Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (458)

Search Parameters:
Keywords = integration of water and fertilizer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2913 KB  
Article
Enhancing Treated Wastewater Reuse in Saudi Agriculture: Farmers’ Perspectives
by Rady Tawfik, Khalid G. Biro Turk, Mohammad Alomair, Salah Sidahmed, Randah M. Alqurashi, Ammar Ebrahim, Mohamed El-Kafrawy, Sidiq Hamad and Emad Al-Karablieh
Sustainability 2025, 17(17), 7633; https://doi.org/10.3390/su17177633 - 24 Aug 2025
Abstract
The reuse of treated wastewater (TWW) offers a sustainable solution for water management in agriculture, particularly in arid regions like Saudi Arabia. However, its success depends on farmers’ acceptance, influenced by perceptions of economic benefits, social acceptability, environmental impacts, and health risks. This [...] Read more.
The reuse of treated wastewater (TWW) offers a sustainable solution for water management in agriculture, particularly in arid regions like Saudi Arabia. However, its success depends on farmers’ acceptance, influenced by perceptions of economic benefits, social acceptability, environmental impacts, and health risks. This study surveys 391 farmers across five regions in Saudi Arabia to assess their attitudes toward TWW reuse in irrigation, exploring how advanced wastewater treatment technologies can improve acceptance. Results show that 65% of farmers use TWW, with usage peaking at 72% in Al-Ahsa and Qatif, driven by water scarcity and lack of alternatives. While 78% are satisfied with TWW, concerns persist regarding pests, consumer acceptance, health risks, and soil quality. Advanced technologies can mitigate these issues by enhancing water quality and safety. The highest positive impact of the use of TWW in irrigation from was the impact on productivity, reduction in the cost of fertilizers and savings in the cost of water abstraction. With only 57% of farmers receiving extension services, integrating education on these technologies could further boost confidence. This study highlights key acceptance factors, underscoring the need for technological and educational interventions to promote sustainable TWW reuse in agriculture. Full article
(This article belongs to the Special Issue Advances in Technologies for Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 2195 KB  
Article
Biofertilizer and Bioherbicide Potential of Microalgae-Based Wastewater and Diplotaxis harra Boiss for Sustainable Barley Production
by Ghofrane Jmii, Chema Keffala, Jesús G. Zorrilla, Fouad Zouhir, Hugues Jupsin, Ameni Mokhtar and Bernard Tychon
Agronomy 2025, 15(9), 2020; https://doi.org/10.3390/agronomy15092020 - 22 Aug 2025
Viewed by 291
Abstract
The dual benefit of wastewater and microalgal biomass is a major advantage of high-rate algal ponds, enabling the environmental valorization of these byproducts. This research explored the effect of treated wastewater on the agri-food species Hordeum vulgare (L.) and its associated weed, Emex [...] Read more.
The dual benefit of wastewater and microalgal biomass is a major advantage of high-rate algal ponds, enabling the environmental valorization of these byproducts. This research explored the effect of treated wastewater on the agri-food species Hordeum vulgare (L.) and its associated weed, Emex spinosa (L.) Campd., along with the effects of algal biomass (primarily composed of Closterium, Chlorella, and Scenedesmus spp.) and Diplotaxis harra leaf powder. Initial pot trials applied microalgae and D. harra at 2, 4, and 6 g·kg−1 soil, also confirming that the treated wastewater met reuse standards and did not affect plant growth. The combined treatment at 4 g·kg−1 led to the highest H. vulgare increases in fresh weight (162.71%), root length (73.75%), and shoot length (72.87%), while reducing E. spinosa shoot and root lengths by 30.79% and 52.18%, and fresh weight by 68.24%. Subsequent field experiments using 1.26 t ha−1 of 0.5-cm-applied D. harra and microalgae powders enhanced H. vulgare growth, while reducing the growth of E. spinosa. The reduction in E. spinosa growth was associated with increased electrolyte leakage and malondialdehyde content. These results support the integration of high-rate algal ponds into agriculture, promoting water reuse and reducing reliance on synthetic fertilizers and herbicides in barley production. Full article
(This article belongs to the Special Issue Natural Products in Crop Diseases Control)
Show Figures

