Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (323)

Search Parameters:
Keywords = interneurons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1098 KB  
Article
The Human Alpha3 Beta2 Neuronal Nicotinic Acetylcholine Receptor Can Form Two Distinguishable Subtypes
by Doris C. Jackson, Marcel K. Hall and Sterling N. Sudweeks
Int. J. Mol. Sci. 2025, 26(19), 9506; https://doi.org/10.3390/ijms26199506 - 28 Sep 2025
Abstract
Diverse neuronal nicotinic acetylcholine receptor (nAChR) subtypes are expressed in hippocampal interneurons. Single-cell analysis of mRNA expression previously revealed prominent co-expression of the α3 and β2 subunits within rat interneurons in the CA1 region. Although the α3 subunit (traditionally expressed together with β4) [...] Read more.
Diverse neuronal nicotinic acetylcholine receptor (nAChR) subtypes are expressed in hippocampal interneurons. Single-cell analysis of mRNA expression previously revealed prominent co-expression of the α3 and β2 subunits within rat interneurons in the CA1 region. Although the α3 subunit (traditionally expressed together with β4) is usually associated with the peripheral nervous system, its significant co-expression with the β2 subunit in hippocampal interneurons suggests a distinct, potentially novel central nervous system nAChR subtype. We demonstrate that the human α3 and β2 subunits injected into Xenopus laevis oocytes can assemble into at least two functionally distinct subtypes of nAChRs based on different subunit stoichiometries. These subtypes exhibit similar reversal potentials but differ significantly in their desensitization kinetics and acetylcholine (ACh) affinities. The response obtained from a 1:5 α3:β2 mRNA injection ratio shows a higher affinity for ACh and significantly greater desensitization during prolonged ACh application compared to the response obtained from a 5:1 α3:β2 mRNA injection ratio. The identification of distinct functional α3β2 subtypes, characterized by differential desensitization kinetics and ACh affinity, could represent novel targets for the potential development of highly selective cognitive therapeutics for conditions such as Alzheimer’s disease, autism spectrum disorder, and attention deficit hyperactivity disorder, where hippocampal nAChRs are implicated. Full article
(This article belongs to the Special Issue New Research Progresses on Multifaceted Cholinergic Signaling)
Show Figures

Figure 1

13 pages, 722 KB  
Article
An In Vivo Drug Screen Reveals That Sirtuin 2 Activity Promotes Spinal Cord Neurogenesis in Developing Zebrafish
by Laura González-Llera, Álvaro J. Arana, Laura Sánchez and Antón Barreiro-Iglesias
Biomolecules 2025, 15(10), 1359; https://doi.org/10.3390/biom15101359 - 24 Sep 2025
Viewed by 32
Abstract
Given the central role of neurogenesis in building a functional nervous system, we recently developed a zebrafish-based drug-screening protocol to uncover molecules and signalling pathways regulating spinal cord neurogenesis. In this study, we have expanded this drug screen and discovered a previously unknown [...] Read more.
Given the central role of neurogenesis in building a functional nervous system, we recently developed a zebrafish-based drug-screening protocol to uncover molecules and signalling pathways regulating spinal cord neurogenesis. In this study, we have expanded this drug screen and discovered a previously unknown role of deacetylase sirtuin 2 (SIRT2) in promoting the generation of serotonergic interneurons in the spinal cord. Treatments with specific SIRT2 inhibitors reduced the generation of serotonergic neurons in the spinal cord, which led to locomotor deficits. Our data suggest that SIRT2 regulates mitotic activity in progenitor cells to promote the generation of serotonergic neurons in developing animals. Together, our results uncover SIRT2 as a key regulator of spinal cord neurogenesis and position it as a promising target for strategies aimed at neural repair in spinal cord disorders. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

