern provinces (e.g., Guizhou, Hunan, Jiangxi) still exhibited high deposition (>20 kg ha−1 yr−1). Over 90% of the reduction was attributable to emission declines, confirming the dominant effect of sustained policy-driven measures. This study extends sulfur deposition records to 2023, demonstrates the value of integrating ground monitoring with remote sensing and machine learning, and provides robust evidence that China’s emission reduction policies have delivered significant environmental and sustainability benefits. The findings offer insights for region-specific governance and for developing countries balancing economic growth with ecological protection. Full article
Show Figures

Figure 1

26 pages, 7079 KB  
Article
Hydrological Response Analysis Using Remote Sensing and Cloud Computing: Insights from the Chalakudy River Basin, Kerala
by Gudihalli Munivenkatappa Rajesh, Sajeena Shaharudeen, Fahdah Falah Ben Hasher and Mohamed Zhran
Water 2025, 17(19), 2869; https://doi.org/10.3390/w17192869 - 1 Oct 2025
Abstract
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth [...] Read more.
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth Engine (GEE) platform, making novel use of multi-source, open access datasets (CHIRPS precipitation, MODIS land cover and evapotranspiration, and OpenLand soil data) to estimate spatially distributed long-term runoff (2001–2023). Model calibration against observed runoff showed strong performance (NSE = 0.86, KGE = 0.81, R2 = 0.83, RMSE = 29.37 mm and ME = 13.48 mm), validating the approach. Over 75% of annual runoff occurs during the southwest monsoon (June–September), with July alone contributing 220.7 mm. Seasonal assessments highlighted monsoonal excesses and dry-season deficits, while water balance correlated strongly with rainfall (r = 0.93) and runoff (r = 0.94) but negatively with evapotranspiration (r = –0.87). Time-series analysis indicated a slight rise in rainfall, a decline in evapotranspiration, and a marginal improvement in water balance, implying gradual enhancement of regional water availability. Spatial analysis revealed a west–east gradient in precipitation, evapotranspiration, and water balance, producing surpluses in lowlands and deficits in highlands. These findings underscore the potential of cloud-based hydrological modeling to capture spatiotemporal dynamics of hydrological variables and support climate-resilient water management in monsoon-driven and data-scarce river basins. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

26 pages, 3841 KB  
Article
Comparison of Regression, Classification, Percentile Method and Dual-Range Averaging Method for Crop Canopy Height Estimation from UAV-Based LiDAR Point Cloud Data
by Pai Du, Jinfei Wang and Bo Shan
Drones 2025, 9(10), 683; https://doi.org/10.3390/drones9100683 - 1 Oct 2025
Abstract
Crop canopy height is a key structural indicator that is strongly associated with crop development, biomass accumulation, and crop health. To overcome the limitations of time-consuming and labor-intensive traditional field measurements, Unmanned Aerial Vehicle (UAV)-based Light Detection and Ranging (LiDAR) offers an efficient [...] Read more.
Crop canopy height is a key structural indicator that is strongly associated with crop development, biomass accumulation, and crop health. To overcome the limitations of time-consuming and labor-intensive traditional field measurements, Unmanned Aerial Vehicle (UAV)-based Light Detection and Ranging (LiDAR) offers an efficient alternative by capturing three-dimensional point cloud data (PCD). In this study, UAV-LiDAR data were acquired using a DJI Matrice 600 Pro equipped with a 16-channel LiDAR system. Three canopy height estimation methodological approaches were evaluated across three crop types: corn, soybean, and winter wheat. Specifically, this study assessed machine learning regression modeling, ground point classification techniques, percentile-based method and a newly proposed Dual-Range Averaging (DRA) method to identify the most effective method while ensuring practicality and reproducibility. The best-performing method for corn was Support Vector Regression (SVR) with a linear kernel (R2 = 0.95, RMSE = 0.137 m). For soybean, the DRA method yielded the highest accuracy (R2 = 0.93, RMSE = 0.032 m). For winter wheat, the PointCNN deep learning model demonstrated the best performance (R2 = 0.93, RMSE = 0.046 m). These results highlight the effectiveness of integrating UAV-LiDAR data with optimized processing methods for accurate and widely applicable crop height estimation in support of precision agriculture practices. Full article
(This article belongs to the Special Issue UAV Agricultural Management: Recent Advances and Future Prospects)
Show Figures