Figure 1

23 pages, 2837 KB  
Article
Contrasting Pre- and Post-Pyrolysis Incorporation of Bentonite into Manure Biochar: Impacts on Nutrient Availability, Carbon Stability, and Physicochemical Properties
by Thidarat Rupngam, Patchimaporn Udomkun, Thirasant Boonupara and Puangrat Kaewlom
Agronomy 2025, 15(8), 2015; https://doi.org/10.3390/agronomy15082015 - 21 Aug 2025
Viewed by 137
Abstract
Manure-derived biochar is a promising soil amendment, though its effectiveness is often constrained by limited structural stability and inconsistent nutrient retention. This study evaluated how the pyrolysis method (pre- vs. post-pyrolysis) and rate (5%, 10%, 20%, and 30% w/w) of [...] Read more.
Manure-derived biochar is a promising soil amendment, though its effectiveness is often constrained by limited structural stability and inconsistent nutrient retention. This study evaluated how the pyrolysis method (pre- vs. post-pyrolysis) and rate (5%, 10%, 20%, and 30% w/w) of bentonite incorporation influence the physicochemical properties, nutrient availability, and carbon stability of manure-derived biochar. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses revealed that pre-pyrolysis addition enhanced mineral integration, with silicon and aluminum contents increasing by up to 500% and 600%, respectively, while carbon content decreased by up to 34%. Water holding capacity (WHC) improved by approximately 102% with 5–10% bentonite, and carbon stability more than doubled (≥100% increase) at moderate application rates under pre-pyrolysis treatment. However, nitrate (NO3) and potassium (K) availability declined by up to 89% and 47%, respectively, in pre-pyrolysis treatments due to strong nutrient immobilization. In contrast, post-pyrolysis bentonite addition increased NO3 by ~44% and K by ~29%, while phosphorus (P) availability rose by 133% at 30% bentonite. Principal component analysis (PCA) showed a clear distinction between pre- and post-pyrolysis bentonite-treated biochar. Pre-pyrolysis treatments were linked to higher pH, WHC, and carbon stability, while post-pyrolysis treatments were associated with greater nutrient availability (e.g., NO3, and K levels) and higher EC. These findings underscore the importance of the pyrolysis method, showing that pre-pyrolysis bentonite incorporation strengthens biochar’s structural integrity and long-term carbon sequestration potential, whereas post-pyrolysis addition enhances immediate nutrient availability. This duality enables the development of targeted biochar formulations tailored to specific agronomic needs—whether for sustained soil improvement or rapid fertility enhancement in climate-smart and sustainable land management systems. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

26 pages, 695 KB  
Review
Empowering Smallholder Farmers by Integrating Participatory Research and Establishing Village-Based Forage Seed Enterprises to Enhance On-Farm Productivity and Local Seed Supply
by Muhammad Shoaib Tufail, Gaye L. Krebs, Muhammad S. Quddus, Alison Southwell, John W. Piltz, Mark R. Norton and Peter C. Wynn
Seeds 2025, 4(3), 40; https://doi.org/10.3390/seeds4030040 - 19 Aug 2025
Viewed by 506
Abstract
Food and nutritional insecurity, alongside poverty, remain formidable challenges within smallholder crop–livestock mixed farming systems, predominantly found in Asia and Africa, which are the primary focus of this review. Livestock stands as a crucial asset in these systems, providing food and income for [...] Read more.
Food and nutritional insecurity, alongside poverty, remain formidable challenges within smallholder crop–livestock mixed farming systems, predominantly found in Asia and Africa, which are the primary focus of this review. Livestock stands as a crucial asset in these systems, providing food and income for families. However, livestock productivity is often constrained by poor-quality feed, predominantly composed of crop residues. This is compounded by limited access to high-quality forage seeds and the misconception that limited land and water resources should be devoted to cereal production. Furthermore, formal seed supply chains for forages are often underdeveloped or non-existent, making it difficult for farmers to access quality seed. The integration of high-quality legume forages into these systems offers a cost-effective and sustainable solution for improving livestock productivity. These forages provide more nutritious feed and enhance soil fertility through nitrogen fixation, helping to reduce farmers’ reliance on expensive commercial feeds and fertilizers. Success in the adoption of improved forage varieties hinges on participatory approaches that actively engage farmers in varietal selection and evaluation. Such collaboration leads to better adoption rates and increases on-farm productivity, facilitating the establishment of village-based forage seed enterprises (VBFSEs). These enterprises offer a reliable local seed supply of quality seeds, reducing farmers’ dependency on inconsistent national and international seed suppliers. These initiatives not only improve the production of high-quality forage and livestock productivity but also create opportunities for income diversification, contributing to the livelihoods of smallholder farmers. By fostering collaboration and sustainable practices, policymakers and stakeholders, particularly farmers, can build more resilient agricultural systems that support food security and poverty alleviation in rural communities. Full article
(This article belongs to the Special Issue Community Seed Banks)
Show Figures