17 pages, 3302 KB  
Article
Consequences of Adhesion Molecule Close Homolog of L1 Deficiency for Neurons and Glial Cells in the Mouse Spinal Cord After Injury
by Igor Jakovcevski, Ayse Acar, Benjamin Schwindenhammer, Mohammad I. K. Hamad, Gebhard Reiss, Eckart Förster and Melitta Schachner
Biomolecules 2025, 15(9), 1247; https://doi.org/10.3390/biom15091247 - 28 Aug 2025
Viewed by 470
Abstract
After spinal cord injury, pathological changes predominantly proceed caudal to the site of injury. To what extent these changes contribute to abnormalities during regeneration is poorly understood. Here, we addressed this question with a low-thoracic compression injury mouse model. The total numbers of [...] Read more.
After spinal cord injury, pathological changes predominantly proceed caudal to the site of injury. To what extent these changes contribute to abnormalities during regeneration is poorly understood. Here, we addressed this question with a low-thoracic compression injury mouse model. The total numbers of immunohistochemically stained neuronal and glial cell types in the lumbar spinal cord were stereologically determined 6 weeks after injury. We also investigated injured mice deficient in close homolog of L1 (CHL1), which had been reported to recover better after injury than their wild-type littermates. We here report that there were no differences between genotypes in uninjured animals. In both injured CHL1-deficient and wild-type littermates, gray and white matter volumes were decreased as compared with uninjured mice. Numbers of motoneurons and parvalbumin-expressing interneurons were also reduced in both genotypes. Numbers of interneurons in injured mutant mice were lower than in wild-type littermates. Whereas injury did not affect numbers of astrocytes and oligodendrocytes in the gray matter, numbers of microglia/macrophages were increased. In the mutant white matter, numbers of oligodendrocytes were reduced, with no changes in numbers of astrocytes and microglia. A loss of motoneurons and interneurons was observed in both genotypes, but loss of interneurons was more prominent in the absence of CHL1. We propose that, after injury, CHL1 deficiency causes deficits in structural outcome not seen after injury of wild-type mice. Full article
(This article belongs to the Collection Feature Papers in Section 'Molecular Medicine')
Show Figures

Figure 1

44 pages, 1023 KB  
Review
Systemic Neurodegeneration and Brain Aging: Multi-Omics Disintegration, Proteostatic Collapse, and Network Failure Across the CNS
by Victor Voicu, Corneliu Toader, Matei Șerban, Răzvan-Adrian Covache-Busuioc and Alexandru Vlad Ciurea
Biomedicines 2025, 13(8), 2025; https://doi.org/10.3390/biomedicines13082025 - 20 Aug 2025
Cited by 2 | Viewed by 1871
Abstract
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization—spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) [...] Read more.
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization—spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) as progressive breakdowns of interpretive cellular logic, rather than mere terminal consequences of protein aggregation or synaptic attrition. The discussion aims to provide a detailed mapping of how critical signaling pathways—including PI3K–AKT–mTOR, MAPK, Wnt/β-catenin, and integrated stress response cascades—undergo spatial and temporal disintegration. Special attention is directed toward the roles of RNA-binding proteins (e.g., TDP-43, FUS, ELAVL2), m6A epitranscriptomic modifiers (METTL3, YTHDF1, IGF2BP1), and non-canonical post-translational modifications (SUMOylation, crotonylation) in disrupting translation fidelity, proteostasis, and subcellular targeting. At the organelle level, the review seeks to highlight how the failure of ribosome-associated quality control (RQC), autophagosome–lysosome fusion machinery (STX17, SNAP29), and mitochondrial import/export systems (TIM/TOM complexes) generates cumulative stress and impairs neuronal triage. These dysfunctions are compounded by mitochondrial protease overload (LONP1, CLPP), UPR maladaptation, and phase-transitioned stress granules that sequester nucleocytoplasmic transport proteins and ribosomal subunits, especially in ALS and FTD contexts. Synaptic disassembly is treated not only as a downstream event, but as an early tipping point, driven by impaired PSD scaffolding, aberrant endosomal recycling (Rab5, Rab11), complement-mediated pruning (C1q/C3–CR3 axis), and excitatory–inhibitory imbalance linked to parvalbumin interneuron decay. Using insights from single-cell and spatial transcriptomics, the review illustrates how regional vulnerability to proteostatic and metabolic stress converges with signaling noise to produce entropic attractor collapse within core networks such as the DMN, SN, and FPCN. By framing neurodegeneration as an active loss of cellular and network “meaning-making”—a collapse of coordinated signal interpretation, triage prioritization, and adaptive response—the review aims to support a more integrative conceptual model. In this context, therapeutic direction may shift from damage containment toward restoring high-dimensional neuronal agency, via strategies that include the following elements: reprogrammable proteome-targeting agents (e.g., PROTACs), engineered autophagy adaptors, CRISPR-based BDNF enhancers, mitochondrial gatekeeping stabilizers, and glial-exosome neuroengineering. This synthesis intends to offer a translational scaffold for viewing neurodegeneration as not only a disorder of accumulation but as a systems-level failure of cellular reasoning—a perspective that may inform future efforts in resilience-based intervention and precision neurorestoration. Full article
(This article belongs to the Special Issue Cell Signaling and Molecular Regulation in Neurodegenerative Disease)
Show Figures

