Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (752)

Search Parameters:
Keywords = intrinsically disordered protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1198 KB  
Review
A Perspective on the Role of Mitochondrial Biomolecular Condensates (mtBCs) in Neurodegenerative Diseases and Evolutionary Links to Bacterial BCs
by Matteo Calcagnile, Pietro Alifano, Fabrizio Damiano, Paola Pontieri and Luigi Del Giudice
Int. J. Mol. Sci. 2025, 26(17), 8216; https://doi.org/10.3390/ijms26178216 - 24 Aug 2025
Abstract
Biomolecular condensates (BCs), formed through liquid–liquid phase separation (LLPS), are membraneless compartments that dynamically regulate key cellular processes. Beyond their canonical roles in energy metabolism and apoptosis, Mitochondria harbor distinct BCs, including mitochondrial RNA granules (MRGs), nucleoids, and degradasomes, that coordinate RNA processing, [...] Read more.
Biomolecular condensates (BCs), formed through liquid–liquid phase separation (LLPS), are membraneless compartments that dynamically regulate key cellular processes. Beyond their canonical roles in energy metabolism and apoptosis, Mitochondria harbor distinct BCs, including mitochondrial RNA granules (MRGs), nucleoids, and degradasomes, that coordinate RNA processing, genome maintenance, and protein homeostasis. These structures rely heavily on proteins with intrinsically disordered regions (IDRs), which facilitate the transient and multivalent interactions necessary for LLPS. In this review, we explore the composition and function of mitochondrial BCs and their emerging involvement in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, and Huntington’s disease. We provide computational evidence identifying IDR-containing proteins within the mitochondrial proteome and demonstrate their enrichment in BC-related functions. Many of these proteins are also implicated in mitochondrial stress responses, apoptosis, and pathways associated with neurodegeneration. Moreover, the evolutionary conservation of phase-separating proteins from bacteria to mitochondria underscores the ancient origin of LLPS-mediated compartmentalization. Comparative analysis reveals functional parallels between mitochondrial and prokaryotic IDPs, supporting the use of bacterial models to study mitochondrial condensates. Overall, this review underscores the critical role of mitochondrial BCs in health and disease and highlights the potential of targeting LLPS mechanisms in the development of therapeutic strategies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Mitochondrial Neurodegenerative Diseases)
Show Figures

Figure 1

37 pages, 900 KB  
Review
Implicit Solvent Models and Their Applications in Biophysics
by Yusuf Bugra Severoglu, Betul Yuksel, Cagatay Sucu, Nese Aral, Vladimir N. Uversky and Orkid Coskuner-Weber
Biomolecules 2025, 15(9), 1218; https://doi.org/10.3390/biom15091218 - 23 Aug 2025
Viewed by 59
Abstract
:Solvents represent the quiet majority in biomolecular systems, yet modeling their influence with both speed and ri:gor remains a central challenge. This study maps the state of the art in implicit solvent theory and practice, spanning classical continuum electrostatics (PB/GB; DelPhi, APBS), [...] Read more.
:Solvents represent the quiet majority in biomolecular systems, yet modeling their influence with both speed and ri:gor remains a central challenge. This study maps the state of the art in implicit solvent theory and practice, spanning classical continuum electrostatics (PB/GB; DelPhi, APBS), modern nonpolar and cavity/dispersion treatments, and quantum–continuum models (PCM, COSMO/COSMO-RS, SMx/SMD). We highlight where these methods excel and where they falter, namely, around ion specificity, heterogeneous interfaces, entropic effects, and parameter sensitivity. We then spotlight two fast-moving frontiers that raise both accuracy and throughput: machine learning-augmented approaches that serve as PB-accurate surrogates, learn solvent-averaged potentials for MD, or supply residual corrections to GB/PB baselines, and quantum-centric workflows that couple continuum solvation methods, such as IEF-PCM, to sampling on real quantum hardware, pointing toward realistic solution-phase electronic structures at emerging scales. Applications across protein–ligand binding, nucleic acids, and intrinsically disordered proteins illustrate how implicit models enable rapid hypothesis testing, large design sweeps, and long-time sampling. Our perspective argues for hybridization as a best practice, meaning continuum cores refined by improved physics, such as multipolar water, ML correctors with uncertainty quantification and active learning, and quantum–continuum modules for chemically demanding steps. Full article
(This article belongs to the Special Issue Protein Biophysics)
19 pages, 6569 KB  
Article
Disordered Protein Tail Is Wagging Poly(ADP-ribosyl)ation
by Guillaume Bordet, Yaroslava Karpova, Saraynia Espeseth, Gavin Mitzel, Zachary Bigelow and Alexei V. Tulin
Int. J. Mol. Sci. 2025, 26(17), 8166; https://doi.org/10.3390/ijms26178166 - 22 Aug 2025
Viewed by 164
Abstract
Intrinsically disordered regions (IDRs) are present in nearly all proteins, often accounting for more than 40% of their amino acid sequence. Unlike structured domains, IDRs lack sequence or structural conservation across species while maintaining conserved biological functions. Here, we discovered that the previously [...] Read more.
Intrinsically disordered regions (IDRs) are present in nearly all proteins, often accounting for more than 40% of their amino acid sequence. Unlike structured domains, IDRs lack sequence or structural conservation across species while maintaining conserved biological functions. Here, we discovered that the previously uncharacterized disordered tail region of Poly(ADP-ribose) glycohydrolase (PARG) controls its localization and activity. Despite its structural divergence, this domain supports conserved regulatory functions across species. Deletion of the disordered tail results in cytoplasmic mislocalization, aberrant accumulation in the nucleolus, impaired chromatin association, and reduced enzymatic activity. Mass spectrometry analysis reveals that this disordered region mediates interactions with nuclear transport factors, post-translational modification enzymes, and chromatin-associated complexes. Together, these results demonstrate that the disordered tail region of PARG acts as a regulatory hub that integrates multiple layers of control to ensure proper subcellular localization and chromatin function. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Graphical abstract