Figure 1

31 pages, 489 KB  
Systematic Review
Explainable Artificial Intelligence and Machine Learning for Air Pollution Risk Assessment and Respiratory Health Outcomes: A Systematic Review
by Israel Edem Agbehadji and Ibidun Christiana Obagbuwa
Atmosphere 2025, 16(10), 1154; https://doi.org/10.3390/atmos16101154 - 1 Oct 2025
Abstract
Air pollution is a leading environmental risk that causes respiratory morbidity and mortality. The increasing availability of high-resolution environmental data and air pollution-related health cases have accelerated the use of machine learning models (ML) to estimate environmental exposure–response relationships, forecast health risks and [...] Read more.
Air pollution is a leading environmental risk that causes respiratory morbidity and mortality. The increasing availability of high-resolution environmental data and air pollution-related health cases have accelerated the use of machine learning models (ML) to estimate environmental exposure–response relationships, forecast health risks and call for the needed policy and practical interventions. Unfortunately, ML models are opaque, in a sense that, it is unclear how these models combine various data inputs to make a concise decision. Thus, limiting its trust and use in clinical matters. Explainable artificial intelligence (xAI) models offer the necessary techniques to ensure transparent and interpretable models. This systematic review explores online data repositories through the lens of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline to synthesize articles from 2020 to 2025. Various inclusion and exclusion criteria were established to narrow the search to a final selection of 92 articles, which were thoroughly reviewed by independent researchers to reduce bias in article assessment. Equally, the ROBINS-I (Risk Of Bias In Non-randomized Studies of Interventions) domain strategy was helpful in further reducing any possible risk in the article assessment and its reproducibility. The findings reveal a growing adoption of ML techniques such as random forests, XGBoost, parallel lightweight diagnosis models and deep neural networks for health risk prediction, with SHAP (SHapley Additive exPlanations) emerging as the dominant technique for these models’ interpretability. The extremely randomized tree (ERT) technique demonstrated optimal performance but lacks explainability. Moreover, the limitations of these models include generalizability, data limitations and policy translation. Conclusion: This review’s outcome suggests limited research on the integration of LIME (Local Interpretable Model-Agnostic Explanations) in the current ML model; it recommends that future research could focus on causal-xAI-ML models. Again, the use of such models in respiratory health issues may be complemented with a medical professional’s opinion. Full article
(This article belongs to the Section Air Quality and Health)
39 pages, 1966 KB  
Article
Sustainable Urban Mobility Transitions—From Policy Uncertainty to the CalmMobility Paradigm
by Katarzyna Turoń
Smart Cities 2025, 8(5), 164; https://doi.org/10.3390/smartcities8050164 - 1 Oct 2025
Abstract
Continuous technological, ecological, and digital transformations reshape urban mobility systems. While sustainable mobility has become a dominant keyword, there are many different approaches and policies to help achieve lasting and properly functioning change. This study applies a comprehensive qualitative policy analysis to influential [...] Read more.
Continuous technological, ecological, and digital transformations reshape urban mobility systems. While sustainable mobility has become a dominant keyword, there are many different approaches and policies to help achieve lasting and properly functioning change. This study applies a comprehensive qualitative policy analysis to influential and leading sustainable mobility approaches (i.a. Mobility Justice, Avoid–Shift–Improve, spatial models like the 15-Minute City and Superblocks, governance frameworks such as SUMPs, and tools ranging from economic incentives to service architectures like MaaS and others). Each was assessed across structural barriers, psychological resistance, governance constraints, and affective dimensions. The results show that, although these approaches provide clear normative direction, measurable impacts, and scalable applicability, their implementation is often undermined by fragmentation, Policy Layering, limited intermodality, weak Future-Readiness, and insufficient participatory engagement. Particularly, the lack of sequencing and pacing mechanisms leads to policy silos and societal resistance. The analysis highlights that the main challenge is not the absence of solutions but the absence of a unifying paradigm. To address this gap, the paper introduces CalmMobility, a conceptual framework that integrates existing strengths while emphasizing comprehensiveness, pacing–sequencing–inclusion, and Future-Readiness. CalmMobility offers adaptive and co-created pathways for mobility transitions, grounded in education, open innovation, and a calm, deliberate approach. Rather than being driven by hasty or disruptive change, it seeks to align technological and spatial innovations with societal expectations, building trust, legitimacy, and long-term resilience of sustainable mobility. Full article
Show Figures