Figure 1

22 pages, 12838 KB  
Article
CO and NO Coordinate Developmental Neuron Migration
by Sabine Knipp, Arndt Rohwedder and Gerd Bicker
Int. J. Mol. Sci. 2025, 26(16), 7783; https://doi.org/10.3390/ijms26167783 - 12 Aug 2025
Viewed by 1620
Abstract
Similarly to the short-lived messenger nitric oxide (NO), the more stable carbon monoxide (CO) molecule can also activate soluble guanylyl cyclase (sGC) to increase cGMP levels. However, CO-induced cGMP production is much less efficient. Using an accessible invertebrate model, we dissect a potential [...] Read more.
Similarly to the short-lived messenger nitric oxide (NO), the more stable carbon monoxide (CO) molecule can also activate soluble guanylyl cyclase (sGC) to increase cGMP levels. However, CO-induced cGMP production is much less efficient. Using an accessible invertebrate model, we dissect a potential interaction between the canonical NO/sGC/cGMP and CO signalling pathways during development. The embryonic midgut of locusts is innervated by neurons that migrate in four discrete chains on its outer surface. Transcellular diffusing NO stimulates enteric neuron migration via cGMP signalling. The application of an NO donor results in virtually all enteric neurons being cGMP-immunoreactive while CO increases cGMP production only in approximately 33% of the migrating neurons. Cellular CO release appears to act as a slow down signal for motility. We quantify how CO specifically increases the interneuronal distance during chain migration. Moreover, time-lapse microscopy shows that CO reduces the directionality of the migrating neurons. These findings support the function of NO and CO as antagonistic signals for the coordination of collective cell migration during the development of the enteric nervous system. These experiments and the resulting insights into basic scientific questions prove once more that locust embryos are not only preparations for basic research, but also relevant models for screening of drugs targeting NO and CO signalling pathways as well as for isolating compounds affecting neuronal motility in general. Full article
(This article belongs to the Collection New Advances in Molecular Toxicology)
Show Figures

Figure 1

16 pages, 7453 KB  
Article
Red Nucleus Excitatory Neurons Initiate Directional Motor Movement in Mice
by Chenzhao He, Guibo Qi, Xin He, Wenwei Shao, Chao Ma, Zhangfan Wang, Haochuan Wang, Yuntong Tan, Li Yu, Yongsheng Xie, Song Qin and Liang Chen
Biomedicines 2025, 13(8), 1943; https://doi.org/10.3390/biomedicines13081943 - 8 Aug 2025
Viewed by 592
Abstract
Background: The red nucleus (RN) is a phylogenetically conserved structure within the midbrain that is traditionally associated with general motor coordination; however, its specific role in controlling directional movement remains poorly understood. Methods: This study systematically investigates the function and mechanism [...] Read more.
Background: The red nucleus (RN) is a phylogenetically conserved structure within the midbrain that is traditionally associated with general motor coordination; however, its specific role in controlling directional movement remains poorly understood. Methods: This study systematically investigates the function and mechanism of RN neurons in directional movement by combining stereotactic brain injections, fiber photometry recordings, multi-unit in vivo electrophysiological recordings, optogenetic manipulation, and anterograde trans-synaptic tracing. Results: We analyzed mice performing standardized T-maze turning tasks and revealed that anatomically distinct RN neuronal ensembles exhibit direction-selective activity patterns. These neurons demonstrate preferential activation during ipsilateral turning movements, with activity onset consistently occurring after movement initiation. We establish a causal relationship between RN neuronal activity and directional motor control: selective activation of RN glutamatergic neurons facilitates ipsilateral turning, whereas temporally precise inhibition significantly impairs the execution of these movements. Anterograde trans-synaptic tracing using H129 reveals that RN neurons selectively project to spinal interneuron populations responsible for ipsilateral flexion and coordinated limb movements. Conclusions: These findings offer a framework for understanding asymmetric motor control in the brain. This work redefines the RN as a specialized hub within midbrain networks that mediate lateralized movements and offers new avenues for neuromodulatory treatments for neurodegenerative and post-injury motor disorders. Full article
(This article belongs to the Special Issue Animal Models for Neurological Disease Research)
Show Figures