20 pages, 547 KB  
Article
Empirical Assessment of Sequence-Based Predictions of Intrinsically Disordered Regions Involved in Phase Separation
by Xuantai Wu, Kui Wang, Gang Hu and Lukasz Kurgan
Biomolecules 2025, 15(8), 1079; https://doi.org/10.3390/biom15081079 - 25 Jul 2025
Viewed by 509
Abstract
Phase separation processes facilitate the formation of membrane-less organelles and involve interactions within structured domains and intrinsically disordered regions (IDRs) in protein sequences. The literature suggests that the involvement of proteins in phase separation can be predicted from their sequences, leading to the [...] Read more.
Phase separation processes facilitate the formation of membrane-less organelles and involve interactions within structured domains and intrinsically disordered regions (IDRs) in protein sequences. The literature suggests that the involvement of proteins in phase separation can be predicted from their sequences, leading to the development of over 30 computational predictors. We focused on intrinsic disorder due to its fundamental role in related diseases, and because recent analysis has shown that phase separation can be accurately predicted for structured proteins. We evaluated eight representative amino acid-level predictors of phase separation, capable of identifying phase-separating IDRs, using a well-annotated, low-similarity test dataset under two complementary evaluation scenarios. Several methods generate accurate predictions in the easier scenario that includes both structured and disordered sequences. However, we demonstrate that modern disorder predictors perform equally well in this scenario by effectively differentiating phase-separating IDRs from structured regions. In the second, more challenging scenario—considering only predictions in disordered regions—disorder predictors underperform, and most phase separation predictors produce only modestly accurate results. Moreover, some predictors are broadly biased to classify disordered residues as phase-separating, which results in low predictive performance in this scenario. Finally, we recommend PSPHunter as the most accurate tool for identifying phase-separating IDRs in both scenarios. Full article
(This article belongs to the Collection Feature Papers in Bioinformatics and Systems Biology Section)
Show Figures