Figure 1

22 pages, 3675 KB  
Article
Optimizing Agricultural Sustainability Through Land Use Changes Under the CAP Framework Using Multi-Criteria Decision Analysis in Northern Greece
by Evgenia Lialia, Angelos Prentzas, Anna Tafidou, Christina Moulogianni, Asimina Kouriati, Eleni Dimitriadou, Christina Kleisiari and Thomas Bournaris
Land 2025, 14(8), 1658; https://doi.org/10.3390/land14081658 - 15 Aug 2025
Viewed by 358
Abstract
This research investigates the implementation of multi-criteria decision analysis (MCDA) within the framework of the Common Agricultural Policy (CAP) for the period of 2023–2027, focusing on optimizing agricultural sustainability and profitability in Northern Greece. Using data from three farmer groups across Central and [...] Read more.
This research investigates the implementation of multi-criteria decision analysis (MCDA) within the framework of the Common Agricultural Policy (CAP) for the period of 2023–2027, focusing on optimizing agricultural sustainability and profitability in Northern Greece. Using data from three farmer groups across Central and Western Macedonia, the study explores the application of MCDA models within three distinct case studies: the first optimizes a farm system focused on input minimization (Loudias), while the second and third (Ryakio and Agia Paraskevi) adopt a more comprehensive approach to farm management. More specifically, the first case focused on maximizing gross margin, minimizing variable costs, and reducing fertilizer use without targeting a reduction in water usage. By contrast, the second case study adopted a holistic approach to farm management, integrating water conservation in the Ryakio farmer group. The third included the requirement to keep arable land fallow in the Agia Paraskevi farmer group, reflecting the CAP’s new mandates. The results indicate that MCDA facilitates strategic crop selection and land changes that significantly enhance farm management efficiency and sustainability. The optimization led to more significant percentage increases in gross margin for the second (Ryakio) and third (Agia Paraskevi) case studies compared to the first, with the Agia Paraskevi group showing the most substantial improvement. Full article
Show Figures

Figure 1

20 pages, 457 KB  
Review
Cultivating Value from Waste: Creating Novel Food, Feed, and Industrial Applications from Bambara Groundnut By-Products
by Mercy Lungaho, Omena Bernard Ojuederie, Kehinde Titilope Kareem, Kafilat Abiodun Odesola, Jacob Olagbenro Popoola, Linus Owalum Onawo, Francis Aibuedefe Igiebor, Anthonia Uselu, Taofeek Tope Adegboyega and Beckley Ikhajiagbe
Sustainability 2025, 17(16), 7378; https://doi.org/10.3390/su17167378 - 15 Aug 2025
Viewed by 399
Abstract
Bambara groundnut (Vigna subterranea), a vital yet underutilized African legume, significantly boosts food security due to its nutritional value and adaptability to harsh climates and soils. However, its processing yields substantial waste like husks, shells, and haulms, which are often carelessly [...] Read more.
Bambara groundnut (Vigna subterranea), a vital yet underutilized African legume, significantly boosts food security due to its nutritional value and adaptability to harsh climates and soils. However, its processing yields substantial waste like husks, shells, and haulms, which are often carelessly discarded, causing environmental damage. This paper highlights the urgent need to valorize these waste streams to unlock sustainable growth and economic development. Given their lignocellulosic composition, Bambara groundnut residues are ideal for generating biogas and bioethanol. Beyond energy, these wastes can be transformed into various bio-based products, including adsorbents for heavy metal removal, activated carbon for water purification, and bioplastics. Their inherent nutritional content also allows for the extraction of valuable components like dietary fiber, protein concentrates, and phenolic compounds for food products or animal feed. The nutrient-rich organic matter can also be composted into fertilizer, improving soil fertility. These valorization strategies offer multiple benefits, such as reduced waste, less environmental contamination, and lower greenhouse gas emissions, alongside new revenue streams for agricultural producers. This integrated approach aligns perfectly with circular economy principles, promoting resource efficiency and maximizing agricultural utility. Despite challenges like anti-nutritional factors and processing costs, strategic investments in technology, infrastructure, and supportive policies can unlock Bambara groundnut’s potential for sustainable innovation, job creation, and enhanced food system resilience across Africa and globally. Ultimately, valorizing Bambara groundnut waste presents a transformative opportunity for sustainable growth and improved food systems, particularly within African agriculture. Full article
(This article belongs to the Special Issue RETASTE: Rethink Food Resources, Losses and Waste)
Show Figures