Figure 1

30 pages, 479 KB  
Review
Common Genomic and Proteomic Alterations Related to Disturbed Neural Oscillatory Activity in Schizophrenia
by David Trombka and Oded Meiron
Int. J. Mol. Sci. 2025, 26(15), 7514; https://doi.org/10.3390/ijms26157514 - 4 Aug 2025
Viewed by 859
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder characterized by heterogeneous symptoms, relatively poor clinical outcome, and widespread disruptions in neural connectivity and oscillatory dynamics. This article attempts to review current evidence linking genomic and proteomic alterations with aberrant neural oscillations observed in SZ, [...] Read more.
Schizophrenia (SZ) is a complex neuropsychiatric disorder characterized by heterogeneous symptoms, relatively poor clinical outcome, and widespread disruptions in neural connectivity and oscillatory dynamics. This article attempts to review current evidence linking genomic and proteomic alterations with aberrant neural oscillations observed in SZ, including aberrations in all oscillatory frequency bands obtained via human EEG. The numerous genes discussed are mainly involved in modulating synaptic transmission, synaptic function, interneuron excitability, and excitation/inhibition balance, thereby influencing the generation and synchronization of neural oscillations at specific frequency bands (e.g., gamma frequency band) critical for different cognitive, emotional, and perceptual processes in humans. The review highlights how polygenic influences and gene–circuit interactions underlie the neural oscillatory and connectivity abnormalities central to SZ pathophysiology, providing a framework for future research on common genetic-neural function interactions and on potential therapeutic interventions targeting local and global network-level neural dysfunction in SZ patients. As will be discussed, many of these genes affecting neural oscillations in SZ also affect other neurological disorders, ranging from autism to epilepsy. In time, it is hoped that future research will show why the same genetic anomaly leads to one illness in one person and to another illness in a different person. Full article
(This article belongs to the Special Issue Molecular Underpinnings of Schizophrenia Spectrum Disorders)
17 pages, 3248 KB  
Article
Interneuron-Driven Ictogenesis in the 4-Aminopyridine Model: Depolarization Block and Potassium Accumulation Initiate Seizure-like Activity
by Elena Yu. Proskurina, Julia L. Ergina and Aleksey V. Zaitsev
Int. J. Mol. Sci. 2025, 26(14), 6812; https://doi.org/10.3390/ijms26146812 - 16 Jul 2025
Viewed by 611
Abstract
The mechanisms of ictal discharge initiation remain incompletely understood, particularly the paradoxical role of inhibitory fast-spiking interneurons in seizure generation. Using simultaneous whole-cell recordings of interneurons and pyramidal neurons combined with extracellular [K+]o monitoring in mouse entorhinal cortex-hippocampal slices (4-aminopyridine [...] Read more.
The mechanisms of ictal discharge initiation remain incompletely understood, particularly the paradoxical role of inhibitory fast-spiking interneurons in seizure generation. Using simultaneous whole-cell recordings of interneurons and pyramidal neurons combined with extracellular [K+]o monitoring in mouse entorhinal cortex-hippocampal slices (4-aminopyridine model of epileptiform activity), we identified a critical transition sequence: interneurons displayed high-frequency firing during the preictal phase before entering depolarization block (DB). DB onset coincided with the peak of rate of extracellular [K+] accumulation. Pyramidal cells remained largely silent during interneuronal hyperactivity but started firing within 1.1 ± 0.3 s after DB onset, marking the transition to ictal discharges. This consistent sequence (interneuron DB → [K+]o rate peak → pyramidal cell firing) was observed in 100% of entorhinal cortex recordings. Importantly, while neurons across all entorhinal cortical layers synchronously fired during the first ictal discharge, hippocampal CA1 neurons showed fundamentally different activity: they generated high-frequency interictal bursts but did not participate in ictal events, indicating region-specific seizure initiation mechanisms. Our results demonstrate that interneuron depolarization block acts as a precise temporal switch for ictogenesis and suggest that the combined effect of disinhibition and K+-mediated depolarization triggers synchronous pyramidal neuron recruitment. These findings provide a mechanistic framework for seizure initiation in focal epilepsy, highlighting fast-spiking interneurons dysfunction as a potential therapeutic target. Full article
Show Figures