Figure 1

22 pages, 1781 KB  
Article
Gene Expression Profile of the Cerebral Cortex of Niemann-Pick Disease Type C Mutant Mice
by Iris Valeria Servín-Muñoz, Daniel Ortuño-Sahagún, María Paulina Reyes-Mata, Christian Griñán-Ferré, Mercè Pallàs and Celia González-Castillo
Genes 2025, 16(8), 865; https://doi.org/10.3390/genes16080865 - 24 Jul 2025
Viewed by 451
Abstract
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being [...] Read more.
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being an autosomal recessive inherited pathology, which belongs to LSDs. It occurs in 95% of cases due to mutations in the NPC1 gene, while 5% of cases are due to mutations in the NPC2 gene. In the cerebral cortex (CC), the disease shows lipid inclusions, increased cholesterol and multiple sphingolipids in neuronal membranes, and protein aggregates such as hyperphosphorylated tau, α-Synuclein, TDP-43, and β-amyloid peptide. Mitochondrial damage and oxidative stress are some alterations at the cellular level in NPC. Therefore, the aim of this work was to determine the gene expression profile in the CC of NPC1 mice in order to identify altered molecular pathways that may be related to the pathophysiology of the disease. Methods: In this study, we performed a microarray analysis of a 22,000-gene chip from the cerebral cortex of an NPC mutant mouse compared to a WT mouse. Subsequently, we performed a bioinformatic analysis in which we found groups of dysregulated genes, and their expression was corroborated by qPCR. Finally, we performed Western blotting to determine the expression of proteins probably dysregulated. Results: We found groups of dysregulated genes in the cerebral cortex of the NPC mouse involved in the ubiquitination, fatty acid metabolism, differentiation and development, and underexpression in genes with mitochondrial functions, which could be involved in intrinsic apoptosis reported in NPC, in addition, we found a generalized deregulation in the cortical circadian rhythm pathway, which could be related to the depressive behavior that has even been reported in NPC patients. Conclusions: Recognizing that there are changes in the expression of genes related to ubiquitination, mitochondrial functions, and cortical circadian rhythm in the NPC mutant mouse lays the basis for targeting treatments to new potential therapeutic targets. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 3713 KB  
Article
Titin’s Intrinsically Disordered PEVK Domain Modulates Actin Polymerization
by Áron Gellért Altorjay, Hedvig Tordai, Ádám Zolcsák, Nikoletta Kósa, Tamás Hegedűs and Miklós Kellermayer
Int. J. Mol. Sci. 2025, 26(14), 7004; https://doi.org/10.3390/ijms26147004 - 21 Jul 2025
Viewed by 407
Abstract
The multi-domain muscle protein titin provides elasticity and mechanosensing functions to the sarcomere. Titin’s PEVK domain is intrinsically disordered due to the presence of a large number of prolines and highly charged residues. Although PEVK does not have canonical actin-binding motifs, it has [...] Read more.
The multi-domain muscle protein titin provides elasticity and mechanosensing functions to the sarcomere. Titin’s PEVK domain is intrinsically disordered due to the presence of a large number of prolines and highly charged residues. Although PEVK does not have canonical actin-binding motifs, it has been shown to bind F-actin. Here, we explored whether the PEVK domain may also affect actin assembly. We cloned the middle, 733-residue-long segment (called PEVKII) of the full-length PEVK domain, expressed in E. coli and purified by using His- and Avi-tags engineered to the N- and C-termini, respectively. Actin assembly was monitored by the pyrene assay in the presence of varying PEVKII concentrations. The structural features of PEVKII-associated F-actin were studied with atomic force microscopy. The added PEVKII enhanced the initial and log-phase rates of actin assembly and the peak F-actin quantity in a concentration-dependent way. However, the critical concentration of actin polymerization was unaltered. Thus, PEVK accelerates actin polymerization by facilitating its nucleation. This effect was highlighted in the AFM images of F-actin–PEVKII adsorbed to the supported lipid bilayer. The sample was dominated by radially symmetric complexes of short actin filaments. PEVK’s actin polymerization-modulating effect may, in principle, have a function in regulating sarcomeric actin length and turnover. Altogether, titin’s PEVK domain is not only a non-canonical actin-binding protein that regulates sarcomeric shortening, but one that may modulate actin polymerization as well. Full article
(This article belongs to the Special Issue Biomolecular Structure, Function and Interactions: 2nd Edition)
Show Figures