Figure 1

23 pages, 773 KB  
Article
Business Strategies and Corporate Reporting for Sustainability: A Comparative Study of Materiality, Stakeholder Engagement, and ESG Performance in Europe
by Andreas-Errikos Delegkos, Michalis Skordoulis and Petros Kalantonis
Sustainability 2025, 17(19), 8814; https://doi.org/10.3390/su17198814 - 1 Oct 2025
Abstract
This study investigates the relationship between corporate reporting practices and the value relevance of accounting information by analyzing 100 publicly listed non-financial European firms between 2015 and 2019. Drawing on the Ohlson valuation framework, the analysis combines random effects with Driscoll–Kraay standard errors [...] Read more.
This study investigates the relationship between corporate reporting practices and the value relevance of accounting information by analyzing 100 publicly listed non-financial European firms between 2015 and 2019. Drawing on the Ohlson valuation framework, the analysis combines random effects with Driscoll–Kraay standard errors and System GMM estimations to assess the role of financial and non-financial disclosures. Materiality and stakeholder engagement were scored through content analysis of corporate reports, while ESG performance data were obtained from Refinitiv Eikon. The results show that financial fundamentals remain the most robust determinants of firm value, consistent with Ohlson’s model. Among qualitative disclosures, materiality demonstrates a strong and statistically significant positive association with market value in the random effects specification, while stakeholder engagement and ESG scores do not attain statistical significance. In the dynamic panel model, lagged market value is highly significant, confirming the persistence of valuation, while the effect of materiality and stakeholder engagement diminishes. Interaction models further indicate that materiality strengthens the relevance of earnings but reduces the role of book value, underscoring its selective contribution. Overall, the findings provide partial support for the claim that Integrated Reporting enhances the value relevance of accounting information. It suggests that the usefulness of IR depends less on adoption per se and more on the quality and substance of disclosures, particularly the integration of financial material ESG issues into corporate reporting. This highlights IR’s potential to improve transparency, accountability, and investor decision making, thereby contributing to more effective capital market outcomes. Full article
19 pages, 19265 KB  
Article
A Novel Microfluidic Platform for Circulating Tumor Cell Identification in Non-Small-Cell Lung Cancer
by Tingting Tian, Shanni Ma, Yan Wang, He Yin, Tiantian Dang, Guangqi Li, Jiaming Li, Weijie Feng, Mei Tian, Jinbo Ma and Zhijun Zhao
Micromachines 2025, 16(10), 1136; https://doi.org/10.3390/mi16101136 - 1 Oct 2025
Abstract
Circulating tumor cells (CTCs) are crucial biomarkers for lung cancer metastasis and recurrence, garnering significant clinical attention. Despite this, efficient and cost-effective detection methods remain scarce. Consequently, there is an urgent demand for the development of highly sensitive CTC detection technologies to enhance [...] Read more.
Circulating tumor cells (CTCs) are crucial biomarkers for lung cancer metastasis and recurrence, garnering significant clinical attention. Despite this, efficient and cost-effective detection methods remain scarce. Consequently, there is an urgent demand for the development of highly sensitive CTC detection technologies to enhance lung cancer diagnosis and treatment. This study utilized microspheres and A549 cells to model CTCs, assessing the impact of acoustic field forces on cell viability and proliferation and confirming capture efficiency. Subsequently, CTCs from the peripheral blood of patients with lung cancer were captured and identified using fluorescence in situ hybridization, and the results were compared to the immunomagnetic bead method to evaluate the differences between the techniques. Finally, epidermal growth factor receptor (EGFR) mutation analysis was conducted on CTC-positive samples. The findings showed that acoustic microfluidic technology effectively captures microspheres, A549 cells, and CTCs without compromising cell viability or proliferation. Moreover, EGFR mutation analysis successfully identified mutation types in four samples, establishing a basis for personalized targeted therapy. In conclusion, acoustic microfluidic technology preserves cell viability while efficiently capturing CTCs. When integrated with EGFR mutation analysis, it provides robust support for the precise diagnosis and treatment of lung cancer as well as personalized drug therapy. Full article
(This article belongs to the Special Issue Application of Microfluidic Technology in Bioengineering)
Show Figures

Figure 1

Back to TopTop