Figure 1

26 pages, 5665 KB  
Article
A New GlyT2 Variant Associated with Hyperekplexia
by Jorge Sarmiento-Jiménez, Raquel Felipe, Enrique Núñez, Alejandro Ferrando-Muñoz, Cristina Benito-Muñoz, Federico Gago, Jesús Vázquez, Emilio Camafeita, Emma Clement, Brian Wilson and Beatriz López-Corcuera
Int. J. Mol. Sci. 2025, 26(14), 6753; https://doi.org/10.3390/ijms26146753 - 14 Jul 2025
Cited by 1 | Viewed by 520
Abstract
Hyperekplexia (OMIM 149400), a sensorimotor syndrome of perinatal clinical relevance, causes newborns to display an energic startle reflex in response to certain trivial stimuli. This condition can be lethal due to apnea episodes. The disease is caused by a blockade of glycinergic neurotransmission. [...] Read more.
Hyperekplexia (OMIM 149400), a sensorimotor syndrome of perinatal clinical relevance, causes newborns to display an energic startle reflex in response to certain trivial stimuli. This condition can be lethal due to apnea episodes. The disease is caused by a blockade of glycinergic neurotransmission. Glycinergic interneurons preserve their identity by the activity of the surface glycine transporter GlyT2, which supplies glycine to presynaptic terminals to maintain glycine content in synaptic vesicles. Loss-of-function mutations in the GlyT2 gene (SLC6A5) cause a presynaptic form of human hyperekplexia. Here, we describe a new GlyT2 variant found in an infantile patient diagnosed with hyperekplexia. A missense mutation in the open reading frame of the GlyT2 gene inherited in homozygosity caused the substitution G449E in a residue highly conserved across the phylogenetic scale. The sequences of the glycine receptor genes GLRA1 and GLRB did not show abnormalities. We expressed the recombinant GlyT2 variant in heterologous cells and analyzed its pathogenic mechanism. The transporter was totally inactive, behaving as a bona fide loss-of-function mutant. Furthermore, the mutation promoted the abnormal insertion of the protein into the membrane, leading to its large incorporation into lipid rafts. However, there was no apparent alteration of wild-type trafficking upon mutant coexpression, as the mutant was prematurely degraded from the endoplasmic reticulum. Rescue with chemical chaperones was not possible for this mutant. Proteomics demonstrated that the expression of the mutant induced the unfolded protein response and interfered with raft-dependent processes. Therefore, the new variant causes a loss of function regarding GlyT2 activity but a gain of function as a cell proteostasis disturber. Full article
(This article belongs to the Special Issue Genetic and Genomic Diagnostics for Rare Diseases)
Show Figures