Figure 1

31 pages, 2279 KB  
Review
An Overview of Heavy Metal Contamination in Water from Agriculture: Origins, Monitoring, Risks, and Control Measures
by Roxana Maria Madjar and Gina Vasile Scăețeanu
Sustainability 2025, 17(16), 7368; https://doi.org/10.3390/su17167368 - 14 Aug 2025
Viewed by 485
Abstract
Agricultural activities are widely recognized as major sources of water pollution, primarily due to the introduction of heavy metals (HMs) through fertilizers, pesticides, manures, sewage sludge, and irrigation water. Owing to their persistence and non-biodegradability, these metals pose substantial risks to ecosystems and [...] Read more.
Agricultural activities are widely recognized as major sources of water pollution, primarily due to the introduction of heavy metals (HMs) through fertilizers, pesticides, manures, sewage sludge, and irrigation water. Owing to their persistence and non-biodegradability, these metals pose substantial risks to ecosystems and public health. While certain HMs such as cobalt, copper, and zinc are essential micronutrients for crops at low concentrations, others—like arsenic, cadmium, lead, and mercury—enter agricultural systems as contaminants and serve no biological function in plants. This paper explores the complex issue of HM contamination in water resulting from agricultural practices. It reviews the primary sources and pathways through which HMs enter aquatic systems, discusses their ecological and health impacts, and examines analytical methods used for HM detection and monitoring. In response to this challenge, several mitigation strategies are highlighted, including the optimized use of agrochemicals, adoption of sustainable farming practices, and implementation of phytoremediation and bioremediation techniques. Additionally, the importance of community education and regulatory enforcement is emphasized as part of an integrated approach to pollution control. Ultimately, this paper underscores the need for balanced solutions that safeguard water resources while maintaining agricultural productivity. Full article
(This article belongs to the Special Issue Geoenvironmental Engineering and Water Pollution Control)
Show Figures

Graphical abstract

12 pages, 510 KB  
Review
Emerging Ornamental Plant Diseases and Their Management Trends in Northern Italy
by Maria Lodovica Gullino, Domenico Bertetti, Massimo Pugliese and Angelo Garibaldi
Horticulturae 2025, 11(8), 955; https://doi.org/10.3390/horticulturae11080955 - 13 Aug 2025
Viewed by 265
Abstract
The ornamental plant sector is characterized by the production of a large variety of genera, species and cultivars that are much more numerous than those of other agricultural production sectors. Many countries throughout the world are involved in an intensive exchange of potted [...] Read more.
The ornamental plant sector is characterized by the production of a large variety of genera, species and cultivars that are much more numerous than those of other agricultural production sectors. Many countries throughout the world are involved in an intensive exchange of potted plants, cut flowers and propagation material. This intense trade exchange favors the introduction of the causal agents of new diseases on farms, in parks, along tree-lined avenues and in city gardens. Global warming can favor plant pathogens that thrive under high temperatures. Moreover, the interaction between the ongoing increase in temperature and in the CO2 concentration has caused a significant increase in the disease severity of many pathosystems. The numerous reports of new plant pathogens on ornamental plants in Italy in recent years fall into this context. In plant pathology research, living labs incorporate the complexities and variability of natural conditions, and they can thus be used to conduct experiments and test hypotheses. A private garden, located in the hamlet of Bariola (Piedmont, Biella province, northern Italy), has become an ideal living lab that is used to monitor the evolution of the phytosanitary situation of ornamental plants. The results obtained in this living lab are reported hereafter. Moreover, new trends in disease prevention and management, such as the adoption of appropriate prevention practices, water and fertilization management and use of environmentally friendly methods to reduce pesticide use as part of an integrated pest management approach, are also examined. Full article
Show Figures