Figure 1

16 pages, 1780 KB  
Perspective
BRCA2 Pre-mRNA Differential 5′ Splicing: A Rescue of Functional Protein Properties from Pathogenic Gene Variants and a Lifeline for Fanconi Anemia D1 Patients
by Roberto Paredes, Kiran Batta, Daniel H. Wiseman, Reham Gothbi, Vineet Dalal, Christine K. Schmidt, Reinhard Kalb, Stefan Meyer and Detlev Schindler
Int. J. Mol. Sci. 2025, 26(14), 6694; https://doi.org/10.3390/ijms26146694 - 12 Jul 2025
Viewed by 492
Abstract
Fanconi anemia (FA) is a DNA repair deficiency disorder associated with genomic and chromosomal instability and a high cancer risk. In a small percentage of cases, FA is caused by biallelic pathogenic variants (PVs) in the BRCA2/FANCD1 gene, defining the FA-D1 subtype. Experimental [...] Read more.
Fanconi anemia (FA) is a DNA repair deficiency disorder associated with genomic and chromosomal instability and a high cancer risk. In a small percentage of cases, FA is caused by biallelic pathogenic variants (PVs) in the BRCA2/FANCD1 gene, defining the FA-D1 subtype. Experimental and epidemiologic data indicate that the complete absence of BRCA2 is incompatible with viability. Therefore, cells from individuals affected with FA caused by biallelic BRCA2 PVs must have a residual BRCA2 function. This activity may be maintained through hypomorphic missense mutations, translation termination–reinitiation associated with a translational stop mutation, or other non-canonical or uncommon translation initiation and elongation events. In some cases, however, residual BRCA2 function is provided by alternatively or aberrantly spliced BRCA2 transcripts. Here, we review and debate aspects of the contribution of splicing in the 5′ segment to BRCA2 functions in the context of PVs affecting this largely intrinsically disordered protein region, with a focus on recent findings in individuals with FA-D1. In this Perspective, we also discuss some of the broader biological implications and open questions that arise from considering 5′-terminal BRCA2 splicing in light of old and new findings from FA-D1 patients and beyond. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 889 KB  
Review
Functions of Intrinsically Disordered Regions
by Linhu Xiao and Kun Xia
Biology 2025, 14(7), 810; https://doi.org/10.3390/biology14070810 - 4 Jul 2025
Viewed by 700
Abstract
Intrinsically disordered regions (IDRs), defined as protein segments lacking stable tertiary structures, are ubiquitously present in the human proteome and enriched with disease-associated mutations. IDRs harbor molecular recognition features (MoRFs) and post-translational modification sites (e.g., phosphorylation), enabling dynamic intermolecular interactions through conformational plasticity. [...] Read more.
Intrinsically disordered regions (IDRs), defined as protein segments lacking stable tertiary structures, are ubiquitously present in the human proteome and enriched with disease-associated mutations. IDRs harbor molecular recognition features (MoRFs) and post-translational modification sites (e.g., phosphorylation), enabling dynamic intermolecular interactions through conformational plasticity. Furthermore, IDRs drive liquid–liquid phase separation (LLPS) of biomacromolecules via multivalent interactions such as electrostatic attraction and pi–pi interactions, generating biomolecular condensates that are essential throughout the cellular lifecycle. These condensates separate intracellular space, forming a physical barrier to avoid interference between other molecules, thereby improving reaction specificity and efficiency. As a dynamically equilibrated process, LLPS formation and maintenance are regulated by multiple factors, endowing the condensates with rapid responsiveness to environmental cues and functional versatility in modulating diverse signaling cascades. Consequently, disruption of LLPS homeostasis can derail its associated biological processes, ultimately contributing to disease pathogenesis. Moreover, precisely because liquid–liquid phase separation (LLPS) is co-regulated by multiple factors, it may provide novel insights into the pathogenic mechanisms of disorders such as autism spectrum disorder (ASD), which result from the cumulative effects of multiple etiological factors. Full article
Show Figures