Graphical abstract

17 pages, 643 KB  
Review
Current Pharmacotherapies for Alcohol Use Disorder in Italy: From Neurobiological Targets to Clinical Practice
by Andrea Mastrostefano, Giuseppe Greco, Chiara De Bacco, Flavio Davini, Giacomo Polito, Edoardo Carnevale, Giuseppe Anastasi and Sergio Terracina
Targets 2025, 3(3), 24; https://doi.org/10.3390/targets3030024 - 11 Jul 2025
Viewed by 772
Abstract
Alcohol is a prevalent psychoactive substance and a risk factor for developing injuries and non-communicable diseases, representing a significant health and economic burden. Alcohol involves numerous molecular pathways. Its metabolism is regulated by alcohol dehydrogenases and aldehyde dehydrogenases; it also stimulates cholinergic interneurons, [...] Read more.
Alcohol is a prevalent psychoactive substance and a risk factor for developing injuries and non-communicable diseases, representing a significant health and economic burden. Alcohol involves numerous molecular pathways. Its metabolism is regulated by alcohol dehydrogenases and aldehyde dehydrogenases; it also stimulates cholinergic interneurons, increasing the sensitivity of 5-HT3 receptors, while chronic alcohol consumption alters the mesolimbic dopaminergic system involved in reward processing. The treatment of alcohol use disorder (AUD) is essential to manage complex patients, following an evidence-based approach. The aim of this narrative review is to provide a clear and practical summary to support and assist healthcare professionals in the Italian context. Approved pharmacological treatments for AUD include oral naltrexone and acamprosate, sodium oxybate, disulfiram, and nalmefene. Off-label therapies include baclofen, topiramate, gabapentin, pregabalin, ondansetron, and cytisine. A more informed clinical and practical approach that understands the altered neuronal signaling pathways is essential for offering effective, efficient, appropriate, and safe therapeutic algorithms for complex patients with alcohol use disorder. A comprehensive framework should include integrated treatments with a personalized approach. Full article
Show Figures

Figure 1

17 pages, 5686 KB  
Article
Transcranial Magneto-Acoustic Stimulation Enhances Cognitive and Working Memory in AD Rats by Regulating Theta-Gamma Oscillation Coupling and Synergistic Activity in the Hippocampal CA3 Region
by Jinrui Mi, Shuai Zhang, Xiaochao Lu and Yihao Xu
Brain Sci. 2025, 15(7), 701; https://doi.org/10.3390/brainsci15070701 - 29 Jun 2025
Cited by 1 | Viewed by 643
Abstract
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive dysfunction and working memory impairment, with early hippocampal damage being a prominent feature. Transcranial magneto-acoustic stimulation (TMAS) has been shown to target specific brain regions for neuroregulation. Methods: This study investigated [...] Read more.
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive dysfunction and working memory impairment, with early hippocampal damage being a prominent feature. Transcranial magneto-acoustic stimulation (TMAS) has been shown to target specific brain regions for neuroregulation. Methods: This study investigated the effects of TMAS on cognitive function, working memory, and hippocampal CA3 neural rhythms in AD rats by specifically stimulating the hippocampal region. Results: The novel object recognition test and T-maze test were employed to assess behavioral performance, while time-frequency analyses were conducted to evaluate memory-related activity, neural synchronization, and cross-frequency phase-amplitude coupling. TMAS significantly improved cognitive and working memory deficits in AD rats, enhancing long-term memory performance. Additionally, the abnormal energy levels observed in the θ and γ rhythm power spectra of the CA3 region were markedly restored, suggesting the recovery of normal neural function. This improvement was accompanied by a partial resurgence of neural activity, indicating enhanced inter-neuronal communication. Furthermore, the previously damaged coupling between the θ-fast γ and θ-slow γ rhythms was successfully improved, resulting in a notable enhancement of synchronized activity. Conclusions: These findings suggest that TMAS effectively alleviates cognitive and working memory impairments in AD rats and may provide experimental support for developing new treatments for AD. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