Figure 1

22 pages, 2586 KB  
Article
Optimum N:P:K Ratio of Fertilization Enhances Tomato Yield and Quality Under Brackish Water Irrigation
by Lanqi Jing, Jianshe Li, Yongqiang Tian, Longguo Wu, Yanming Gao and Yune Cao
Plants 2025, 14(16), 2496; https://doi.org/10.3390/plants14162496 - 11 Aug 2025
Viewed by 461
Abstract
Excessive or improper fertilization not only salinizes soil but also reduces crop yield and quality. The objective of this study was to determine the optimum N, P, and K levels capable of improving tomato fruit quality and reducing environmental pollution for tomato plants [...] Read more.
Excessive or improper fertilization not only salinizes soil but also reduces crop yield and quality. The objective of this study was to determine the optimum N, P, and K levels capable of improving tomato fruit quality and reducing environmental pollution for tomato plants under brackish water irrigation conditions. The ‘Jingcai 8’ tomato was used as the research object, and an orthogonal experimental design was used to set up three nutritional factors of N, P, and K. Each factor was set at three levels: N (mmol·L−1): 2.00 (N1), 4.00 (N2), and 8.00 (N3); P (mmol·L−1): 0.67 (P1), 1.33 (P2), and 2.00 (P3); K (mmol·L−1): 8.00 (K1), 12.00 (K2), and 16.00 (K3). The effects of different levels of N, P, and K on plant growth indexes, root vigor and antistress enzymes, biomass and nutrients of plants and fruits, yield, quality, soil nutrients, and soil enzymes were investigated, and metabolomic measurements were performed on treatments ranked first (N:P:K ratio was 2:1.33:12) and ninth (N:P:K ratio was 8:1.33:8) for overall quality. In general, a N concentration of 8 mmol·L−1 promoted plant vegetative growth and plant biomass accumulation by promoting the accumulation of aboveground nitrogen content, but it reduced the weight of single fruit and tomato quality due to an increase in soil EC and pH. In contrast, 0.67 mmol·L−1 of P and 12 mmol·L−1 of K were able to promote both plant vegetative growth and tomato quality formation. In addition, 0.67 mmol·L−1 of P enhanced soil nutrient availability and enzyme activity, while 16 mmol·L−1 of K reduced nutrient availability and enzyme activity and increased soil EC. The concentrations of ferulic acid, cinnamic acid, caffeic acid, coumarin, and (-)-epigallocatechin were generally higher in tomatoes from the T2 treatment (N:P:K ratio was 2:1.33:12) than in those from other treatments. Together, the optimum N:P:K ratio (2:1.33:12) of fertilization enhances tomato yield and quality under brackish water irrigation. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

22 pages, 6844 KB  
Article
Legume Green Manure Further Improves the Effects of Fertilization on the Long-Term Yield and Water and Nitrogen Utilization of Winter Wheat in Rainfed Agriculture
by Xiushuang Li, Juan Chen, Jianglan Shi and Xiaohong Tian
Plants 2025, 14(16), 2476; https://doi.org/10.3390/plants14162476 - 9 Aug 2025
Viewed by 418
Abstract
Context: To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating [...] Read more.
Context: To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating with optimized water and fertilizer management. Objectives: We conducted a field experiment to determine the positive effects of planting legume GM in the summer fallow on the yield, WUE, and nitrogen uptake efficiency (NupE) of subsequent winter wheat, which was grown with plastic film mulching and integrated fertilization in the Loess Plateau of China. Methods: A split-plot-designed experiment was arranged with two main treatments, namely (1) wheat planting followed by GM planting in the summer fallow (GM) and (2) conventional wheat monoculture followed by bare land summer fallow (BL), and three sub-treatments: (1) control treatment without any chemical fertilizer (Ct), (2) application of chemical N, P, and K as basal fertilizer (B), and (3) application of basal fertilizer plus wheat straw return (BS). Results: In the initial two years, even in a dry year, GM did not decrease the soil water content and storage (0–200 cm layer) during the subsequent winter wheat season, relative to BL. But in the third and fourth years, GM increased the grain yield of winter wheat by 3.2% and 3.8%, respectively. B and BS increased the grain yield of winter wheat by 14.4% and 22.2%, respectively, during the third experimental year, and by 12.7% and 19.4% during the fourth experimental year, primarily through increasing the population density of winter wheat. The increase in the grain yield contributed to a higher WUE of winter wheat. In the third year, GM increased the water consumption (WC) and WUE of wheat by 2.4% and 1.7%, respectively, though they were far lower than B (8.3% and 5.6%) and BS (10.4% and 10.7%). B and BS resulted in a higher yield and N nutrition than GM alone, but GM combined with B and BS resulted in the highest yield and N nutrition, thus greatly decreasing the NupE and increasing N productivity. Conclusions: Planting legume GM in the fallow can further increase the long-term yield, WUE, and N utilization of winter wheat when integrated with chemical fertilization and wheat straw return in rainfed agriculture. Implications: Our study yields new insights into the agronomic benefits of legume GM application in semi-arid or analogous rainfed agroecosystems and underscores the critical role of water conservation in ensuring dryland agricultural production, particularly in regions undergoing optimization of fertilization. Full article
Show Figures