Figure 1

35 pages, 1544 KB  
Review
FINCHES: A Computational Framework for Predicting Intermolecular Interactions in Intrinsically Disordered Proteins
by Sarfaraz K. Niazi
Int. J. Mol. Sci. 2025, 26(13), 6246; https://doi.org/10.3390/ijms26136246 - 28 Jun 2025
Viewed by 701
Abstract
This comprehensive review examines FINCHES (Force field-based Interaction Network for Characterizing Heterotypic and Entropic Sequences). This groundbreaking computational framework enables the rapid, sequence-based prediction of intermolecular interactions in intrinsically disordered regions (IDRs) without the need for molecular simulations. The document provides detailed comparisons [...] Read more.
This comprehensive review examines FINCHES (Force field-based Interaction Network for Characterizing Heterotypic and Entropic Sequences). This groundbreaking computational framework enables the rapid, sequence-based prediction of intermolecular interactions in intrinsically disordered regions (IDRs) without the need for molecular simulations. The document provides detailed comparisons with other computational methods, including their mathematical foundations, specific applications, and experimental validations. We explore both the potential for advancing our understanding of disordered protein function and the inherent challenges in computationally modeling these dynamic biological systems. Additionally, we discuss computational assessment tools for interface prediction in molecular complexes, providing a comprehensive framework for evaluating IDR interaction predictions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 790 KB  
Review
Not Just PA28γ: What We Know About the Role of PA28αβ in Carcinogenesis
by Paolo Cascio
Biomolecules 2025, 15(6), 880; https://doi.org/10.3390/biom15060880 - 16 Jun 2025
Viewed by 477
Abstract
The ubiquitin-proteasome pathway performs a strictly controlled degradation of specific protein substrates within the eukaryotic cell. This catabolic mechanism allows the rapid removal of proteins damaged in any way, and therefore potentially capable of compromising cellular homeostasis, as well as the constant turnover [...] Read more.
The ubiquitin-proteasome pathway performs a strictly controlled degradation of specific protein substrates within the eukaryotic cell. This catabolic mechanism allows the rapid removal of proteins damaged in any way, and therefore potentially capable of compromising cellular homeostasis, as well as the constant turnover of all cellular proteins, in order to balance their synthesis and thus maintain the correct levels of proteins required by the cell at any given time. Consequently, the ubiquitin-proteasome system plays a fundamental role in regulating essential cellular processes, such as the cell cycle, apoptosis, immune responses, and inflammation, whose dysregulation or malfunction can lead to neoplastic transformation. Not surprisingly, therefore, alterations in the activity and regulatory mechanisms of the proteasome are common not only in various types of tumors, but often represent a contributing cause of oncogenesis itself. Among proteasome modulators, PA28γ, due to its function in promoting cell growth and proliferation, while inhibiting apoptosis and cell-mediated immune responses, has received great attention in recent years for its well established pro-tumoral activity. Conversely, the role played in oncogenesis by the second paralogue of the PA28 family of proteasome activators, namely PA28αβ, is less clearly defined, which is also related to the lower level of general understanding of its cellular activities and biological functions. However, increasing experimental evidence has demonstrated that PA28αβ also plays a non-secondary role in the process of neoplastic transformation and tumor growth, both by virtue of its regulatory function on class I cell-mediated immune responses and through activity promoting cell duplication and growth. This review aims to summarize the current knowledge and evidence on the molecular mechanisms and cellular functions through which PA28αβ may support development and growth of cancer. Full article
Show Figures

Figure 1

25 pages, 2451 KB  
Article
Age-Related Increases in PDE11A4 Protein Expression Trigger Liquid–Liquid Phase Separation (LLPS) of the Enzyme That Can Be Reversed by PDE11A4 Small Molecule Inhibitors
by Elvis Amurrio, Janvi H. Patel, Marie Danaher, Madison Goodwin, Porschderek Kargbo, Eliska Klimentova, Sonia Lin and Michy P. Kelly
Cells 2025, 14(12), 897; https://doi.org/10.3390/cells14120897 - 13 Jun 2025
Viewed by 1081
Abstract
PDE11A is a little-studied phosphodiesterase sub-family that breaks down cAMP/cGMP, with the PDE11A4 isoform enriched in the memory-related hippocampal formation. Age-related increases in PDE11A expression occur in human and rodent hippocampus and cause age-related cognitive decline of social memories. Interestingly, age-related increases in [...] Read more.
PDE11A is a little-studied phosphodiesterase sub-family that breaks down cAMP/cGMP, with the PDE11A4 isoform enriched in the memory-related hippocampal formation. Age-related increases in PDE11A expression occur in human and rodent hippocampus and cause age-related cognitive decline of social memories. Interestingly, age-related increases in PDE11A4 protein ectopically accumulate in spherical clusters that group together in the brain to form linear filamentous patterns termed “PDE11A4 ghost axons”. The biophysical/physiochemical mechanisms underlying this age-related clustering are not known. Here, we determine if age-related clustering of PDE11A4 reflects liquid–liquid phase separation (LLPS; biomolecular condensation), and if PDE11A inhibitors can reverse this LLPS. We show human and mouse PDE11A4 exhibit several LLPS-promoting sequence features, including intrinsically disordered regions, non-covalent pi–pi interactions, and prion-like domains that were particularly enriched in the N-terminal regulatory region. Further, multiple bioinformatic tools predict PDE11A4 undergoes LLPS. Consistent with these predictions, aging-like PDE11A4 clusters in HT22 hippocampal neuronal cells were membraneless spherical droplets that progressively fuse over time in a concentration-dependent manner. Deletion of the N-terminal intrinsically disordered region prevented PDE11A4 LLPS despite equal protein expression between WT and mutant constructs. 1,6-hexanediol, along with tadalafil and BC11-38 that inhibit PDE11A4, reversed PDE11A4 LLPS in HT22 hippocampal neuronal cells. Interestingly, PDE11A4 inhibitors reverse PDE11A4 LLPS independently of increasing cAMP/cGMP levels via catalytic inhibition. Importantly, orally dosed tadalafil reduced PDE11A4 ghost axons in old mouse ventral hippocampus by 50%. Thus, PDE11A4 exhibits the four defining criteria of LLPS, and PDE11A inhibitors reverse this age-related phenotype both in vitro and in vivo. Full article
Show Figures