19 pages, 966 KB  
Article
Sensitivity to Instruction Strategies in Motor Learning Is Predicted by Anterior–Posterior TMS Motor Thresholds
by Michael L. Perrier, Kylee R. Graham, Jessica E. Vander Vaart, W. Richard Staines and Sean K. Meehan
Brain Sci. 2025, 15(6), 645; https://doi.org/10.3390/brainsci15060645 - 16 Jun 2025
Viewed by 679
Abstract
Background: The impact of exogenous explicit knowledge on early motor learning is highly variable and may be influenced by excitability within the procedural sensorimotor network. Recent transcranial magnetic stimulation (TMS) studies suggest that variability in interneuron recruitment by anterior–posterior (AP) currents is linked [...] Read more.
Background: The impact of exogenous explicit knowledge on early motor learning is highly variable and may be influenced by excitability within the procedural sensorimotor network. Recent transcranial magnetic stimulation (TMS) studies suggest that variability in interneuron recruitment by anterior–posterior (AP) currents is linked to differences in functional connectivity between premotor and motor regions. Objectives: This study used controllable pulse parameter TMS (cTMS) to assess how AP-sensitive interneuron excitability interacts with explicit knowledge to influence motor learning. Methods: Seventy-two participants were grouped as AP-positive (n = 36) and AP-negative groups (n = 36) based on whether an AP threshold could be obtained before reaching maximal stimulator output. A narrow (30 µs) stimulus was employed to target the longest latency corticospinal inputs selectively. Participants then practiced a continuous visuomotor tracking task and completed a delayed retention test. Half of each group received explicit knowledge of a repeated sequence embedded between random sequences. Random sequence tracking performance assessed general sensorimotor efficiency; repeated sequence performance assessed sequence-specific learning. Results: Both AP30-positive participants, with and without explicit knowledge, and the AP30-negative without explicit knowledge demonstrated similar improvements in sensorimotor efficiency driven by offline consolidation. However, AP30-negative participants given explicit instruction exhibited significantly reduced improvement in sensorimotor efficiency, primarily due to impaired offline consolidation. Conclusions: These findings suggest that individuals with low excitability in long-latency AP-sensitive inputs may be more vulnerable to interference from explicit instruction. The current results highlight the importance of accounting for individual differences in interneuron excitability when developing instructional strategies for motor learning. Full article
Show Figures

Figure 1

22 pages, 4353 KB  
Article
Aberrant Development of Hippocampal GABAergic Neurons Arising from Hypothyroidism Contributes to Memory Deficits in Mice Through Maf Suppressing Mef2c
by Mengyan Wu, Xingdong Zeng, Yongle Cai, Haonan Chen and Hao Yang
Biomedicines 2025, 13(6), 1436; https://doi.org/10.3390/biomedicines13061436 - 11 Jun 2025
Viewed by 623
Abstract
Background/Objectives: Thyroid hormone (TH) deficiency during the pregnancy and lactation periods leads to enduring memory impairments in offspring. However, the mechanisms underlying the cognitive and memory deficits induced by developmental hypothyroidism remain largely unexplored. Methods: Mice were exposed to propylthiouracil (PTU) or purified [...] Read more.
Background/Objectives: Thyroid hormone (TH) deficiency during the pregnancy and lactation periods leads to enduring memory impairments in offspring. However, the mechanisms underlying the cognitive and memory deficits induced by developmental hypothyroidism remain largely unexplored. Methods: Mice were exposed to propylthiouracil (PTU) or purified water to detect changes in hippocampal neurogenesis and differentiation of their offspring to explain the pathogenesis of impaired learning and memory. In addition, HT22 cell line were used to investigate the regulation between Maf and Mef2c. Results: Our findings indicate that developmental exposure to PTU results in abnormalities of the preferential differentiation of GABAergic interneurons and a subsequent reduction in PV+ inhibitory interneurons in the hippocampus of mouse pups. More significantly, we also indicate that the downregulation of Maf and the consequent alteration of Mef2c are likely responsible for the mechanisms through which developmental hypothyroidism influences the differentiation and development of PV+ inhibitory interneurons in offspring. Conclusions: Consequently, the aberrant development of PV+ interneuron in the hippocampus of mice subjected to developmental hypothyroidism potentially contributes to memory deficits during adolescence and adulthood. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