Figure 1

21 pages, 9664 KB  
Article
A Detection Approach for Wheat Spike Recognition and Counting Based on UAV Images and Improved Faster R-CNN
by Donglin Wang, Longfei Shi, Huiqing Yin, Yuhan Cheng, Shaobo Liu, Siyu Wu, Guangguang Yang, Qinge Dong, Jiankun Ge and Yanbin Li
Plants 2025, 14(16), 2475; https://doi.org/10.3390/plants14162475 - 9 Aug 2025
Viewed by 355
Abstract
This study presents an innovative unmanned aerial vehicle (UAV)-based intelligent detection method utilizing an improved Faster Region-based Convolutional Neural Network (Faster R-CNN) architecture to address the inefficiency and inaccuracy inherent in manual wheat spike counting. We systematically collected a high-resolution image dataset (2000 [...] Read more.
This study presents an innovative unmanned aerial vehicle (UAV)-based intelligent detection method utilizing an improved Faster Region-based Convolutional Neural Network (Faster R-CNN) architecture to address the inefficiency and inaccuracy inherent in manual wheat spike counting. We systematically collected a high-resolution image dataset (2000 images, 4096 × 3072 pixels) covering key growth stages (heading, grain filling, and maturity) of winter wheat (Triticum aestivum L.) during 2022–2023 using a DJI M300 RTK equipped with multispectral sensors. The dataset encompasses diverse field scenarios under five fertilization treatments (organic-only, organic–inorganic 7:3 and 3:7 ratios, inorganic-only, and no fertilizer) and two irrigation regimes (full and deficit irrigation), ensuring representativeness and generalizability. For model development, we replaced conventional VGG16 with ResNet-50 as the backbone network, incorporating residual connections and channel attention mechanisms to achieve 92.1% mean average precision (mAP) while reducing parameters from 135 M to 77 M (43% decrease). The GFLOPS of the improved model has been reduced from 1.9 to 1.7, an decrease of 10.53%, and the computational efficiency of the model has been improved. Performance tests demonstrated a 15% reduction in missed detection rate compared to YOLOv8 in dense canopies, with spike count regression analysis yielding R2 = 0.88 (p < 0.05) against manual measurements and yield prediction errors below 10% for optimal treatments. To validate robustness, we established a dedicated 500-image test set (25% of total data) spanning density gradients (30–80 spikes/m2) and varying illumination conditions, maintaining >85% accuracy even under cloudy weather. Furthermore, by integrating spike recognition with agronomic parameters (e.g., grain weight), we developed a comprehensive yield estimation model achieving 93.5% accuracy under optimal water–fertilizer management (70% ETc irrigation with 3:7 organic–inorganic ratio). This work systematically addresses key technical challenges in automated spike detection through standardized data acquisition, lightweight model design, and field validation, offering significant practical value for smart agriculture development. Full article
(This article belongs to the Special Issue Plant Phenotyping and Machine Learning)
Show Figures