Figure 1

16 pages, 3644 KB  
Article
Sensing Protein Structural Transitions with Microfluidic Modulation Infrared Spectroscopy
by Lathan Lucas, Phoebe S. Tsoi, Ananya Nair, Allan Chris M. Ferreon and Josephine C. Ferreon
Biosensors 2025, 15(6), 382; https://doi.org/10.3390/bios15060382 - 13 Jun 2025
Cited by 1 | Viewed by 849
Abstract
Microfluidic modulation spectroscopy-infrared (MMS) offers a label-free, high-sensitivity approach for quantifying changes in protein secondary structures under native solution conditions. MMS subtracts the solvent backgrounds from sample signals by alternately flowing proteins and matched buffers through a microfluidic chamber, yielding clear amide I [...] Read more.
Microfluidic modulation spectroscopy-infrared (MMS) offers a label-free, high-sensitivity approach for quantifying changes in protein secondary structures under native solution conditions. MMS subtracts the solvent backgrounds from sample signals by alternately flowing proteins and matched buffers through a microfluidic chamber, yielding clear amide I spectra from microliter volumes. In this study, we validated MMS on canonical globular proteins, bovine serum albumin, mCherry, and lysozyme, demonstrating accurate detection and resolution of α-helix, β-sheet, and mixed-fold structures. Applying MMS to the intrinsically disordered protein Tau, we detected environment-driven shifts in transient conformers: both the acidic (pH 2.5) and alkaline (pH 10) conditions increased the turn/unordered structures and decreased the α-helix content relative to the neutral pH, highlighting the charge-mediated destabilization of the labile motifs. Hyperphosphorylation of Tau yielded a modest decrease in the α-helical fraction and an increase in the turn/unordered structures. Comparison of monomeric and aggregated hyperphosphorylated Tau revealed a dramatic gain in β-sheet and a loss in turn/unordered structures upon amyloid fibril formation, confirming MMS’s ability to distinguish disordered monomers from amyloids. These findings establish MMS as a robust platform for detecting protein secondary structures and monitoring aggregation pathways in both folded and disordered systems. The sensitive detection of structural transitions offers opportunities for probing misfolding mechanisms and advancing our understanding of aggregation-related diseases. Full article
(This article belongs to the Special Issue Design and Application of Microfluidic Biosensors in Biomedicine)
Show Figures

Figure 1

33 pages, 4537 KB  
Review
The Use of Intrinsic Disorder and Phosphorylation by Oncogenic Viral Proteins to Dysregulate the Host Cell Cycle Through Interaction with pRb
by Heidi Kast-Woelbern, Sarah K. Martinho, Kayla T. Julio, Audrey M. Vazzana, Abbey E. Mandagie and Ariane L. Jansma
Viruses 2025, 17(6), 835; https://doi.org/10.3390/v17060835 - 10 Jun 2025
Viewed by 1797
Abstract
Approximately 15% of cancers worldwide are caused by oncogenic viruses. These infectious agents utilize multiple strategies to dysregulate their host cells as a means of viral reproduction. While this typically involves a small number of viral oncoproteins known to interact with a myriad [...] Read more.
Approximately 15% of cancers worldwide are caused by oncogenic viruses. These infectious agents utilize multiple strategies to dysregulate their host cells as a means of viral reproduction. While this typically involves a small number of viral oncoproteins known to interact with a myriad of host cell proteins, direct binding with the tumor suppressor retinoblastoma protein (pRb) as a means to dysregulate the cell cycle appears to be a common mechanism among most known oncogenic viruses. This review evaluates the shared structural themes of binding motif, intrinsic disorder, and viral oncoprotein phosphorylation, utilized by eight different oncogenic viruses for the subjugation of pRb. Cancer caused by oncogenic viruses represents one of the few potentially preventable forms of cancer. The more we understand the common strategies used by these infectious agents, the better equipped we will be to further optimize vaccination and therapeutic strategies to fight them. Full article
(This article belongs to the Special Issue Viral Oncogenes)
Show Figures