18 pages, 688 KB  
Review
Psychiatric Implications of Genetic Variations in Oligodendrocytes: Insights from hiPSC Models
by Martina D’Angelo, Valeria Di Stefano, Ilaria Pullano, Francesco Monaco and Luca Steardo
Life 2025, 15(6), 921; https://doi.org/10.3390/life15060921 - 6 Jun 2025
Cited by 2 | Viewed by 1098
Abstract
Oligodendrocyte precursor cells (OPCs) are a dynamic and heterogeneous population of glial cells essential for brain development and myelination. Beyond their well-established role in oligodendrogenesis, emerging evidence suggests that OPCs contribute to synaptic regulation, neuronal communication, and brain plasticity. Recent studies have increasingly [...] Read more.
Oligodendrocyte precursor cells (OPCs) are a dynamic and heterogeneous population of glial cells essential for brain development and myelination. Beyond their well-established role in oligodendrogenesis, emerging evidence suggests that OPCs contribute to synaptic regulation, neuronal communication, and brain plasticity. Recent studies have increasingly implicated OPC dysfunction in the pathophysiology of psychiatric disorders, particularly schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). This narrative review integrates clinical, genetic, transcriptomic, and histological findings to examine the role of OPC alterations in mental illnesses. In SCZ, OPC abnormalities predominantly affect myelination, but recent data also suggest deficits in non-canonical functions, including neuron–OPC communication. Findings in BD largely mirror those in SCZ, implying shared OPC-related mechanisms across these disorders. In contrast, OPC involvement in MDD appears more complex, with evidence supporting both myelination deficits and non-canonical dysfunctions, such as impaired neuro–glial interactions and perineuronal network alterations. The developmental timing of OPC dysfunction may represent a common denominator underlying psychiatric disorders, as early-life stress and neurodevelopmental disturbances have been linked to OPC impairments. Moreover, given the shared developmental origins of OPCs and parvalbumin-positive interneurons, disruptions in their mutual interactions may contribute to broader neural network dysregulation. Despite these insights, the field remains in its infancy. Future studies integrating independent human cohorts with robust preclinical models are needed to clarify the extent of OPC involvement in psychiatric pathophysiology. Understanding OPC dysfunction may reveal novel biomarkers and open new avenues for individualized therapeutic interventions and preventive strategies in mental health. Full article
(This article belongs to the Special Issue What Is New in Psychiatry and Psychopharmacology—2nd Edition)
Show Figures

Figure 1

19 pages, 5119 KB  
Article
A Refined Approach to Isolate Interneurons for High-Validity Epigenetic Studies in Human Brain Tissue
by Ariel Cariaga-Martínez, Kilian Jesús Gutierrez, Ignacio Regidor, Marta Del Álamo, Jerónimo Saiz-Ruiz and Raúl Alelú-Paz
Methods Protoc. 2025, 8(3), 61; https://doi.org/10.3390/mps8030061 - 5 Jun 2025
Viewed by 996
Abstract
Epigenetic research has made notable progress in recent years, yet our ability to explore the human brain at a cellular level remains limited. One of the main obstacles has been the difficulty of isolating specific neuronal populations from postmortem tissue—particularly interneurons, which play [...] Read more.
Epigenetic research has made notable progress in recent years, yet our ability to explore the human brain at a cellular level remains limited. One of the main obstacles has been the difficulty of isolating specific neuronal populations from postmortem tissue—particularly interneurons, which play a central role in many psychiatric disorders. In this study, we present a practical and reproducible protocol for isolating GAD-positive interneurons from human brain samples. We isolate permeabilized cell-like structures suitable for downstream epigenetic analysis. To ensure specificity, we validated the isolated cells by comparing them with interneurons derived from human iPSCs. This approach allows for high-quality DNA extraction suitable for downstream epigenetic analysis, including methylation-specific PCR. By targeting a well-defined neuronal subtype, our method provides a solid foundation for studying the molecular changes associated with disorders such as schizophrenia and autism. This protocol opens new doors for cell-specific investigations in brain tissue, a step forward in understanding how epigenetic mechanisms contribute to neuropsychiatric pathophysiology. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

Back to TopTop