Figure 1

35 pages, 1831 KB  
Review
Pesticide Degradation: Impacts on Soil Fertility and Nutrient Cycling
by Muhammad Yasir, Abul Hossain and Anubhav Pratap-Singh
Environments 2025, 12(8), 272; https://doi.org/10.3390/environments12080272 - 7 Aug 2025
Viewed by 1108
Abstract
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both [...] Read more.
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both abiotic and biotic, and the soil factors influencing these processes. It critically examines how degradation products impact soil microbial communities, organic matter decomposition, and key nutrient cycles, including nitrogen, phosphorus, potassium, and micronutrients. This review highlights emerging evidence linking pesticide residues with altered enzymatic activity, disrupted microbial populations, and reduced nutrient bioavailability, potentially compromising soil structure, water retention, and long-term productivity. Additionally, it discusses the broader environmental and agricultural implications, including decreased crop yields, biodiversity loss, and groundwater contamination. Sustainable management strategies such as bioremediation, the use of biochar, eco-friendly pesticides, and integrated pest management (IPM) are evaluated for mitigating these adverse effects. Finally, this review outlines future research directions emphasizing long-term studies, biotechnology innovations, and predictive modeling to support resilient agroecosystems. Understanding the intricate relationship between pesticide degradation and soil health is crucial to ensuring sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Coping with Climate Change: Fate of Nutrients and Pollutants in Soil)
Show Figures

Figure 1

20 pages, 1014 KB  
Review
State of the Art on the Interaction of Entomopathogenic Nematodes and Plant Growth-Promoting Rhizobacteria to Innovate a Sustainable Plant Health Product
by Islam Ahmed Abdelalim Darwish, Daniel P. Martins, David Ryan and Thomais Kakouli-Duarte
Crops 2025, 5(4), 52; https://doi.org/10.3390/crops5040052 - 6 Aug 2025
Viewed by 350
Abstract
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground [...] Read more.
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground waters, and is hazardous to soil biota. Therefore, applications of entomopathogenic nematodes (EPNs) and plant growth-promoting rhizobacteria (PGPR) are an alternative, eco-friendly solution to chemical pesticides and mineral-based fertilizers to enhance plant health and promote sustainable food security. This review focuses on the biological and ecological aspects of these organisms while also highlighting the practical application of molecular communication approaches in developing a novel plant health product. This insight will support this innovative approach that combines PGPR and EPNs for sustainable crop production. Several studies have reported positive interactions between nematodes and bacteria. Although the combined presence of both organisms has been shown to promote plant growth, the molecular interactions between them are still under investigation. Integrating molecular communication studies in the development of a new product could help in understanding their relationships and, in turn, support the combination of these organisms into a single plant health product. Full article
Show Figures

Figure 1

21 pages, 3832 KB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Viewed by 350
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

17 pages, 6882 KB  
Article
Development and Evaluation of a Solar Milk Pasteurizer for the Savanna Ecological Zones of West Africa
by Iddrisu Ibrahim, Paul Tengey, Kelci Mikayla Lawrence, Joseph Atia Ayariga, Fortune Akabanda, Grace Yawa Aduve, Junhuan Xu, Robertson K. Boakai, Olufemi S. Ajayi and James Owusu-Kwarteng
Solar 2025, 5(3), 38; https://doi.org/10.3390/solar5030038 - 4 Aug 2025
Viewed by 371
Abstract
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of [...] Read more.
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of soil fertility, which, in turn, compromise environmental health and food security. Solar pasteurization provides a reliable and sustainable method for thermally inactivating pathogenic microorganisms in milk and other perishable foods at sub-boiling temperatures, preserving its nutritional quality. This study aimed to evaluate the thermal and microbial performance of a low-cost solar milk pasteurization system, hypothesized to effectively reduce microbial contaminants and retain milk quality under natural sunlight. The system was constructed using locally available materials and tailored to the climatic conditions of the Savanna ecological zone in West Africa. A flat-plate glass solar collector was integrated with a 0.15 cm thick stainless steel cylindrical milk vat, featuring a 2.2 cm hot water jacket and 0.5 cm thick aluminum foil insulation. The system was tested in Navrongo, Ghana, under ambient temperatures ranging from 30 °C to 43 °C. The pasteurizer successfully processed up to 8 L of milk per batch, achieving a maximum milk temperature of 74 °C by 14:00 GMT. Microbial analysis revealed a significant reduction in bacterial load, from 6.6 × 106 CFU/mL to 1.0 × 102 CFU/mL, with complete elimination of coliforms. These results confirmed the device’s effectiveness in achieving safe pasteurization levels. The findings demonstrate that this locally built solar pasteurization system is a viable and cost-effective solution for improving milk safety in arid, electricity-limited regions. Its potential scalability also opens avenues for rural entrepreneurship in solar-powered food and water treatment technologies. Full article
Show Figures

Figure 1

Back to TopTop