Graphical abstract

22 pages, 1817 KB  
Article
Umbrella Refinement of Ensembles—An Alternative View of Ensemble Optimization
by Johannes Stöckelmaier, Tümay Capraz and Chris Oostenbrink
Molecules 2025, 30(11), 2449; https://doi.org/10.3390/molecules30112449 - 3 Jun 2025
Cited by 1 | Viewed by 517
Abstract
The elucidation of protein dynamics, especially in the context of intrinsically disordered proteins, is challenging and requires cooperation between experimental studies and computational analysis. Molecular dynamics simulations are an essential investigation tool but often struggle to accurately quantify the conformational preferences of flexible [...] Read more.
The elucidation of protein dynamics, especially in the context of intrinsically disordered proteins, is challenging and requires cooperation between experimental studies and computational analysis. Molecular dynamics simulations are an essential investigation tool but often struggle to accurately quantify the conformational preferences of flexible proteins. To create a quantitatively validated conformational ensemble, such simulations may be refined with experimental data using Bayesian and maximum entropy methods. In this study, we present a method to optimize a conformational ensemble using Bayes’ theorem in connection with a methodology derived from Umbrella Sampling. The resulting method, called the Umbrella Refinement of Ensembles (URE), reduces the number of parameters to be optimized in comparison to the classical Bayesian Ensemble Refinement and remains methodologically suitable for use with the forward formulated Kullback–Leibler divergence. The method is validated using two established systems, an alanine–alanine zwitterion and the chignolin peptide, using nuclear magnetic resonance data from the literature. Full article
Show Figures

Graphical abstract

20 pages, 6095 KB  
Article
Phase-Separated Multienzyme Condensates for Efficient Synthesis of Imines from Carboxylic Acids with Enhanced Dual-Cofactor Recycling
by Tingxiao Guo, Lifang Zeng, Jiaxu Liu, Xiaoyan Zhang and Yunpeng Bai
Int. J. Mol. Sci. 2025, 26(10), 4795; https://doi.org/10.3390/ijms26104795 - 16 May 2025
Cited by 1 | Viewed by 511
Abstract
Enzyme catalysis represents a promising approach for sustainable chemical synthesis, yet its industrial applications face limitations due to the inefficient regeneration and high cost of essential cofactors, such as adenosine-5′-triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). While natural metabolic systems efficiently recycle [...] Read more.
Enzyme catalysis represents a promising approach for sustainable chemical synthesis, yet its industrial applications face limitations due to the inefficient regeneration and high cost of essential cofactors, such as adenosine-5′-triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). While natural metabolic systems efficiently recycle cofactors through spatially organized enzymes, replicating this efficiency in vitro remains challenging. Here, we prepare a five-enzyme condensate system using liquid–liquid phase separation (LLPS) mediated by intrinsically disordered proteins (IDPs). By colocalizing a carboxylic acid reductase from Norcadia iowensis (NiCAR) with a reductive aminase from Aspergillus oryzae (AspRedAm) and three cofactor-regenerating enzymes, we generated a phase-separated catalytic condensate that enhanced ATP and NADPH recycling efficiency by 4.7-fold and 1.9-fold relative to free enzymes, respectively. Catalytic performance was correlated with the extent of phase separation, as confirmed by fluorescence microscopy, which revealed clear enrichment of ATP and NADPH within the condensates. This proximity effect enabled efficient cofactor turnover in the one-step reaction, achieving substrate conversion above 90% within 6 h and enhancing the space–time yield (STY) of the chiral imines 1.6-fold, with only one-fifth of the standard cofactor load. This approach creates a scalable and economic tool for performing multienzyme cascade reactions in vitro that are driven by the efficient recycling of multiple cofactors. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop